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Abstract: Functional connectivity (FC) obtained from resting-state functional magnetic resonance
imaging has been integrated with machine learning algorithms to deliver consistent and reliable brain
disease classification outcomes. However, in classical learning procedures, custom-built specialized
feature selection techniques are typically used to filter out uninformative features from FC patterns
to generalize efficiently on the datasets. The ability of convolutional neural networks (CNN) and
other deep learning models to extract informative features from data with grid structure (such as
images) has led to the surge in popularity of these techniques. However, the designs of many existing
CNN models still fail to exploit the relationships between entities of graph-structure data (such
as networks). Therefore, graph convolution network (GCN) has been suggested as a means for
uncovering the intricate structure of brain network data, which has the potential to substantially
improve classification accuracy. Furthermore, overfitting in classifiers can be largely attributed to the
limited number of available training samples. Recently, the generative adversarial network (GAN)
has been widely used in the medical field for its generative aspect that can generate synthesis images
to cope with the problems of data scarcity and patient privacy. In our previous work, GCN and GAN
have been designed to investigate FC patterns to perform diagnosis tasks, and their effectiveness
has been tested on the ABIDE-I dataset. In this paper, the models will be further applied to FC data
derived from more public datasets (ADHD, ABIDE-II, and ADNI) and our in-house dataset (PTSD)
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to justify their generalization on all types of data. The results of a number of experiments show the
powerful characteristic of GAN to mimic FC data to achieve high performance in disease prediction.
When employing GAN for data augmentation, the diagnostic accuracy across ADHD-200, ABIDE-II,
and ADNI datasets surpasses that of other machine learning models, including results achieved with
BrainNetCNN. Specifically, in ADHD, the accuracy increased from 67.74% to 73.96% with GAN,
in ABIDE-II from 70.36% to 77.40%, and in ADNI, reaching 52.84% and 88.56% for multiclass and
binary classification, respectively. GCN also obtains decent results, with the best accuracy in ADHD
datasets at 71.38% for multinomial and 75% for binary classification, respectively, and the second-best
accuracy in the ABIDE-II dataset (72.28% and 75.16%, respectively). Both GAN and GCN achieved
the highest accuracy for the PTSD dataset, reaching 97.76%. However, there are still some limitations
that can be improved. Both methods have many opportunities for the prediction and diagnosis
of diseases.

Keywords: resting-state functional magnetic resonance imaging; resting-state functional connectivity;
deep learning; graph convolution network; generative adversarial network

1. Introduction

Functional magnetic resonance imaging (fMRI) is a neuroimaging tool that measures
changes in cerebral blood flow to provide a visual representation of brain activity, allowing
researchers to study brain function. The use of functional connectivity (FC) obtained from
resting-state fMRI (rs-fMRI) enables imaging of temporal interaction between brain regions
and has therefore been extensively employed in the classification of brain disorders and
the identification of objective biomarkers associated with the underlying disorders. FC is a
connectivity matrix representing functional communication between different brain regions,
and the strength of connection between region i and region j is represented as the value
of row i and column j in the matrix. The value is calculated using Pearson’s correlation
between the time series representing region i and j; however, other metrics of association
between time series can also be used [1,2]. Considerable evidence from rs-fMRI studies
has shown the alteration or disruption of FC in individuals with neuropsychiatric and
neurodegenerative disorders [3–7]. Several recent works have applied convolutional neural
networks (CNNs) that incorporate these altered brain FC patterns as relevant features for
rapid and reliable classification of brain disorders. However, these models are constrained
by two challenges. First, although traditional CNNs can extract local meaningful features
from order and grid-like data (such as images), the spatial features learned in CNN may
not be optimal for graph structure data (such as networks), which are invariant to node
ordering and have irregular relationships between nodes. Second, patient fMRI data used
for training is currently limited in its sample size because of a range of factors, such as
the exorbitant expense of data acquisition, barriers to standardized data acquisition across
different sites, and consequent open sharing of data. The relatively small sample size of
patient data often leads to models being overfit. When relatively smaller samples of patient
data are used with larger samples of healthy controls in the same model, it also causes
the problem of class imbalance. To overcome those issues, graph convolutional networks
(GCNs), an extended version of CNN, are proposed to deal with graph-structure data,
while generative adversarial networks (GANs) can deal with data scarcity in neuroimaging
due to their ability to generate additional data for training purposes.

The brain can be conceptualized as a network where the specialized regions are repre-
sented as nodes, and the pathways of communication or links between these regions are
regarded as edges. By analyzing the patterns of FC, we can gain valuable insight into the
temporal properties and dynamic interplay between the brain regions, revealing a more
comprehensive view of the brain network. Therefore, graph theoretical analysis may be an
ideal tool to investigate the organizational mechanisms underlying brain networks. Several
complex graph theoretic algorithms have been applied to study the pathophysiology of
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various diseases [8–10]. The brain graph is a network representation of the intricate interac-
tions between N distinct regions of the brain and therefore can be captured by the N × N
matrix. The elements in the matrix capture the strength or degree of correlation between
each pair of nodes in the network. In general, brain graphs can be categorized as functional
connectivity or effective connectivity, where the former captures the strength of statistical
associations or correlation between brain regions and the latter represents the directionality
of information flow. Networks can also be grouped as unweighted or weighted, depend-
ing on whether the edges are assigned a binary or continuous value. In functional brain
networks, the edges can be estimated by various statistical methods, such as Pearson’s
correlation coefficients, Spearman’s correlation, or Kendall rank correlation coefficients.

Our research aims to design an end-to-end GCN model that can be applied to func-
tional graphs (here, constructed from rs-fMRI data) for distinguishing healthy controls from
those with brain disorders. Similar to CNN, the proposed GCN also includes a convolution
operation that learns localized patterns from the networks and a pooling operation that
can not only downsample the graph but also increase the receptive field, allowing the
graph to learn global graph-level patterns. The model learns features from each node and
its relationship with neighboring nodes to generate new feature maps via the spectral-
based convolution method. The spectral convolution operation [11] can transform complex
node representations to low-dimensional representations to tackle graph-structure data
more easily.

To solve the problem of small sample sizes and class imbalance, we recently proposed
a modified version of the existing GAN model to be able to generate realistic FC correlation
matrices [12]. Generally, GAN consists of two main models that are trained in the adversar-
ial optimization process: a generator G is designed to generate outputs that can mislead the
discriminator into treating them as authentic. Unconditioned GAN or unsupervised GAN
can discover the nature of data distribution and their latent structure to produce synthetic
data. By utilizing those characteristics, conditional GAN and auxiliary classifier GAN
have been used to allow GAN to perform classification tasks [13,14]. The classification
performance can be improved by adding synthetic data to the classifier [15,16]. The pro-
posed GAN model adapted these ideas to perform semi-supervised tasks. One of the issues
involved in training GANs is the phenomenon called mode collapse, where the model
only produces data belonging to a specific class. To prevent mode collapse, the proposed
model utilizes supplementary information such as class category or phenotypic features
to enhance the variety of the dataset. The generator of GAN will receive random noise
combined with additional attributions, such as gender or age, to generate a synthetic FC
matrix. The discriminator D will adopt the architecture of BrainNetCNN [17], where filters
are customized to function well with the connectivity matrix. Our previous paper [12] also
utilizes the inner product operation to embedding vectors to quantify the statistical link
between two brain regions. Thus, we utilize the GAN we previously developed, which is
an improvement over existing GAN-based methods for neuroimaging data.

We have reported on the designs of GCN and GAN needed to work on FC data
and tested them on the ABIDE-I dataset [12,18]. However, there is a need to examine the
generalizability of these models to other datasets derived from different patient populations.
Therefore, here we will test the applicability of GCN and GAN based models on FC-
based brain networks for discriminating healthy subjects from individuals diagnosed
with ADHD (ADHD-200 [19] dataset), autism (ABIDE-II [20] dataset instead of ABIDE-
I used in our previous work), PTSD (acquired in-house but publicly shared [21]), and
Alzheimer’s (ADNI [22]) datasets. We have reported the utility of traditional machine
learning models on these datasets before, and here we used those results to compare them
with those obtained from GCN and GAN. We also compared the proposed models with
BrainNetCNN [17] to evaluate the efficacy of GCN for extracting structural features and
GAN for data augmentation. The statistical tests were also conducted to determine which
models achieved superior performance.
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2. Related Work

Deep learning has attracted considerable attention for its potential to automatically
detect and classify neurological diseases at an early stage. Specifically, convolutional neural
networks (CNN) have been successful in using high-dimensional medical imaging data to
predict diagnostic status. Kawahara et al. [17] proposed the BrainNetCNN in 2017, which
is a class of CNNs that can be used to predict non-imaging variables (such as diagnostic
status) using brain networks as input features. Another study [23] improves the detection of
epileptic seizures using electroencephalogram (EEG) data by applying variable-frequency
complex demodulation (VFCDM) and CNNs. Building on basic CNNs, researchers have
improved the classification performance by applying transfer learning, a technique that
utilizes the pre-trained models to enable models to leverage knowledge gained from one
dataset to perform well on different datasets [24–26]. This method has the advantage of
allowing the model to train on image data acquired at multiple sites.

GCN is able to model the complex interconnections between nodes in a graph, making
it particularly well-suited for analyzing the irregular structure of brain network data. There-
fore, it has been employed for diagnostic classification using functional brain networks.
Prior works proposed different GCN-based architectures to distinguish between healthy
and unhealthy subjects that can be categorized as individual-based graph architecture and
population-based graph architecture. The main difference between these two methods is
the representation of a node, wherein nodes in the individual-based graph represent brain
regions while nodes in the population-based graph denote subjects. For instance, Ktena
et al. [27] proposed Siamese GCN that analyzes brain functional connectivity networks
by exploiting the similarities between two brain networks with the assumption that the
classification task can be significantly improved with more accurate similarity metrics.
Another study used varied templates to generate brain functional/structural connectivity
networks for individuals subject and then trained a triplet graph convolutional network to
learn the relationship at multiple scales [28]. The proposed model achieved high perfor-
mance in the classification of mild cognitive impairment and attention-deficit/hyperactivity
disorder with healthy controls. On the other hand, Parisot et al. [29] considered imple-
menting spectral GCN on a population-based graph where each subject is considered a
node. The model leverages the relevant features from both rs-fMRI and non-imaging data
to discriminate between nodes of healthy control and nodes of individuals with autism
disorder. Kim et al. [30] introduced the spatio-temporal attention graph isomorphism
network (STAGIN) model, which addresses dynamic graphs by employing two spatial
attention READOUT mechanisms (Graph-Attention READOUT (GARO) and Squeeze-
Excitation READOUT (SERO)) to capture spatial features at each time point and employing
a transformer encoder to learn temporal attended features. Zhao et al. [31] introduced a
data augmentation approach combining a “sliding window” strategy with the self-attention
mechanism GCN (SA-GCN) for autism classification, utilizing time series subsegments
to construct correlation matrices, and introducing both low-order and high-order func-
tional graphs to enable the model to exploit features from various perspectives. Another
study [32] proposed a model that comprises two distinct GCNs, f-GCN and p-GCN, where
f-GCN analyzes individual brain networks within subjects by utilizing stacked GCNs and
eigenpooling for coarsened graph generation, employing max pooling for node representa-
tion aggregation, while p-GCN, a population-based model, treats each subject as a graph
node and utilizes f-GCN output as a node feature.

Researchers have applied the generative aspect of GAN to various tasks in medical
image analysis, including classification [33], segmentation [34], de-noising [35], image
reconstruction [36], and image synthesis [37]. The use of GAN as a data augmentation
method has been shown to outperform various traditional augmentation methods. GAN
with feature matching has been proposed to discriminate psychiatric patients from con-
trols [38]. The model learns to generate functional network connectivity that is constructed
by independent component analysis, and the feature matching technique was used to
stabilize the training process. The paper shows that GAN performs better than other tradi-
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tional machine learning methods, such as support vector machine or nearest neighbors,
with more than 6% higher accuracy. Barile et al. [39] utilized GAN with an autoencoder
to generate brain connectivity for multiple sclerosis (MS) classification, ensuring that the
model’s training prevents collapse by producing synthetic data matching real data statis-
tics. Cao et al. [40] introduced a multiloop algorithm aimed at improving the quality of
generated data by enabling the assessment and ranking of sample distribution in each
iteration, facilitating the selection of high-quality samples for training. While many studies
have focused on generating realistic 3D brain images, only a few studies have developed
GAN models to learn to mimic functional connectivity networks. This is not only computa-
tionally less demanding but also helpful in understanding brain network anomalies and
underlying brain disorders.

3. Material and Methods

3.1. Data

Attention deficit hyperactivity disorder (ADHD) ADHD is a prevalent neurobehav-
ioral disorder in childhood that is typically characterized by symptoms of inattention,
hyperactivity, and impulsivity. Children with ADHD are classified into three separate
categories: ADHD-I (inattention), ADHD-H (hyperactive/impulsive), and ADHD-C (com-
bination of both symptoms). The ADHD-200 Global Competition was held in summer
2011 and challenged teams to provide the best performance for diagnosing individuals
with ADHD from their resting-state fMRI scans [19]. There are 929 subjects in the dataset,
which consists of 573 healthy controls, 207 individuals with ADHD-C, 13 individuals
with ADHD-H, and 136 individuals with ADHD-I. Scanning for each participant took
place at one of seven distinct sites, namely Peking University, Kennedy Krieger Insti-
tute, NeuroIMAGE Sample, New York University Child Study Center, Oregon Health &
Science University, University of Pittsburgh, and Washington University. For more infor-
mation regarding the acquisition parameters and site distribution, please refer the webpage
http://fcon_1000.projects.nitrc.org/indi/adhd200/, accessed on 19 March 2024. Since
there are fewer subjects diagnosed with subtype ADHD-H in comparison with the other
classes, we combined subjects with ADHD-H into ADHD-C, which makes the problem
into a 3-way diagnosis classification.

Autism Spectrum Disorder (ASD) ASD is a clinical term that encompasses a range
of neurodevelopmental disorders marked by deficits in social behavior and communica-
tion skills, along with repeated behaviors and restricted interests. The classification of
ASD individuals was carried out using an rs-fMRI image from the Austim Brain Imaging
Data Exchange Data (ABIDE). ABIDE is a group of organizations that has collected and
distributed datasets containing rs-fMRI, alongside additional clinical and demographic in-
formation from both individuals with ASD and those who are typically developing [20,41].
The initial ABIDE data, or ABIDE I, have been experimented with by the two models in the
papers. In this work, the algorithms were extended to apply to ABIDE II, a new multi-site
open data resource that was established to increase the sample size. Data for the imaging
were obtained from 11 different facilities and involved a total of 623 participants. Of these,
356 were considered to be healthy conhorts, 214 had been diagnosed with autism patients,
and 53 had been diagnosed with Asperger’s syndrome (a mild symptom of autism).

Post-traumatic stress disorder (PTSD) & post-concussive syndrome (PCS) PTSD
is a psychological disorder that develops in some individuals who have experienced
shocking, horrifying, or life-threatening events. PCS is a condition in which symptoms
or other functional difficulties persist for a period of time after sustaining a concussion
or a mild traumatic brain injury. Such disorders often co-occur in individuals serving
in the military. This study investigating PTSD/PCS involved 87 active-duty US solders
recruited from Fort Moore, GA and Fort Novosel, AL, USA. Data collection was approved
by the Institutional Review Board (IRB) at Auburn University and the U.S. Army Medical
Research and Development Command IRB (HQ USAMRDC IRB). This sample included
28 combat controls, 17 individuals diagnosed with PTSD, and 42 individuals who had
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both PTSD/PCS. The imaging data for the study were obtained exclusively at the Auburn
University Neuroimaging Center. Information about screening procedures to diagnose
PTSD/PCS symptoms and acquisition parameters can be found in the paper [21]. Since
each subject has 2 runs, we will treat each run as 1 subject, resulting in a dataset with 174
subjects in total.

Mild cognitive impairment (MCI) & Alzheimer’s disease (AD) As people age, the
risk of developing AD increases, and this condition is the primary cause of dementia in the
US. When an individual experiences mild cognitive dysfunction in the memory domain,
they may be diagnosed with MCI, and it is believed that people who are diagnosed with
MCI are at an increased risk of developing AD later in life. Diagnosis and treatment of
the condition remain challenging, with no definitive diagnostic test and cure available at
present. Therefore, accurate detection of MCI can aid in preventing further deterioration
and slowing the progression of AD. The imaging data was sampled from the Alzheimer’s
disease neuroimaging initiative (ADNI) database to perform a 4-way multiclass classifi-
cation: healthy controls, early MCI (EMCI), late MCI (LMCI), and AD. In particular, 35
matched healthy controls, 34 subjects with EMCI, 34 subjects with LMCI, and 29 subjects
with AD were collected from the database. The data acquisition process used for this study
can be found in the paper [22].

3.2. Data Preprocessing

FC was derived with the assistance of Data Processing Assistant for Resting-state MRI
(DPARSF, version V5.3_210101) and functional connectivity toolboxes (CONN) softwares,
version v.22.a (https://web.conn-toolbox.org/, accessed on 19 March 2024). Firstly, to
minimize subject motion artifacts during the scanning process, motion correction tech-
niques were performed to align each image to a standard reference point in time. Then,
slice time correction was performed, and after that, the subject’s data underwent a nonlin-
ear transformation to align it with a common reference MNI152 (Montreal Neurological
Institute) space, which facilitates group-level analysis. The preprocessing pipeline also
includes regressing out nuisance variables, such as six head motion parameters, the mean
white matter, and the cerebrospinal fluid (CSF) signal, in order to minimize confounding
effects. Then, the estimation of the underlying neural time series was carried out using the
blind deconvolution method proposed by Wu et al. [42]. The deconvolved data was then
achieved by the Wiener filter. We applied a temporal band-pass filter with a bandwidth of
0.01–0.1 Hz to the data. Mean time series was extracted from defined 200 regions of interest
provided by Craddock (known as the CC200 template) [43]. Pearson’s correlations between
the mean time series of two brain regions were established, resulting in the FC for each
subject with shape 200 × 200. However, due to incomplete brain coverage in the ADHD
data, only 190 out of 200 regions were captured using the Craddock atlas. Similar to the
ADHD dataset, the PTSD dataset suffered from incomplete data coverage and was only
able to cover 125 out of 200 regions.

3.3. Graph Convolutional Network

The GCN architecture is depicted in Figure 1. For each subject, we define an undirected
graph G ≡ {V, E} as a functional brain network, where V = {v1, . . . vi} is a set of N
nodes (N may vary depending on the number of regions of interests) and E = {eij}
represents a collection of connectivity edges from node vi to node vj. The graph was
represented by an adjacency matrix A ∈ RN×N , where each element aij = 1 if the value
of the corresponding position of the mean matrix Ā is greater than the cutoff threshold
τ and aij = 0 otherwise. The mean matrix Ā was determined by the mean of all the
functional connectivity matrices in the training dataset, and the threshold τ was decided
by the percentage of positive connections that we need to keep. One of the reasons that
support this idea is that by taking the mean, we can sparsify the data to different degrees
by varying the threshold. Furthermore, by keeping only relevant connections between

https://web.conn-toolbox.org/
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regions, we can detect abnormal changes in meaningful patterns or connections that can
effectively separate healthy subjects and subjects with brain disorders [3–7].

In this work, the graph convolutional layer was implemented from the spectral per-
spective. In the process of spectral graph convolution, the graph signals are transformed
from node domain to frequency domain using the graph Fourier transform. Then, to reduce
the computational complexity and enable the graph to learn locally, the K-polynomial
filters were used in ChebNet; this approach can be simplified by taking only the first order
approximation [11]. Hence at layer l, the output representation node was computed as:

H(l) = σ(D̃− 1
2 ÃD̃− 1

2 H(l−1)W(l)) (1)

where Ã = I + A is equivalent to adding self-loops to the adjacency matrix and D̃ is
the diagonal degree matrix of Ã, i.e., D̃i,i = ∑j Ãij. σ is activation function (Rectified
Linear Unit (ReLU) or linear activation function). In this work, ReLU activation was chosen.
Furthermore, H(l−1) ∈ RN×d represents d attributes of the N nodes, and W ∈ Rd×m refers to
a learnable matrix used at layer l that transforms the input node representation H(l−1) from
d to m feature dimensions. The initial node representations H(0) are just the original input
features or functional connectivity of each subject: H(0) = X. As evident, we employed an
individual-based graph architecture. Equation (1) aggregates node representations in their
direct neighborhood, helping to gain more information after each iteration for the purpose
of learning the graph.

Figure 1. Illustration of the GCN architecture proposed in our previous work [18] that we have
applied here. In the figure, the model consists of two convolutional layers that transforms the number
of node features from 8 to 2 and one pooling layer that pools the number of nodes from 8 to 3.
The output of GCN was also concatenated with subject’s attribute data (gender, age, imaging site)
and then the combined input was passed to the classifier. The results reported in this paper were
generated by this GCN architecture with a slight changes in parameters in each layer (as described
in methods).

To apply GCN to the graph classification task, a graph-level representation is needed.
Similar to conventional CNNs where pooling method is applied to reduce the spatial
resolution, many methods of pooling for GCNs have been proposed with the aim of
decreasing the number of nodes to obtain coarser graphs while preserving important graph
properties. One of the graph pooling approaches is self-attention graph pooling (SAGPool),
which is a technique that utilizes a graph neural network to produce a score for each node
based on its features, and subsequently selects the K nodes with the highest score [44].
Specially, the self-attention scores z for each node is calculated as:

z = tanh(D̃− 1
2 ÃD̃− 1

2 H(l−1)Θ(l)) (2)

where Ã = A(l−1) + I, which depends on the adjacency matrix of the previous layer, and
Θ ∈ Rd×1 is the weight of the pooling layer. Because graph pooling changes the graph or
particularly the adjacency matrix A, the shape of adjacency matrix A and the output node
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representation after pooling will change based on the top-k nodes we want to keep. To
update those variables, first the top-k nodes were obtained as the following steps:

idx = top-rank(z, k) (3)

zmask = z(idx) (4)

The outputs of graph pooling were then determined as:

H(l) = H(l−1)(idx, :)⊙ zmask (5)

A(l) = A(l−1)(idx, idx) (6)

where H(l−1)(idx, :) contains node-specific features that are indexed, ⊙ performs element-
wise multiplication, and A(l−1)(idx, idx) is an adjacency matrix that is indexed by both
rows and columns.

Non-imaging measures that contribute variance to the imaging data, such as gender,
age, and imaging site, can also combine with the extracted features from GNN to boost the
prediction performance. To guarantee that all feature values are bounded in the interval
[0, 1], gender and imaging site features were first encoded to one-hot vectors, while the age
feature was normalized by dividing by 100. All non-imaging features were also transformed
to the vector of length 2 by the dense layer, and 1 dense layer was also used to transform the
output of the GNN model to the vector of length 15. Those vectors were then concatenated
and used as input for the classifier that consists of one dense layer with a softmax activation
function to compute the likelihood of each subject’s network belonging to a particular
class label.

3.4. Generative Adversarial Network

Generative adversarial network (GAN) comprises two different functional models,
namely the discriminator (D) and the generator (G). The two models can be trained simulta-
neously, in which the generator takes random variable z from a prior distribution (usually
Gaussian noise or uniform distribution) to generate new images, while the discriminator fo-
cuses on distinguishing whether the image is authentic or not. For supervised learning, the
output of the discriminator will also include the probabilities of the class label in addition
to its validity output. GAN is able to generate synthetic data that are of high quality and
closely resemble real data by using an iterative adversarial approach. The specific designs
of the discriminator and the generator are demonstrated in the following (and visually
illustrated in Figure 2):

Figure 2. Illustration of the GAN model proposed by using previously [12], which we have used in
this work. The generator produces a synthetic functional connectivity matrix via the combined input
of random noise and feature codes (gender, age, and label). The discriminator was trained on both
real FC data and synthesized FC data generated from the generator.
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Generator architecture: The generator collects the random noise vector z drawn from
a uniform distribution to produce synthetic functional connectivity data. One of the issues
of the generator is mode collapse, which occurs when there is only a limited set of samples
that the generator can generate. To mitigate this problem, we use ideas from conditional
GAN (CGAN) [13] and InfoGAN [45], which integrate more attribute data into the latent
input, including category labels and phenotypic measures (such as age, gender, etc).

Typically, the generator will directly output the image from the latent input, which will
violate the nature of functional connectivity, where each entry in the matrix corresponds to
the correlation coefficients between the average time series of pairs of brain regions i and j.
By transforming the latent vector z to a X matrix where X ∈ RN×d, we will have each row
in X representing the embedding vector of one brain region (N is the number of ROIs and
d is the dimension of the embedded region). Then the generated output A is determined
by taking the inner product of X with tanh activation function to ensure each value in A
will have a range from −1 and 1:

A = tanh(XXT) (7)

Discriminator architecture: The discriminator is provided with both types of in-
puts—the original image or a synthesized one—and decides whether the input is real or
not. To boost the performance of the discriminator, phenotypic features for each subject
were also included as input besides the FC matrix. Similar to the design of deep convo-
lutional GAN (DCGAN) [45], which uses multiple convolution layers to extract features,
we employed BrainNetCNN, which was proposed as specifically designed convolutional
filters for modeling brain networks. The BrainNetCNN consists of three special convolution
layers: the edge-to-edge layer (ECE), the edge-to-node layer (ECN), and the node-to-graph
layer (NCG). The ECE layer used cross-shaped filters to calculate the weighted sum of
all the neighboring edges that results in a new edge value. On the other hand, regarding
edge-to-node layer, given one node, we do the convolution for all the edges that connect to
that node. If the number of ROIs is N, then the output of the ECE layer will have the shape
of N × N, while the shape of the output of the ECN layer is N × 1. Finally, the NCG layer
acts as a fully connected layer, which summarizes all the nodes into a single graph.

Then the dense layers were used to convert the output of the NCG layer and pheno-
typic features to a new feature space. These two vectors were then concatenated and fed to
the dense layer with two heads, one with sigmoid activation for validity classification and
another with softmax activation for label classification.

4. Experimental Setting

The architectures and hyper-parameters of both GAN and GCN were adopted from
our previous papers [12,18] based on their highest performances on the ABIDE-I dataset.

In particular, the GCN model that was tested on the datasets has the following struc-
ture: 2 convolution layers, followed by 1 pooling layer. In particular, the first and second
convolution layers transformed feature vectors to have sizes of 25 and 10, respectively,
then the pooling layer was applied to downsample the graph from N nodes to 10 nodes.
The shallow GCN was selected because the model performance tends to decrease with an
increase in the number of layers. This phenomenon is known as over-smoothing, where
through many messages passing steps, all node representations may become similar to
each other, making it infeasible to identify discriminant features. The output of the pooling
layer is then flattened and integrated with normalized age, one-hot coding of gender, and
the imaging site (only available for ADHD and ABIDE-II datasets). One classifier layer was
used to directly read out the combined inputs to produce the probability for each class by
using the softmax activation function.

Regarding GAN, the discriminator has three type of layers similar to BrainNetCNN,
which include an ECE layer with 16 feature maps, followed by an ECN layer with 64 filters,
and an NCG layer with 128 filters to extract all the nodes’ features. The BatchNormalization,
the LeakyReLU activation function, and the Dropout function with a dropout rate of 0.5
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were used consecutively after each layer. The dense layer with 64 hidden units continues to
extract features from the flattened output of the NCG layer. To combine with phenotypic
features, the age and gender of one individual are first concatenated to a vector of length 2,
and this vector is then transformed into a vector of length 16 by a dense layer. The fully-
connected output is then merged with this feature vector. The combined input is passed
through one more dense layer with 32 perceptrons before being fed to the classification
layer that predicts the class label for the subject as well as the validity of the FC (real or
fake). As for the generator part, a random vector of length 50 (including gender, age, and
label) is fed into the embedding layer, which has the function to turn the input into an N × d
matrix, where N corresponds to the number of regions and d represents the embedded
dimension. N are equal to 190, 200, 125, and 200 for the ADHD, ABIDE-II, PTSD, and ADNI
datasets, respectively, while d is selected to be 10. Since not all subjects in the ADHD and
PTSD datasets had usable data from all 200 ROIs (either because of data quality or a lack of
whole-brain coverage), the values of N for these datasets are not equal to 200. Nonetheless,
the left-out ROIs corresponded to the cerebellum, and subcortex and cortical ROIs were
present in all datasets. For every region, its feature representation is stored in a single row
of the matrix. The inner product is then taken to output the functional connectivity matrix.

A test dataset consisting of 10% of the data was created for each dataset to assess the
model’s performance. After leaving out 10% of the data for testing, a 5-fold cross-validation
approach was used to split the remaining data into training and validation sets. Therefore,
each model was trained five times, and the cross-validation performance of each model
is the average of these repeated runs. The model that had the best performance on the
validation set was chosen for assessment on the test set. The test accuracy is, of course,
obtained by using the test data on the trained model once. For the GAN model, validity
accuracy is also considered to select the model besides its performance on the validation set
(note that in GANs, the discriminator has two outputs: one for the probability of validity
to test the authenticity of the FC (real or fake) and one for classification (HC or patients)).
We applied the Adam algorithm as an optimization method with a learning rate of 0.01 for
GCN and a learning rate of 0.0001 and β1 = 0.5 for GAN.

Other models: For comparison purposes, 18 traditional machine learning models used
by Lanka et al. [21] were also trained on all the datasets by the default hyper-parameters
from Scikit-learn and Matlab tools provided in the paper. These models include probabilis-
tic or Bayesian methods. In the probabilistic framework, the models were assumed with
some prior belief in the data distribution, and then the model parameters were selected to
maximize the probability of the observed data, given particular parameter settings. The
representatives of the probabilistic models were Gaussian Naïve Bayes (GNB), linear dis-
criminant analysis (LDA), quadratic discriminant analysis (QDA), sparse logistic regression
(SLR), and ridge logistic regression (RLR). The kernel-based models utilize kernel functions
to transfer the input into a different space, and then the models can be trained on the new
feature space, including support vector machines with linear functions (LinearSVM), radial
basis functions (RBF-SVM), and relevance vector machines (RVM). Some traditional neural
networks are also involved, namely the multilayer perceptron neural net (MLP-Net), the
fully-connected neural net (FC-Net), the extreme learning machine (ELM), and the linear
vector quantization net (LVQNET). Also, k-nearest neighbors (kNN) is an instance-based
learning model that assigns the unknown data to the appropriate categories based on the
distances between the unknown data and the data points that have been labeled. Finally,
ensemble learning is the technique that allows multiple classifiers to solve a problem with
the belief that multiple classifiers can provide a better result than a single classifier. Using a
decision tree as a base classifier, several methods were used to train ensemble classifiers,
namely bagged trees, boosted stumps, random forest, and rotation forest. Further details
regarding these models can be found in Lanka et al. [21]. Additionally, BrainNetCNN,
which is the top-performing method for connectome classification, was also trained with the
same 5-fold CV, and the hyper-parameters and training process are similar to the settings
of the discriminator in GAN.
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To evaluate the models, using only accuracy may not be appropriate for imbal-
anced classification scenarios. Therefore, other metrics such as precision score, recall
score/sensitivity, specificity, F1 score, and area under the curve (AUC) are also reported.
Those metrics often apply to binary classification problem; therefore, to deal with multiclass
classification, the one-vs-rest (OvR) algorithm (with a macro-averaging strategy) was used.

5. Results

5.1. Cutoff Threshold

The binary adjacency matrix representing the graph for each dataset was built by
thresholding the values of the mean matrix derived from the training data. In particular, if
the correlation coefficient between region i and region j is greater than cutoff threshold τ,
the value of the adjacency matrix at (i, j) is equal to 1 and 0 otherwise. In order to choose
the appropriate threshold, we plotted the percentages of preserved edges against the cutoff
threshold and chose the elbow of the curve as the cutoff, as in previous work [46,47]. The
mean matrix was derived from the average of all the training data across the 5-fold CV.
Figure 3a–d shows the appropriate cutoff thresholds that can preserve meaningful edges
for the ADHD, ABIDE-II, PTSD, and ADNI datasets, respectively. The cutoff threshold for
ADHD, ABIDE-II, and ADNI datasets is 0.15, which maintains 13.17%, 20.60% and 14,80%
of the total edges in each dataset, respectively, while the threshold for the PTSD dataset is
0.2, which keeps 16.19% of edges.

(a) ADHD dataset (b) ABIDE-II dataset

(c) PTSD dataset (d) ADNI dataset

Figure 3. Percentages of edges preserved when the cutoff threshold is varied for each dataset.

5.2. Model Comparison

The outcomes of all the models for multinomical classification are presented in
Table 1 (a), Table 2 (a), Table 3 (a), and Table 4 (a) for the ADHD, ABIDE-II, PTSD, and
ADNI datasets, respectively, while Table 1 (b), Table 2 (b), Table 3 (b), and Table 4 (b) demon-
strate the results of those respective datasets in binary classification scenario. The value
highlighted with red color represents the top performing result across all the models, while
the blue highlight indicates the second highest result. In Figure 4, the models have been
sorted from worst to best performance. We can observe that some models may perform
very well for some metrics or datasets, but the deep learning models (including GCN and
GAN) generally perform well across all metrics and datasets.
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Table 1. Performance comparison of models on ADHD dataset for multinomial (a) and binary (b) clas-
sification (Red color indicates best performance, while blue color denotes second best performance).

(a)

Model Accuracy Precision Recall Specificity F1 Score AUC

GNB 54.19% 33.72% 47.86% 56.49% 39.56% 68.48%

LDS 50.32% 19.55% 13.51% 72.28% 15.47% 55.81%

QDA 44.52% 17.47% 18.31% 63.51% 13.15% 49.89%

SLR 59.35% 24.93% 22.08% 80.00% 23.18% 75.42%

RLR 62.15% 35.18% 37.99% 73.68% 36.34% 75.31%

Linear SVM 41.72% 33.67% 51.49% 31.93% 40.58% 68.13%

RBF_SVM 61.94% 30.00% 1.36% 100.00% 4.35% 82.28%

RVM 63.44% 42.24% 22.86% 86.67% 29.31% _

MLP-Net 52.47% 32.62% 50.19% 50.88% 39.34% 71.49%

FC-Net 45.38% 22.96% 33.34% 49.47% 26.09% 61.38%

ELM 57.63% 34.43% 32.21% 71.58% 33.24% _

KNN 33.76% 13.41% 50.00% 16.49% 21.16% 71.25%

Bagged Trees 57.42% 14.52% 3.44% 91.23% 6.91% 57.46%

Boosted Trees 57.42% 20.41% 15.45% 81.75% 17.49% 57.81%

Boosted Stumps 57.63% 28.97% 14.74% 83.86% 19.36% 63.52%

Random Forest 61.29% 0.00% 0.00% 100.00% _ 59.80%

Rotation Forest 61.29% 22.67% 2.73% 97.89% 7.82% _

BrainNetCNN 67.74% 53.32% 42.60% 82.44% 46.08% 74.96%

GAN 68.16% 41.16% 34.82% 85.96% 36.82% 74.46%

GCN 71.38% 59.52% 45.00% 84.58% 49.86% 75.94%

(b)

Model Accuracy Precision Recall Specificity F1 Score AUC

GNB 63.23% 51.78% 73.89% 56.49% 60.88% 69.38%

LDS 54.84% 38.17% 27.22% 72.28% 31.76% 54.11%

QDA 52.47% 37.79% 35.00% 63.51% 36.16% 49.25%

SLR 62.80% 52.97% 35.56% 80.00% 42.53% 73.68%

RLR 66.02% 56.48% 53.89% 73.68% 55.10% 73.95%

Linear SVM 50.11% 42.36% 78.89% 31.93% 55.09% 63.65%

RBF_SVM 61.94% 60.00% 1.67% 100% 5.41% 82.89%

RVM 64.73% 58.94% 30.00% 86.67% 39.57% _

MLP-Net 61.94% 50.56% 79.44% 50.88% 61.57% 69.92%

FC-Net 57.20% 46.18% 69.44% 49.47% 54.91% 60.65%

ELM 63.01% 52.40% 49.44% 71.58% 50.82% _

KNN 47.31% 42.10% 96.11% 16.49% 58.55% 66.45%

Bagged Trees 60.22% 44.09% 11.11% 91.23% 17.45% 57.53%

Boosted Trees 60.00% 46.42% 25.56% 81.75% 32.85% 57.58%
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Table 1. Cont.

Model Accuracy Precision Recall Specificity F1 Score AUC

Boosted Stumps 60.00% 44.84% 22.22% 83.86% 29.48% 58.62%

Random Forest 61.29% 0% 0% 100% _ 58.04%

Rotation Forest 61.72% 56.00% 4.44% 97.89% 10.05% _

BrainNetCNN 71.62% 66.56% 54.44% 82.44% 58.50% 74.74%

GAN 73.96% 72.80% 55.02% 85.96% 61.22% 76.34%

GCN 75.50% 71.66% 61.12% 84.58% 65.48% 78.80%

Table 2. Performance comparison of models on ABIDE-II dataset for multinomial (a) and binary (b)
classification (Red color indicates best performance, while blue color denotes second best performance).

(a)

Model Accuracy Precision Recall Specificity F1 Score AUC

GNB 66.13% 47.83% 41.90% 73.89% 44.54% 68.13%

LDS 64.52% 46.19% 31.33% 81.67% 37.25% 65.89%

QDA 46.45% 21.91% 27.05% 55.56% 24.18% 53.09%

SLR 71.29% 43.23% 33.90% 85.00% 37.14% 77.96%

RLR 70.97% 49.86% 40.29% 80.56% 43.68% 77.96%

Linear SVM 71.29% 47.21% 40.29% 81.11% 43.07% 75.13%

RBF_SVM 63.23% 38.12% 10.48% 96.67% 16.32% 72.00%

RVM 69.68% 72.68% 33.24% 88.33% 45.16% _

MLP-Net 65.16% 34.72% 39.81% 71.11% 36.89% 74.56%

FC-Net 56.13% 17.78% 24.76% 67.78% 24.50% 63.67%

ELM 58.71% 27.45% 33.05% 66.11% 29.98% _

KNN 59.68% 37.00% 4.76% 97.22% 8.13% 58.99%

Bagged Trees 55.81% 18.52% 11.90% 82.22% 14.27% 54.14%

Boosted Trees 57.42% 22.17% 14.76% 81.67% 17.49% 59.26%

Boosted Stumps 60.03% 27.18% 19.05% 81.67% 22.32% 59.44%

Random Forest 60.32% 34.29% 6.19% 96.67% 10.23% 61.84%

Rotation Forest 59.03% 22.90% 12.38% 87.22% 15.89% _

BrainNetCNN 70.36% 39.28% 28.20% 90.02% 33.12% 70.5%

GAN 73.56% 34.7% 32.88% 88.34% 33.60% 68.26%

GCN 72.28% 38.78% 32.02% 88.90% 34.96% 72.68%

(b)

Model Accuracy Precision Recall Specificity F1 Score AUC

GNB 69.35% 63.65% 63.08% 73.89% 63.33% 72.29%

LDS 68.06% 65.99% 49.23% 81.67% 56.29% 71.60%

QDA 56.45% 48.20% 57.69% 55.56% 52.48% 56.62%

SLR 73.55% 73.62% 57.69% 85.00% 64.65% 81.11%

RLR 74.52% 71.05% 66.15% 80.56% 68.50% 80.34%
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Table 2. Cont.

Model Accuracy Precision Recall Specificity F1 Score AUC

Linear SVM 74.52% 71.55% 65.38% 81.11% 68.19% 81.54%

RBF_SVM 63.55% 79.10% 17.69% 96.67% 28.74% 80.21%

RVM 71.94% 75.48% 49.23% 88.33% 59.41% _

MLP-Net 70.32% 63.98% 69.23% 71.11% 66.04% 77.28%

FC-Net 60.00% 53.84% 49.23% 67.78% 44.79% 65.19%

ELM 66.13% 58.51% 66.15% 66.11% 62.04% _

KNN 59.68% 74.00% 7.69% 97.22% 13.51% 58.53%

Bagged Trees 58.71% 51.06% 26.15% 82.22% 34.09% 57.79%

Boosted Trees 59.03% 51.78% 27.69% 81.67% 35.62% 59.17%

Boosted Stumps 61.29% 57.26% 33.08% 81.67% 41.84% 53.95%

Random Forest 61.29% 79.43% 12.31% 96.67% 20.88% 65.38%

Rotation Forest 60.97% 56.69% 24.61% 87.22% 33.95% _

BrainNetCNN 73.56% 78.64% 50.58% 90.02% 61.54% 75.84%

GAN 77.40% 79.62% 62.30% 88.34% 69.62% 75.90%

GCN 75.16% 78.44% 56.12% 88.90% 65.06% 74.12%

Table 3. Performance comparison of models on PTSD dataset for multinomial (a) and binary (b) clas-
sification (Red color indicates best performance, while blue color denotes second best performance).

(a)

Model Accuracy Precision Recall Specificity F1 Score AUC

GNB 82.22% 81.89% 78.75% 80% 80.29% 92.75%

LDS 50.00% 49.27% 57.50% 43.33% 52.96% 68.35%

QDA 47.78% 44.44% 40.00% 53.33% 41.67% 58.79%

SLR 88.89% 90.83% 81.25% 93.33% 85.57% 98.81%

RLR 95.56% 94.53% 93.33% 93.33% 95.29% 99.53%

Linear SVM 96.64% 97.78% 96.25% 96.67% 96.95% 99.53%

RBF_SVM 68.89% 59.45% 57.50% 63.33% 56.66% 97.94%

RVM 68.89% 75.00% 67.50% 56.67% 70.31% _

MLP-Net 92.22% 91.75% 96.25% 86.67% 93.78% 98.56%

FC-Net 68.89% 52.61% 48.75% 86.67% 48.10% 94.01%

ELM 36.67% 44.09% 45.00% 23.33% 43.97% _

KNN 48.89% 23.52% 48.75% 16.67% 31.71% 73.63%

Bagged Trees 83.33% 90.02% 77.50% 86.67% 83.08% 91.72%

Boosted Trees 70.00% 80.46% 68.75% 56.67% 74.00% 85.88%

Boosted Stumps 60.00% 66.10% 65.00% 30.00% 64.34% 76.87%

Random Forest 81.11% 85.76% 77.5% 73.33% 81.12% 97.51%

Rotation Forest 83.33% 87.71% 78.75% 80.00% 82.49% _

BrainNetCNN 97.76% 98.88% 97.50% 96.67% 98.08% 98.44%

GAN 96.64% 95.76% 98.76% 93.33% 97.20% 98.98%

GCN 95.56% 95.76% 95% 93.33% 95.32% 96.96%
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Table 3. Cont.

(b)

Model Accuracy Precision Recall Specificity F1 Score AUC

GNB 90.00% 90.51% 95.00% 80.00% 92.67% 94.72%

LDS 68.89% 74.49% 81.67% 43.33% 77.81% 64.72%

QDA 64.44% 74.62% 70.00% 53.33% 71.94% 61.67%

SLR 96.67% 96.79% 98.33% 93.33% 97.53% 98.61%

RLR 97.76% 96.92% 100.00% 93.33% 98.40% 99.44%

Linear SVM 97.76% 98.46% 98.33% 96.67% 98.33% 99.44%

RBF_SVM 87.78% 84.57% 100.00% 63.33% 91.62% 98.33%

RVM 80.00% 80.95% 91.67% 56.67% 85.90% _

MLP-Net 94.44% 94.33% 98.33% 86.67% 96.11% 98.33%

FC-Net 75.56% 94.18% 70.00% 86.67% 76.09% 93.06%

ELM 54.44% 64.94% 70.00% 23.33% 66.78% _

KNN 70.00% 69.90% 96.67% 16.67% 81.06% 83.06%

Bagged Trees 90.00% 93.85% 91.67% 86.67% 92.51% 92.78%

Boosted Trees 80.00% 81.42% 91.67% 56.67% 85.92% 86.11%

Boosted Stumps 66.67% 68.75% 91.67% 16.67% 78.57% 75.00%

Random Forest 90.00% 88.22% 98.33% 73.33% 92.92% 99.44%

Rotation Forest 90.00% 90.58% 95.00% 80.00% 92.59% _

BrainNetCNN 97.76% 98.46% 98.33% 96.67% 98.34% 98.60%

GAN 97.76% 96.92% 100.00% 93.33% 98.40% 99.16%

GCN 97.76% 96.92% 100.00% 93.33% 98.40% 96.38%

Table 4. Performance comparison of models on ADNI dataset for multinomial (a) and binary (b) clas-
sification (Red color indicates best performance, while blue color denotes second best performance).

(a)

Model Accuracy Precision Recall Specificity F1 Score AUC

GNB 37.14% 38.00% 27.78% 55.00% 31.82% 55.85%

LDS 30.00% 40.78% 32.78% 25.00% 36.15% 57.00%

QDA 22.86% 25.52% 28.89% 10.00% 26.49% 49.22%

SLR 32.86% 23.22% 21.67% 65.00% 21.88% 58.34%

RLR 32.86% 28.78% 28.89% 45.00% 27.86% 62.16%

Linear SVM 35.71% 29.89% 29.44% 50.00% 29.45% 57.95%

RBF_SVM 30.00% 24.02% 17.78% 55.00% 19.26% 63.80%

RVM 37.14% 40.33% 32.78% 50.00% 35.95% _

MLP-Net 37.14% 32.78% 36.67% 35.00% 34.49% 59.52%

FC-Net 35.71% 23.94% 31.11% 50.00% 26.84% 66.11%

ELM 17.14% 21.44% 21.67% 5.00% 20.06% _

KNN 24.29% 23.00% 30.56% 5.00% 26.11% 50.59%

Bagged Trees 24.29% 10.89% 13.33% 50.00% 19.95% 54.45%

Boosted Trees 25.71% 29.75% 26.67% 25.00% 34.00% 52.33%
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Table 4. Cont.

Model Accuracy Precision Recall Specificity F1 Score AUC

Boosted Stumps 30.00% 36.83% 39.44% 10.00% 36.33% 52.33%

Random Forest 37.14% 41.22% 29.44% 55.00% 34.15% 54.57%

Rotation Forest 30.00% 42.00% 25.00% 40.00% 31.16% _

BrainNetCNN 38.02% 21.50% 23.34% 50.00% 21.66% 58.86%

GAN 52.84% 42.42% 41.66% 80.00% 41.20% 66.42%

GCN 44.28% 37.56% 29.46% 55.00% 31.82% 62.46%

(b)

Model Accuracy Precision Recall Specificity F1 Score AUC

GNB 65.71% 79.72% 70.00% 55.00% 74.50% 59.00%

LDS 58.57% 70.73% 72.00% 25.00% 71.33% 74.50%

QDA 54.29% 66.57% 72.00% 10.00% 68.99% 41.00%

SLR 74.29% 84.67% 78.00% 65.00% 81.16% 85.00%

RLR 75.71% 80.51% 88.00% 45.00% 83.86% 87.00%

Linear SVM 71.43% 80.41% 80.00% 50.00% 79.94% 81.00%

RBF_SVM 65.71% 79.72% 70.00% 55.00% 74.50% 70.50%

RVM 70.00% 79.78% 78.00% 50.00% 78.84% _

MLP-Net 78.57% 79.34% 96.00% 35.00% 86.60% 88.00%

FC-Net 74.29% 81.14% 84.00% 50.00% 82.22% 80.00%

ELM 50.00% 63.84% 68.00% 5.00% 65.58% _

KNN 55.71% 66.73% 76.00% 5.00% 70.97% 59.50%

Bagged Trees 60.00% 77.17% 64.00% 50.00% 69.60% 70.00%

Boosted Trees 65.71% 73.41% 82.00% 25.00% 76.20% 69.00%

Boosted Stumps 65.71% 71.00% 88.00% 10.00% 78.36% 53.50%

Random Forest 65.71% 79.43% 70.00% 55.00% 73.88% 70.75%

Rotation Forest 60.00% 74.11% 68.00% 40.00% 70.81% _

BrainNetCNN 82.86% 82.88% 96.00% 50.00% 88.80% 82.00%

GAN 88.56% 92.66% 92.00% 80.00% 91.96% 84.00%

GCN 80.00% 83.47% 90.00% 55.00% 86.34% 84.18%

ADHD For multinominal classification, GCN achieves the highest values for the accu-
racy score, precision score, and f1 score and the second highest for AUC. GAN also achieves
the second highest accuracy score with 68.16%, which is only 3% less than the accuracy
of GCN. The results remain the same in the binary classification scenario, with the only
exception in the precision score where the GAN model takes the first place while GCN has
the second place. Although the RBF-SVM model has the highest performance for specificity
and AUC scores, its recall score is rather low with only 1.67%, which fails to predict the
actual patients with disease. GAN and GCN therefore achieve better performance overall
among all the models.

ABIDE-II GAN and GCN outperform the other models in accuracy for both multi-
nomial classification (73.56% and 72.28%) and binary classification (77.40% and 75.16%).
GAN also shows the highest results in precision score and f1 score. kNN, RBF-SVM, and
random rorest classifiers obtained the highest and second highest specificity; however, their
recall scores are rather low. On the other hand, the specificity scores of GAN and GCN are
relatively high (88.34% and 88.9% respectively).
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PTSD This is a homogeneous dataset wherein the scanning of all subjects was carried
out on a single scanner using the same sequence. Since the sources of non-neural variability
are minimized relatively in this dataset, most models performed very well (AUC > 90%).
Therefore, it is not very informative to evaluate various classification models against one
another. Nevertheless, BrainNetCNN outperforms GAN and GCN in terms of accuracy,
precision, and f1 score for 3-way classification. Also in 3-way classification, while the
evaluation results of GCN were outperformed by Linear SVM and BrainNetCNN, the
model still has better performance than the others do (by a margin of 1% to 4%). As for
binary classification, it can be seen that GAN and GCN have approximately similar patterns
where they achieve the highest accuracy, highest recall, highest f1 score (97.76%, 100% and
98.40% respectively), and second highest precision score (96.92%) and specificity (93.33%).
The best performance on this dataset also includes RLR, Linear SVM, and BrainNetCNN.

ADNI GAN appeared to reach the top level of performance in both 4-way classification
and binary classification, particularly the accuracy score where the value is higher than
the second highest value by large margins (52.84% vs. 44.28% and 88.56% vs. 82.86%).
GCN displays only the second highest result in accuracy for multinomial classification. The
reasons for this issue may be due to the limited sample dataset for training and the fact
that the cut-off threshold may remove some important features in the graph.

(a) ADHD dataset (b) ABIDE-II dataset

(c) PTSD dataset (d) ADNI dataset

Figure 4. Illustration of the models’ performance sorted from worst to best for each dataset.

5.3. Effect of Different Thresholds on GCN’s Performance

Even though we have used a criterion for threshold selection that has been widely
reported before, we want to ensure that our choices do not remove any important connec-
tions that may negatively impact the model’s performance. Therefore, we estimated binary
classification for the four datasets and plotted against different cutoff thresholds. As we
can see in Figure 5a–d, all the accuracy results for all four datasets peak at our choices of
thresholds, justifying the selection of thresholds based on the elbow cutoff criterion.
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(a) ADHD dataset (b) ABIDE-II dataset

(c) PTSD dataset (d) ADNI dataset
Figure 5. GCN’s performance on different thresholds for each dataset.

5.4. Statistical Significance

A random classifier for the binary classification problem would have the probability of
50% to predict the label correctly. A model with a prediction below that expectation cannot
be used [48]. Therefore, we modeled the outcomes of each classifier as a Bernoulli process
B(n,p), where n is a total number of subjects from the test samples and p is the probability
of success. Then we want to test whether the probability of correctly predicted labels by
the classifiers could surpass the expected probability. The results of all the models on all
the datasets are shown in Table 5. GAN and GCN appear to achieve significant results on
all the datasets.

Table 5. The p-values of the Bernoulli test for all the models. Significance was defined at α = 0.05.

Model
Dataset

ADHD ABIDE-II PTSD ADNI

GNB 0.005 0.001 4.84 ×10−4 0.042
LDA 0.175 0.003 0.079 0.168
QDA 0.302 0.155 0.079 0.282
SLR 0.008 6.95 ×10−5 8.12 ×10−5 0.006
RLR 0.001 6.95 ×10−5 1.10 ×10−5 0.006

LinearSVM 0.459 6.95 ×10−5 1.10 ×10−5 0.017
RBF-SVM 0.009 0.021 4.84 ×10−4 0.042

RVM 0.003 1.88 ×10−4 0.009 0.017
MLP-Net 0.008 4.80 ×10−4 8.12 ×10−5 0.002
FC-Net 0.089 0.064 0.009 0.006

ELM 0.005 0.005 0.319 0.424
kNN 0.698 0.064 0.030 0.282

Bagged Tree 0.024 0.102 4.84 ×10−4 0.168
Boosted Tree 0.024 0.064 0.009 0.042

Boosted Stump 0.024 0.038 0.003 0.042
Random Forest 0.015 0.038 4.84 ×10−4 0.042
Rotation Forest 0.015 0.038 4.84 ×10−4 0.168
BrainNetCNN 1.06 ×10−5 6.95 ×10−5 1.10 ×10−5 5.35 ×10−5

GCN 5.48 ×10−7 2.41 ×10−5 1.10 ×10−5 5.35 ×10−5

GAN 1.53 ×10−6 7.87 ×10−6 1.10 ×10−5 2.66 ×10−5
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5.5. Statistical Comparison

To test the hypothesis that GAN and GCN generalize better than the other models, all
the accuracy scores generated by the CV method were collected as samples for a statistical
test. In particular, we made the assumption of the null hypothesis that the performances
of GAN and GCN are worse than those of the other models, and we would like to check
whether there is enough evidence to reject the null hypothesis. The Wilcoxon rank-sum
test was applied to compare the performances of GAN and GCN with other models.
The Wilcoxon technique, as an alternative approach to the Student’s t-test, can be more
appropriate when the sample is small because we cannot assume the data are normally
distributed [49]. The level of significance was selected at α = 0.05.

Table 6 (a) and (b) show the statistical results (p-value) of the Wilcoxon test for the
comparison of GAN and GCN, respectively, with the other models on all the datasets. The
tests indicated that GAN and GCN statistically have greater accuracy scores than almost all
the traditional ML models on all the datasets (p-value < 0.05). We also do not have enough
evidence to conclude that GAN and GCN statistically perform better than BrainNetCNN,
although the test suggests that GAN has a better performance than BrainNetCNN for the
ABIDE-II dataset (p-value = 0.02).

Table 6. The p-value of the Wilcoxon rank-sum test for the comparisons of GAN with the other models
(a) and GCN with the other models (b) on all the datasets. Significance was defined at α < 0.05.

(a)

Model
Dataset

ADHD ABIDE-II PTSD ADNI

GNB 0.004 0.004 0.04 0.004
LDA 0.004 0.004 0.004 0.004
QDA 0.004 0.004 0.004 0.004
SLR 0.004 0.032 0.579 0.020
RLR 0.004 0.032 0.738 0.004

LinearSVM 0.004 0.059 0.738 0.004
RBF-SVM 0.004 0.004 0.004 0.004

RVM 0.004 0.004 0.004 0.004
MLP-Net 0.004 0.044 0.341 0.171
FC-Net 0.004 0.004 0.004 0.004

ELM 0.004 0.004 0.004 0.004
kNN 0.004 0.004 0.004 0.004

Bagged Tree 0.004 0.004 0.087 0.004
Boosted Tree 0.004 0.004 0.004 0.004

Boosted Stump 0.004 0.004 0.004 0.004
Random Forest 0.004 0.004 0.012 0.004
Rotation Forest 0.004 0.004 0.04 0.004
BrainNetCNN 0.206 0.020 0.738 0.198

GCN 0.794 0.187 0.738 0.059

(b)

Model
Dataset

ADHD ABIDE-II PTSD ADNI

GNB 0.004 0.004 0.04 0.008
LDA 0.004 0.004 0.004 0.008
QDA 0.004 0.004 0.004 0.004
SLR 0.004 0.14 0.579 0.159
RLR 0.004 0.38 0.738 0.048

LinearSVM 0.004 0.556 0.738 0.044
RBF-SVM 0.004 0.004 0.004 0.008
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Table 6. Cont.

(b)

Model
Dataset

ADHD ABIDE-II PTSD ADNI

RVM 0.004 0.016 0.004 0.044
MLP-Net 0.004 0.194 0.341 0.567
FC-Net 0.004 0.004 0.004 0.044

ELM 0.004 0.008 0.004 0.004
kNN 0.004 0.004 0.004 0.004

Bagged Tree 0.004 0.004 0.087 0.008
Boosted Tree 0.004 0.004 0.004 0.016

Boosted Stump 0.004 0.004 0.004 0.012
Random Forest 0.004 0.004 0.012 0.016
Rotation Forest 0.004 0.004 0.04 0.004
BrainNetCNN 0.095 0.258 0.738 0.825

GAN 0.270 0.877 0.738 1

6. Discussion

GAN shows excellent results on independent test data on both large and small datasets,
where the model had the best performance for the ABIDE-II, PTSD, and ADNI datasets
and the second best performance for the ADHD dataset. The improvement of GAN using
BrainNetCNN as the backbone network over using just BrainNetCNN alone demonstrates
the benefits of data augmentation by GAN. This could potentially address the problem
of data scarcity for neuroimaging based diagnostic prediction in patient populations in
neurology and psychiatry.

Table 7 shows the computational time required for each model to complete training
across datasets. Generally, all three deep learning models require more time to train than
the traditional method, which can be attributed to their complexity and larger number
of trainable parameters. We can observe that the GAN exhibits the longest training time.
This is because the GAN model needs to learn the data distribution to synthesize data,
in addition to the time required for training the classifier. Despite this extended training
time, GAN achieves the best performance among all models across the four datasets.
Notably, GCN requires less training time than BrainNetCNN across the three datasets
(ABIDE-II, PTSD, and ADNI), yet it achieves better performance in ABIDE-II and ADNI
and equivalent performance in PTSD. This suggests that, despite requiring fewer trainable
parameters, GCN is a superior tool for capturing the complex structure of brain networks.
Some traditional models require very little training time, sometimes as low as 0.01 s.
However, their performance does not match that of GAN and GCN. This indicates a
trade-off between training time and performance across traditional and deep learning
models. In future research, there is a need to decrease the training time of GAN and GCN
while maintaining satisfactory accuracy results to enhance their practical applicability in
real-world clinical settings.

In Figure 3a–d, we can see that each dataset has a different cut-off threshold. As
mentioned above, we aim to retain only the strong connections in the backbone network
crucial for identifying abnormal patterns in individuals with brain disorders. Therefore,
we intend to prune the low tail of the curve, which comprises solely low connection values.
However, selecting an excessively high threshold may result in the elimination of many
relevant connections, thereby negatively impacting accuracy performance (as demonstrated
by examples in Figure 5a–d, where accuracy decreases with increasing thresholds). To
strike a balance, we opt to set the threshold at the elbow of each curve distribution, which
shares a similar concept with the elbow criterion used in k-means clustering. This choice
allows for the retention of meaningful connections while removing redundant, noisy ones.
Our hypothesis is validated by the accuracy results presented in Figure 5. Additionally,
since each dataset exhibits distinct distributions in connection values, the selection of the



Brain Sci. 2024, 14, 456 21 of 25

elbow must vary accordingly. This accounts for differences in cut-off threshold selection
across datasets.

Table 7. The comparison of computational time (in seconds) required to train each model.

Model
Dataset

ADHD ABIDE-II PTSD ADNI

GNB 0.12 0.11 0.01 0.01
LDA 1.65 1.49 0.22 0.34
QDA 6.28 3.09 0.07 0.1
SLR 44.18 29.14 2.18 5.35
RLR 21.29 14.88 1.41 3.54

LinearSVM 67.83 4.22 3.08 0.48
RBF-SVM 5.13 1.61 0.05 0.3

RVM 242.32 92.47 35.31 23.24
MLP-Net 24.09 19.55 10.77 8.19
FC-Net 18.86 17.26 10.17 9.42

ELM 2.02 0.08 0.17 0.17
kNN 0.409 0.23 0.01 0.01

Bagged Tree 52.74 35.92 1.32 2.79
Boosted Tree 5.06 4.40 0.388 0.63

Boosted Stump 4.02 3.99 0.41 0.55
Random Forest 5.20 3.23 0.29 0.30
Rotation Forest 304.66 201.79 19.89 34.10
BrainNetCNN 114.42 133.79 38.74 132.46

GCN 144.6 110.57 34.13 90.76
GAN 194.98 236.23 83.29 260.87

7. Limitations and Future Research

The hyperparameters used in this paper were obtained from our previous works [12,18],
where a hyperparameter tuning approach was employed to select the optimal parameters
yielding the best results. Therefore, we applied the same parameters to this paper and
achieved good results. However, it must be noted that extensive tuning of hyperparameters
to a given dataset makes the model overfit the data and hence makes it less generalizable.
This is not desirable in clinical diagnostic applications since there is wide variability in the
human population, and we want these models to be generally applicable.

Ensemble methods can combine multiple deep neural networks to achieve more
stable and generalizable predictions by mitigating variance and reducing generalization
errors. However, due to the distinct characteristics and nature of GANs and GCNs, the
development of ensemble frameworks for these techniques remains incomplete. While
implementing this method requires careful planning and a significant time investment, its
potential benefits are substantial. In our future work, we aim to explore the integration of
GANs and GCNs to investigate whether this combination can lead to further performance
improvements in terms of accuracy.

Interpretability is considered a crucial factor when integrating deep learning into
clinical practice. In our study, we employed GCN coupled with a top-k pooling method.
This approach offers interpretability by selecting a set (k) of the most relevant brain regions
most predictive of brain disorders. These identified regions have the potential to serve
as biomarkers, helping in the early detection of diseases. Although the paper has not
presented the results, the methods hold significant potential, and we plan to implement
them in future work.

GCN illustrates the effectiveness of applying graph neural networks to graph-structure
data by achieving the highest performance in the ADHD dataset and also comparatively
good results in other datasets. One of the ways to improve GCN is to train embedding of
nodes in a space that has fewer dimensions instead of directly using row vectors as feature
vectors [50]. This technique utilizes a framework from an encoder-decoder perspective
that can better capture the information contained in the data. The design of the adjacency
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matrix also plays an essential role. Instead of static non-directional graphs obtained from
FC, directional graphs can be obtained using effective connectivity [51]. The graphs could
also be computed across different blocks of time to estimate the dynamics [52]. These types
of advanced graphical features, when used with GCN, have the potential to improve our
understanding of the mechanisms underlying neuronal dynamics by examining alterations
between patients and healthy controls.

8. Conclusions

We identified two major challenges for the application of deep learning for neuroimaging-
based diagnostic classification: small sample sizes of patients and incompatibility of graph-
ical features of brain networks and architectures of traditional deep learning models. We
have illustrated how these issues can be addressed using brain connectivity features from
four different clinical datasets. The patient data scarcity issue was addressed using GANs,
while GCNs allowed us to conveniently handle graph-based features within a deep learning
framework. Both GAN and GCN provided the best and second best accuracy for the four
clinical datasets we used.
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