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Abstract: Handwriting difficulty is a defining feature of Chinese developmental dyslexia (DD) due
to the complex structure and dense information contained within compound characters. Despite
previous attempts to use deep neural network models to extract handwriting features, the temporal
property of writing characters in sequential order during dictation tasks has been neglected. By
combining transfer learning of convolutional neural network (CNN) and positional encoding with
the temporal-sequential encoding of long short-term memory (LSTM) and attention mechanism,
we trained and tested the model with handwriting images of 100,000 Chinese characters from
1064 children in Grades 2–6 (DD = 483; Typically Developing [TD] = 581). Using handwriting features
only, the best model reached 83.2% accuracy, 79.2% sensitivity, 86.4% specificity, and 91.2% AUC.
With grade information, the best model achieved 85.0% classification accuracy, 83.3% sensitivity,
86.4% specificity, and 89.7% AUC. These findings suggest the potential of utilizing machine learning
technology to identify children at risk for dyslexia at an early age.

Keywords: real-world applications; machine learning and dyslexia; handwriting; Chinese dictation
task; sequence modeling

1. Introduction

Developmental Dyslexia (DD) is characterized by persistent difficulties in reading
and phonological abilities [1], resulting in deficient decoding and spelling skills. In non-
alphabetic languages such as Chinese, the writing system contributes to the multi-deficit
nature of dyslexia [2]. Unlike most alphabetic words with linear letter sequences, Chi-
nese characters have a multi-dimensional, multi-level feature set that includes orthog-
raphy, phonology, and semantics at the character and radical levels, constructed using
logographemes and strokes [3]. These multifaceted features intensify the complexity of
potential writing errors, such as assimilation, substitution, insertion, deletion, and trans-
position at the radical and component levels, as well as protrusion, retraction, blending,
segmenting, insertion, and deletion at the stroke level. These errors are frequently observed
in copying and dictation tasks, which are the most common practices for children learning
Chinese handwriting [4]. While the copying task measures motor ability, the dictation task
directly assesses competence to accurately convert the pronunciation of spoken words into
written form.

Behavioral studies suggest that Chinese DD children experience difficulties and de-
layed development in both tasks [5,6] due to impaired motor ability, phonological skills, and
orthographic knowledge. The real-time analysis of handwriting performance demonstrated
that these dyslexic individuals exhibited significantly more pause time and execution, as
well as differences in pen pressure and character size [6], compared with their typically
developing (TD) peers. Meanwhile, a similar analysis of Chinese dictation tasks showed the
subtypes of handwriting difficulties and the association with lexical knowledge, perceptual-
motor ability, and attention span in working memory systems [7]. Additionally, functional
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Magnetic Resonance Imaging (fMRI) studies clarify the neural basis for handwriting deficit
in Chinese dyslexia by showing that DD children exhibited reduced activation in sensory-
motor and visual-orthography processing but increased activation in executive control as
a compensation mechanism [8]. Similarly, a follow-up study confirmed these patterns in
brain network connectivity, with strength associated with handwriting speed [9].

Given the robust evidence of handwriting difficulties in Chinese DD children and the
rapid advancements in machine learning technology, a crucial question arises: Can ma-
chine learning be used effectively to identify children at risk for dyslexia by analyzing their
handwriting errors in a dictation task? This study presents a novel approach called DysDi-
Tect, an automated Dyslexia Dictation deTection system that uses deep learning models
and Chinese handwriting images in a dictation task to effectively classify individuals and
predict their dyslexia status.

1.1. Technological Advancement of Chinese Handwriting and Performance Evaluation

The challenges faced by dyslexic individuals in handwriting have prompted the
development of technological analysis and solutions. One such solution is handwritten
Chinese character recognition (HCCR) technology, which has evolved from hierarchical and
structural analyses to statistical modeling and deep-learning approaches [10]. For instance,
optical character recognition (OCR) has surpassed human performances in recognizing
handwritten characters. As HCCR and related innovations mature across languages, a
focus on evaluating handwriting performance has increased in recent years.

One commonly used approach for assessing Chinese handwriting is statistical analysis
of individual strokes [11,12]. This technique can provide detailed feedback on stroke quality,
but it often fails to capture the overall representations of the character. To address this issue,
previous studies have decomposed the structure of Chinese characters into quantifiable
measurements and performed feature mapping with a standardized template for quality
evaluation [13,14]. While feature mapping approaches have been effective, the complex
algorithmic complexity used can lead to feedback that is incomprehensible to users, limiting
their usage in educational settings.

The latest handwriting evaluation method [15,16] uses deep learning techniques to dis-
sect and encode characters into smaller units of logographemes and assess the performances
of each part [17]. This approach combines both structure-based and feature-mapping tech-
niques, resulting in higher performance and informative feedback for users. Additionally,
the system can be extended to implement stroke-based evaluations.

1.2. Transforming Dyslexia Identification: Transitioning from Human-Delivered Behavioral Tests
to Machine Learning-Assisted Automatic Detection

The traditional approach for diagnosing DD involves a range of behavioral tests that
assess various reading-related cognitive and meta-linguistic skills, such as the Hong Kong
test of specific learning difficulties in reading and writing for primary school students
(HKT-P) [18]. However, despite the compelling evidence highlighting the importance
of handwriting analysis, this approach is considered inadequate due to its reliance on a
limited number of tasks that may not fully capture the complexities of Chinese dyslexia.
Furthermore, early identification and intervention of dyslexia are crucial for preventing
adverse consequences [19]. However, the practical application of these measures is hin-
dered by the high cost of, and labor-intensive effort required by, experienced educational
psychologists and clinicians.

The rise of machine learning enables unconventional techniques and introduces new
possibilities for early screening and identification of dyslexia. Extensive reviews [20–22]
have examined the application of machine learning in dyslexia research, focusing on data
sources, models/algorithms, feature selection, and evaluation metrics. Machine learning
techniques for dyslexia identification utilize three main categories of data sources: behavioral
symptoms, eye-tracking, and biomarkers [20]. Decades of research and clinical experiences
have accumulated a large quantity of behavioral data related to the cognitive and language
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abilities of typically developing (TD) and DD children. Eye-tracking techniques have also
enhanced our understanding of underlying cognitive processes of reading difficulties through
the measurement of eye fixation. Additionally, different biomedical technologies such as
fMRI, electroencephalography (EEG), and electrooculography (EOG) have been employed to
investigate DD as a neurodevelopmental disorder. Depending on specific data sources, differ-
ent machine-learning models are utilized [21]. Numerical (or preprocessed) data commonly
use algorithms like Support Vector Machine (SVM), K Nearest Neighbors (KNN), Random
Forest (RF), Decision Tree (DT), and regressions. Image data often incorporate deep learning
techniques like Convolutional Neural Network (CNN).

Feature selection [22] is a critical step in machine learning aimed at identifying the
most predictive features for improved prediction results and theoretical implications.
Data preprocessing is sometimes employed to extract features from raw data, such as
neuroimaging, brain signals, or handwriting metrics. To evaluate the performance and
utility of machine learning models, various metrics are employed. Previous studies have
reported accuracy rates ranging from 70–95% [20].

1.3. Predictions and Identification of Dyslexia Using Handwriting Features with Machine
Learning Techniques

According to a recent review [22], approximately 30% of dyslexia prediction utilizing
deep learning has been conducted using handwriting datasets. Previous attempts to identify
dyslexia handwriting images have focused primarily on analyzing the basic unit of the writing
system, namely, letters in alphabetic languages. DD is often manifested in prevalent errors
such as reversed and corrected letters [23], as well as messiness in handwriting [24,25]. To
facilitate the identification procedure, Optical Character Recognition (OCR) is incorporated,
particularly in languages with a limited set of letters like English [26]. It is worth noting that
dysgraphia identification research [27] has focused predominantly on studying the kinematic
and static data of in-process handwriting, both in alphabetic languages and Chinese [28].

However, the techniques previously developed for dyslexia identification are not fully
applicable to Chinese handwriting due to the multi-dimensional, multi-level features of
Chinese characters. Lee et al. [29] utilized the error analysis of preprocessed dictation
performance and successfully identified DD with an 80.0% accuracy rate, using stroke,
grade, lexicality, and character configuration as the most predictive features. However, the
labor-intensive nature of and reliance on knowledge-based expert coding of handwriting
errors limited the practical implementation of this technique. As a result, a recent model
called Dyslexia Prescreening Mobile Application for Chinese Children (DYPA) [17] utilizes
deep learning encoding of multi-level features such as stroke, radical, and character to
overcome these limitations and achieve an accuracy rate of 81.14% when combined with
other meta-linguistic tests. It is important to highlight that DYPA was trained on a small
dataset, including 39 Chinese DD children and 168 TD children in Grades 1–3. Such a small
sample size may not fully reflect the variability and complexity of handwriting difficulties
exhibited by Chinese DD children. More importantly, while DYPA achieved an accuracy
rate of 81.14%, it is crucial to note that this was a result of combining handwriting analysis
with other meta-linguistic tests. The extent to which handwriting analysis alone, without
human expertise, can effectively differentiate DD and TD children remains unclear.

Thus, in this study, we advance previous research by developing DysDiTect, an
automated Dyslexia Dictation deTection system that utilizes deep learning models and
Chinese handwriting images in a dictation task to effectively classify individuals and
predict their dyslexia status. To train and evaluate DysDiTect, we collected a large data set
comprising 100,000 Chinese characters from 1064 children in Grades 2–6, including 483 DD
and 581 TD children. Notably, our study is the first to employ deep learning techniques
on handwriting images for identifying dyslexia in the Chinese language. We developed
a series of models to evaluate the handwriting performances and temporal-sequential
dependency of TD and DD children during Chinese dictation tasks.
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2. Materials and Methods
2.1. Participants

Participants were 1064 native Cantonese-speaking school-age children taught to read
and write traditional Chinese characters, with 483 formally diagnosed with dyslexia (Grade
2: N = 172; Grade 3: N = 110; Grade 4: N = 101; Grade 5: N = 72; and Grade 6: N = 28), and
581 typically-developing peers (Grade 2: N = 174; Grade 3: N = 158; Grade 4: N = 143; Grade 5:
N = 62; and Grade 6: N = 44). The formal diagnosis of dyslexia was performed by educational
or clinical psychologists using the Hong Kong test of specific learning difficulties in reading
and writing for primary school students (HKT-P) [18].

2.2. Chinese Word Dictation Task

Adopted from HKT-P [18], this task required participants to write down in designated
boxes 96 Chinese characters (48 two-character words) read aloud by the experimenter. Testing
stopped after eight consecutive incorrect responses of two-character words, i.e., 16 characters.

2.3. Data Classification

The dataset consisted of scanned images of 869 handwritten encoded responses from
Lee and Tong [3] and 195 handwritten raw responses. For the encoded data, each written
Chinese character was binary-coded for multi-level, multi-dimensional features. Table 1
shows a summary of encoded data accuracies. A correct response meant that all written
strokes, logographemes, and radicals within the character were accurately reproduced. A
wrong response indicated to an incorrectly written structure within the character and blank,
completely crossed out, or incomprehensible strokes not considered an attempt at writing.
Cronbach’s α = 0.979.

Table 1. Performances on encoded Chinese dictation task (N = 869).

Grade
TD DD

t
N M SD N M SD

2 165 42.9 15.4 162 20.9 12.4 14.20 ***
3 111 53.1 16.7 101 32.6 16.2 9.06 ***
4 102 68.1 13.6 54 38.3 16.5 11.40 ***
5 56 76.3 13.0 62 48.9 18.9 9.26 ***
6 31 83.0 10.3 25 56.3 17.4 6.76 ***

Note. *** p < 0.001. Welch’s t-test was used. N = Number of participants. M = Mean accuracy. SD = Standard
deviation of accuracy.

2.4. Data Preprocessing

Each participant’s 96 handwritten Chinese character responses were color-scanned from
the paper-based dictation test. Next, the images were cropped, isolated, and extracted from
the designated boxes, then rescaled to a standardized size of 128 × 128 pixels of individual
images, each containing a single Chinese character, resulting in 1064 × 96 = 102,144 images.
The image size was selected to reduce computational cost while maintaining the details of
strokes, which was confirmed by human inspection. A binarization operation was performed
on each character image, converting the background to black and handwriting strokes to
white to reduce computational cost, increase training speed, and decrease in-class variance.
Notably, the experimental procedure and coding process would occasionally obstruct the
handwritten responses with additional markings of ticks and crosses of some characters.

The preprocessing was completed using Python scripts with an automated edge
detection technique. Additionally, manual checking and cropping were used to facilitate
the dataset construction process. The training, validation, and test datasets were divided
into an 8:1:1 ratio in a stratified grouping of both grade and dyslexic status, resulting in a
sample size of 851:106:107 in the datasets.
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2.5. Model Architecture

The model was adopted from existing deep learning architectures. First, the model
utilized the independent characteristics of individual written characters by applying the fea-
ture extraction CNN module to every image and the positional encoding for incorporating
the sequential properties in the dictation task. Then, the temporal-sequential dependency
nature of the dictation task was captured using a stepwise LSTM module. Next, the self-
attention layer was introduced to signify the feature maps. Finally, the Classification and
Prediction module was used to predict the status of participants. The model architecture is
shown in Figure 1.
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characters, and visual-graphic symbols.

2.5.1. CNN Module with Positional Encoding

Convolutional neural network (CNN) is a type of deep learning model that is widely
used in computer vision and image processing [30]. The CNN module used in this study
consisted of convolutional layers and pooling layers [31]. The convolutional layers extracted
features from images to adjust the training weight and bias of the neural network to
generate the output feature maps of the input image [32]. The feature maps generated
by convolutional layers could be connected to the next convolutional layer or pooling
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layers for feature extraction, or to a Fully Connected (FC) layer for classification. Moreover,
pooling layers downsample the feature maps, reducing the computational costs while
retaining the features learnt from the input image.

The intrinsic features of Chinese handwritten characters were generalized into feature map
representations. Each individual Chinese character of (3, 128, 128) was inputted into the CNN
module and summarized as 32 neurons. Positional encoding [33] was introduced after the
CNN module to leverage the positional information of the dictation sequence in the subsequent
module. Then, the positional encoded feature map was passed to the LSTM module.

This module was adapted from the ResNet [34] architecture, which signifies the
residual connection between convolutional layers to improve the performance of the model.
The model built in this study adopted the ResNet-50 model, which consists of 50 layers,
including convolutional and pooling layers.

2.5.2. Bi-LSTM Module

A Long Short-Term Memory (LSTM) network is a type of Recurrent Neural Network
(RNN) used for sequential data. This technique mimics the long-term and short-term
memory systems in the human brain by implementing a gate system [35], that captures
features and patterns within a time-series sequence [36]. Bi-directional LSTM (Bi-LSTM)
considers the input sequence in both forward and backward directions, enabling longer
dependency and the reversed order of features.

In the dyslexic prediction task based on the Chinese dictation task, the handwriting
of characters followed a time sequence from the first character to the last character, which
was suitable for LSTM. Thus, the temporal-sequential properties of handwriting characters
were generalized and passed to the next attention module.

The feature maps from the CNN module extracted from each character were summa-
rized as neurons and fed as input time steps into the LSTM. A 2-layer Bi-LSTM structure
was used with 128 hidden states in each LSTM cell. The input data were encoded layer
by layer. In each layer, the input data were encoded as a bi-directional connection of each
cell both from the first to the last and from the last to the first in the Bi-LSTM structure.
The final output of the LSTM cells was extracted and concatenated from both forward and
backward directions as a feature map of the Fully Connected (FC) layer of 256 neurons.

2.5.3. Multi-Head Self-Attention Module

In deep learning, the attention mechanism is considered one of the most important
concepts and innovations [33], allowing each individual token to focus on different parts
and “pay attention” to the input sequence. This mechanism signifies the importance
of each token, enabling the model to selectively emphasize relevant information while
downplaying irrelevant details, which overcomes the limitation of long-term dependency
and enhances the model’s ability to capture complex relationships within the sequence [37].

With the intrinsic sequential properties of the dictation task being captured by the
Bi-LSTM module, the integration of multi-head self-attention introduces a sophisticated
mechanism for capturing cross-item linkages among handwritten characters. The attention
context vector is then passed to the next classification and prediction module.

The feature map of each timestep from the Bi-LSTM module was passed to the
4-headed self-attention module. The dimensions of the final output of the attention module
were unchanged, i.e., 256 neurons for each of 96 timesteps.

2.5.4. Classification and Prediction with Grade Information

The output from the above modules served as the generalized representation of
handwriting performance and behavior for the entire dictation task. Next, the embedding
of each character was condensed into a single separate neuron and concatenated with the
grade information to formulate the last FC layer consisting of 97 neurons. Finally, the FC
layer was connected to a sigmoid activation function to predict whether the input was from
TD or DD participants.
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2.6. Model Training

Transfer learning in machine learning allows researchers to use state-of-the-art pre-
trained models as the starting point, adapt to a specific problem or dataset, and enhance
model performances and generalization capabilities [38]. The backbone CNN module was
adapted from the ResNet-50 model, applied with pre-trained weights, and fine-tuned by
the handwriting dataset for the dyslexia prediction task. Specifically, the pre-training on
ImageNet was used for the well-established performances in previous studies by fine-
tuning with a small dataset related to the downstream tasks [39]. In our model training,
layer 4 and the FC layer were unfrozen for fine-tuning on the Chinese dictation dataset.

The models were built and trained with PyTorch and Lightning library on a Windows
desktop with RTX 3060Ti 8 GB GPU. The minibatch sizes of 6 were used for model training,
and the batches were reshuffled after each epoch. Adam optimizer with binary cross
entropy was used to train the models. The learning rate was initially set as 5 × 10−6 and
decreased by ×0.5 every three epochs. Regularization techniques were applied to avoid
overfitting, where weight decay was set to 5 × 10−5, and dropout was set to 0.2 for LSTM,
attention, and condensed layers. The models were trained for a maximum of 50 epochs
with an early stopping setting when the validation loss did not improve for 1 × 10−4 in
three consecutive epochs. A random seed of 42 was used for all settings.

3. Results
3.1. Pilot Study

Given that the dataset was derived from Lee and Tong [3] with encoded accura-
cies for each individual character, the authors first attempted to replicate previous ap-
proaches [40,41] for character-based predictions using the OCR/HCCR technique. How-
ever, the imbalanced classes of character accuracy (as reflected in Table 1) hindered the
statistical power in evaluation metrics. The preliminary results were 95.7 ± 3.49% using
a pre-trained model for the first 24 characters in 566 participants. However, data aug-
mentation techniques would be required for further fine-tuning, but since they introduce
doubt, decrease credibility of subsequent results, and, as shown by previous studies, do
not capture the characteristics of dyslexic handwriting, we did not pursue their use.

3.2. Ablation Study

The models were labeled as DysDiTect_{P/L/A/G}, where P refers to Positional
encoding, L to LSTM, A to Attention, G to Grade, and brackets {} indicate optional modules.
The modules/information were selectively dropped to verify the importance and usefulness
of model design, resulting in a total of 16 models. Figure 2 shows the accuracies and losses
of the training and validation set in DysDiTect_PLA and DysDiTect_PAG. Overfitting
was observed when the training and validation loss diverged significantly. After training
stopped, the test dataset was evaluated from the checkpoint with the lowest validation loss.

Table 2 shows the detailed results of the testing set, including the confusion matrix
by lower (G2–3) and higher (G4–6) grades, with overall accuracy, sensitivity (correct rates
of DD), specificity (correct rates of TD), and AUC. The best-performing model using only
handwriting features is DysDiTect_PLA with 0.832 accuracy and 0.792 sensitivity. If grade
information is included, the best-performing model is DysDiTect_PAG with 0.850 accuracy
and 0.833 sensitivity. The confusion matrices revealed that higher grades have lower
accuracy and sensitivity compared with lower grades in all models.
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Table 2. Model prediction results of the testing set.

DysDiTect+ Confusion Matrix Overall (N = 107)

P L A G G23 (N = 62) G456 (N = 45) Accuracy Sensitivity Specificity AUC

✓ ✓ ✓ ✓ 25 10 11 2 0.776 0.750 0.797 0.883
3 24 9 23

✓ ✓ ✓ 24 6 14 2 0.832 0.792 0.864 0.912
4 28 6 23

✓ ✓ ✓ 17 4 8 0 0.748 0.521 0.932 0.823
11 30 12 25

✓ ✓ 23 7 11 1 0.794 0.708 0.864 0.888
5 27 9 24

✓ ✓ ✓ 26 4 14 4 0.850 0.833 0.864 0.898
2 30 6 21

✓ ✓ 22 8 7 1 0.738 0.604 0.847 0.805
6 26 13 24

✓ ✓ 15 3 5 0 0.710 0.417 0.949 0.820
13 31 15 25

✓ 21 5 10 6 0.738 0.646 0.814 0.769
7 29 10 19

✓ ✓ ✓ 24 6 14 2 0.832 0.792 0.864 0.922
4 28 6 23

✓ ✓ 22 4 13 2 0.822 0.729 0.898 0.901
6 30 7 23

✓ ✓ 25 9 9 1 0.776 0.708 0.831 0.833
3 25 11 24

✓ 22 4 9 0 0.804 0.646 0.932 0.855
6 30 11 25

✓ ✓ 25 9 7 3 0.738 0.667 0.797 0.832
3 25 13 22

✓ 25 11 11 2 0.766 0.750 0.780 0.823
3 23 9 23
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Table 2. Cont.

DysDiTect+ Confusion Matrix Overall (N = 107)

P L A G G23 (N = 62) G456 (N = 45) Accuracy Sensitivity Specificity AUC

✓ 24 10 10 3 0.748 0.708 0.780 0.809
4 24 10 22

21 9 10 2 0.738 0.646 0.814 0.858
7 25 10 23

Note. ✓ refers to the inclusion of modules; P = Positional encoding; L = LSTM module; A = Attention module;
G = Grade information. Confusion matrices are listed as TP, FP, FN, TN (left to right, top to bottom) separately for
Grades 2–3 and Grades 4–5–6. N = Number of participants. The best-performing metrics are highlighted in red
and green for models with and without grade information, respectively.

3.2.1. Positional Encoding with Grade Information

With either (but not both) position encoding or grade information removed, the
accuracy increased for the DysDiTect_PLAG model (0.776 to 0.832 [DysDiTect_PLA] and to
0.832 [DysDiTect_LAG]); the DysDiTect_PLG model (0.748 to 0.794 [DysDiTect_PL) and to
0.776 [DysDiTect_LG]); and the DysDiTect_PG model (0.710 to 0.738 [DysDiTect_P] and to
0.748 [DysDiTect_G]). With both position encoding and grade information removed, the
accuracy increased for the DysDiTect_PLAG model from 0.776 to 0.822 (DysDiTect_LA);
the DysDiTect_PLG model from 0.748 to 0.804 (DysDiTect_L); and the DysDiTect_PG
model from 0.710 to 0.738 (DysDiTect_). These results suggested that the inclusion of
this information may introduce unnecessary complexity and hinder the model’s ability to
generalize effectively.

However, after removal of either or both position encoding and grade information,
the opposite effect was observed for DysDiTect_PAG, where the accuracy decreased from
0.850 to 0.738 (DysDiTect_AG), 0.738 (DysDiTect_PA) and 0.766 (DysDiTect_A). These
results suggested that the information is jointly learned by the Attention module.

3.2.2. LSTM and Attention Modules

With the LSTM module removed, the accuracy decreased for most models except for Dys-
DiTect_PLAG, which increased (0.776 to 0.850) compared with DysDiTect_PAG. The results
conveyed the importance of the LSTM module in most situations, but also reflected its ability
to obscure the Attention module when jointly learning both positional and grade information
as mentioned above. Meanwhile, the removal of the Attention module resulted in decreased
accuracies for most models except for DysDiTect_PA, which remained at 0.738 compared with
DysDiTect_P, but decreased in AUC from 0.805 to 0.769. This result illustrated the importance
of the Attention module, further analysis of which is discussed below.

3.3. Attention Map

The self-attention weights of DysDiTect_PAG and DysDiTect_PLA in the testing set
were further evaluated. The examples are shown in Figures 3 and 4, where the attention
map from the same participant is listed in the same location. The order of sequences is
ranked from high to low, with each row referring to the weight assigned to other tokens,
and left to right, with each column referring to the weights assigned by other tokens. The
weight scale is normalized by multiplying the sequence length of 96 characters and limiting
it to (0, 2; Figure 3) and (0.8, 1.2; Figure 4) for visual representation.

The self-attention map of DysDiTect_PAG showed high variability of weights as-
signed to different tokens. Particularly, some tokens’ attained weights (i.e., the attention
assigned by all tokens) were much higher than others, especially in later sequences for
some participants (the continuous red columns on the right of attention maps). Notably,
our observations diverged from those documented in prior studies, where the token-wise
self-attention along the diagonal axis was not dominant.
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The entropy of the attained weights in DysDiTect_PAG was calculated as the general-
ization of the randomness or uncertainty among individual characters. Table 3 shows the
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descriptive statistics by group and responses for the encoded participants in the testing
dataset (N = 92; TD: N = 51; DD: N = 41).

Table 3. Descriptive statistics of entropy by group and response.

Group Response
Entropy

K M SD

TD Correct 3014 6.53 0.078
Wrong 1882 6.49 0.101

DD Correct 1235 6.51 0.098
Wrong 2701 6.48 0.090

Note. K = Number of responses. M = Mean. SD = Standard deviation.

The Intraclass Correlation Coefficients (ICC) between character entropy and accuracy
measures were calculated. The ICC estimates and their 95% confidence intervals were
calculated using Pingouin statistical package version 0.5.4 based on a mean-rating (k = 2),
consistency, 2-way mixed-effects model. The overall ICC(3, k) = 0.418, 95%CI [0.12, 0.61],
F(91, 91) = 1.72, p = 0.005. This result showed that the attained weights are correlated with
the type of response, indicating that the weights of wrong responses were more uniformly
assigned. Separating the correlations by groups, TD has ICC(3, k) = 0.512, 95%CI [0.14, 0.72],
F(50, 50) = 2.05, p = 0.006; and DD has ICC(3, k) = 0.430, 95%CI [−0.07, 0.70], F(40, 40) = 1.75,
p = 0.040.

During the character dictation task, the discontinuation criterion caused more wrong
and blank responses in the later sequences. By focusing on those responses, the model could
possibly identify the handwriting characteristics associated with dyslexia, e.g., reversed
writings, radical substitution, stroke errors. This finding is consistent with previous stud-
ies [3,29] indicating that sublexical errors and responses are more predictive for identifying
Chinese dyslexia.

In contrast, the self-attention weights of DysDiTect_PLA showed lower variations
across the character sequence and were highly concentrated around the value of 1. Specifi-
cally, a prevalent characteristic across all attention maps was the absence of self-attention
directed toward individual tokens themselves, though regional self-attention was observed.
The majority of tokens exhibited relatively equal weights, suggesting a tendency towards
uniform attention distributions across the input sequence. The attentions were mostly
evenly distributed across multiple tokens or concentrated toward specific regions of the
input sequence.

The attention map was based on the output of the LSTM module, where the intrinsic
features of character sequences were already captured in the module. Therefore, self-
attention was localized to amplify the generalized pattern of intrinsic characteristics of
dyslexic handwriting.

4. Discussion

The experimental results demonstrated the robustness of DysDiTect with satisfactory
performances. The proposed model framework is the proof of concept for a fully automated
dyslexia screening system with a cost-effective solution. The Chinese dictation task lasted
between 10 and 20 min, and the format was easily transformed to an electronic version
to speed up the preprocessing pipeline. Furthermore, the technological advancement of
faster algorithms [42] and hardware allowed real-time prediction to run directly on the
user’s device. With the proposed system, teachers and parents can conduct self-screening
to identify children at risk of dyslexia. Additionally, the in-process handwriting features
can be incorporated for prediction performance.

Compared with previous studies using handwriting features for dyslexia identification
via machine learning techniques, our results outperformed all evaluation metrics and were
tested with an adequate sample size. The summary of results is shown in Table 4, which
briefly lists the key information for evaluating performances. Notably, most results of
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previous studies were evaluated based on fragmented samples of data instead of the
overall status of participants.

Table 4. Summary of results in previous studies.

Previous
Studies

Language Task
Sample Size

Dataset Size Acc Sen Spe AUC
DD TD

Spoon et al. [24] English Patches from writing 11 77 25,650 0.557 a / / /
Spoon et al. [25] 22 78 / 0.776 a / / /

Isa et al. [26] English/
Malaysian

4× Letters + 4
× Digit 30 / 24 0.708 a / / /

Isa et al. [40]
Letters

/ / 39,897 0.870 a,b / / /
Rosli et al. [23] / / 233,354 × 0.2 0.953 a,b / / /

Yogarajah et al.
[43] Hindi 14× Words from

writing 54 / 267 0.861 a / / /

Jasira et al. [41] English Letters / / 86,115 × 0.1 0.950 a,b / / /

DYPA [17] Chinese Character copying +
Behavioral tasks 39 168 / 0.811 0.743 0.827 0.790

Lee et al. [29]
Chinese

47×
Dictation

454 561 47,705 0.800 0.749 0.841 0.857
DysDiTect_PLA

96× 48 59 10,272 0.832 0.792 0.864 0.912
DysDiTect_PAG 0.850 0.833 0.864 0.900

Note. a Accuracies were based on fragmented samples (isolated letters, words, and patches). b Accuracies were
based on OCR results of predefined classes (e.g., normal, reversal, corrected). “K ×” means the identical materials
of size K were distributed to all participants. All sample sizes, dataset sizes, and metrics were based on the full
dataset if cross-validation was used; otherwise, on the testing set only. Dataset size refers to the number or ratio of
images used (if specified). Previous studies were ranked by author’s group and year of publication.

The ablation study evaluated the importance of the modules included in the con-
structed model. Surprisingly, the intertwined relationship between positional encoding and
grade information obstructed the training process for most models. This result contradicts
the Chinese dictation task’s incremental difficulty design [18], where some task items
are expected to be acquired at higher grades. Meanwhile, based on ablation results, our
detailed analyses demonstrated the usefulness of the LSTM and Attention modules and
validated our model design.

Despite these satisfactory results, the black-box nature of the deep learning model limited
our study’s explanatory power and theoretical evaluation. As such, the weights and biases in
the model are generally not understandable or interpretable. Future research is encouraged
to incorporate an explainable model for theoretical implications. Furthermore, although
the handwriting deficit in Chinese dyslexia was assessed through the format of a dictation
task, the underlying neurobiological mechanism has not been fully explored. Future studies
are needed to investigate different task formats and language-specificity associated with
aberrant neuroactivity in DD children, particularly in sensory-motor, visual-orthographical,
and phonological processing. Finally, the precision of early diagnosis of dyslexia could be
enhanced by synergizing machine learning techniques with neuroscience insights.

5. Conclusions

In this study, we proposed a novel approach to identify Chinese dyslexia: namely,
using handwriting images with deep learning techniques in conjunction with a Chinese
dictation task. The best-performing model, DysDiTect_PAG, achieved 85.0% classification
accuracy, 83.3% sensitivity, 86.4% specificity, and 89.7% AUC. Using only handwriting
features without grade information, the best-performing model, DysDiTect_PLA, achieved
83.2% classification accuracy, 79.2% sensitivity, 86.4% specificity, and 91.2% AUC. Future
research may consider extending DysDiTect to different task formats and languages.
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