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Abstract: Electroencephalography (EEG) is effectively employed to describe cognitive patterns corre-
sponding to different tasks of motor functions for brain–computer interface (BCI) implementation.
Explicit information processing is necessary to reduce the computational complexity of practical
BCI systems. This paper presents an entropy-based approach to select effective EEG channels for
motor imagery (MI) classification in brain–computer interface (BCI) systems. The method identi-
fies channels with higher entropy scores, which is an indication of greater information content. It
discards redundant or noisy channels leading to reduced computational complexity and improved
classification accuracy. High entropy means a more disordered pattern, whereas low entropy means
a less disordered pattern with less information. The entropy of each channel for individual trials is
calculated. The weight of each channel is represented by the mean entropy of the channel over all the
trials. A set of channels with higher mean entropy are selected as effective channels for MI classi-
fication. A limited number of sub-band signals are created by decomposing the selected channels.
To extract the spatial features, the common spatial pattern (CSP) is applied to each sub-band space
of EEG signals. The CSP-based features are used to classify the right-hand and right-foot MI tasks
using a support vector machine (SVM). The effectiveness of the proposed approach is validated using
two publicly available EEG datasets, known as BCI competition III–IV(A) and BCI competition IV–I.
The experimental results demonstrate that the proposed approach surpasses cutting-edge techniques.

Keywords: brain–computer interface; channel selection; electroencephalography; entropy-based
information; motor imagery

1. Introduction

A brain–computer interface (BCI) is a system that enables humans to communicate
with the environment without depending on a peripheral limb or muscle [1,2]. BCI can
assist people in carrying out regular tasks without moving their bodies. BCI applications
extend from communication and rehabilitation to entertainment [3]. Noninvasive methods
such as functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG),
and electroencephalography (EEG) can be used to monitor brain activity. The EEG-based
BCI application has become the most popular because it is very easy to implement and is
cost-effective [4–8]. A common form of mental task employing EEG-based BCI is motor
imagery (MI), which demands users to articulate particular limb or muscle movements
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without performing actual action. Event-related synchronization (ERS) and event-related
desynchronization (ERD), which MI-BCI systems may detect, are oscillatory activity in
sensorimotor rhythms that are produced by these imaginations [9–11]. The MI classification
using multichannel EEG is investigated in this study to identify MI-related brain activity
patterns. The aim of this work is to improve the performance of BCI systems. Although
there is a noticeable advancement in the study of MI classification using EEG, its perfor-
mance is affected by the high dimensionality of EEG, intersubject variability, and noise.
Moreover, it is still not clear how well the conventional design of channels captures brain
signals that are effective for MI categorization [12]. This study focuses on the selection of
optimal channels for MI classification using multichannel EEG to overcome the traditional
limitation. The channels with redundant and noisy information are discarded such that
the MI classification is improved. Rigorous experiments are conducted to demonstrate the
efficacy of the proposed method.

An entropy-based channel selection mechanism is introduced to implement the MI
classification system in this paper. The EEG signals with a reduced number of channels are
decomposed into a finite number of sub-bands. The common spatial pattern-based features
are calculated from the sub-bands and used for the classification.

The rest of this paper is organized as follows: Section 2 discusses the related works
that already have been conducted on MI classification; Section 3 describes the data used in
this study; Section 4 explains the technique; Section 5 illustrates the experimental results;
and Sections 6 and 7 include the discussion and some concluding remarks, respectively.

2. Related Works

For a variety of applications, many researchers have been striving to create EEG-based
BCI systems [12–14]. For better performance, most BCI systems gather EEG inputs from
several scalp electrodes. However, it takes a lot of time and effort to set up a BCI system with
the sensors. Additionally, it is a significant obstacle to integrating BCI into commonplace
applications [13,15,16]. A survey includes new frontiers in applying deep learning for
brain signal analysis [17]. Furthermore, the presence of large EEG channels introduces
issues such as distortion, excessive computational complexity, and data redundancy [18,19].
Therefore, while designing BCI systems, the selection of a reduced number of effective
channels becomes demanding. Several approaches have been introduced to select the
effective number of EEG channels. Some techniques rank the channels under independent
evaluation standards without employing any classifier. In contrast, other methods evaluate
the significance of channels by considering the effectiveness of particular classifiers [20].

Graph Sequence Neural Network (GSNN) for accurately decoding patterns of motor
imagery from EEGs is proposed in [21]. The model utilizes a node domain attention
selection network. It focuses on training sample datasets specific to each subject at different
distraction themes, adapting to subjects’ influences, and reducing noise samples [21].
Specifically, it illustrates the difficulty in deciding between a global pooled architecture
and a hierarchical pooled architecture for graph classification in MI (Motor Imagery). The
errors of linear discriminant analysis (LDA) classifier test have been employed in [22] as
criteria to select potential EEG channels. These approaches have not achieved the required
level of classification accuracy. A correlation-based channel selection with a regularized
common spatial pattern (CCS-RCSP) is implemented in [23] for MI classification. In
order to correctly identify the MI tasks, a support vector machine (SVM) classifier with
the radial basis function (RBF) kernel is used. In [24], a set of the relevant channels are
selected using the binary gravitational search algorithm (BGSA). A bandpass filter was
used there to reduce the noise. Additionally, artifacts like electromyography (EMG) and
electrooculography (EOG) are eliminated using the blind source separation (BSS) technique.
Signals are then processed in time and wavelet domains to extract features. The efficiency
of their channel selection strategy is then evaluated using the SVM classifier.

In [25], a unique channel selection method based on the correlation coefficient (CSCC)
is used. For each channel, a collection of uncorrelated channels is chosen. To pick one of
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these groups, the Fisher score is computed after extracting the features of each group using
filter-bank CSP (FBCSP). A group of channels is then chosen which has the highest Fisher
score. A channel selection approach is suggested in [19] using the spatiotemporal informa-
tion in EEG data. The selection process has been conceptualized as an optimization problem.
It is solved via a computationally efficient approach by incorporating sparsity restrictions.

The common spatial pattern (CSP)-based method is a known technique for EEG
channel selection but it is greatly affected by the frequency spectrum and temporal window
of the EEG segments. In [26], the time-constrained sparse group spatial pattern (TSGSP)
method is introduced to improve CSP. The effects of frequency and temporal events are
taken into account concurrently. A cross-correlation-based discriminant criterion (XCDC)
is proposed in [27] to measure the significance of a channel for differentiating the mental
states of various motor imagery (MI) tasks. The chi-square statistics is used to select a
subset of channels in [28]. The sparse common spatial pattern (SCSP) approach is used to
choose the MI-relevant channels that correlate to high sparse CSP filter coefficients [18].
Using the least absolute shrinkage and selection operator (LASSO) algorithm, the CSP-rank
for multiple frequency bands (CSP-R-MF)-based approaches suggest in [29] to pick the
MI-relevant channels for each frequency band.

The effective EEG channels (DCRCC) are identified in [30] using a dynamic channel
relevance (DCR) score. The lowest redundancy maximum relevance paradigm is introduced
for choosing the appropriate channels. The Savitzky–Golay filter is used to preprocess the
EEG signals, and the sliding window method is employed to divide the resulting segments
into predetermined lengths. Three previously identified channels are also considered as
possible options for discovering additional related channels. The variance ratio dispersion
score (VRDS) and interclass feature distance (ICFD) of small EEG channel groups are
two metrics used in the local region CSP (LRFCSP) method proposed in [31] to choose
channels. The robust feature selection (RFS) algorithm used in the feature compression
and channel ranking (FCCR) approach selects the MI-relevant channels by clustering the
feature dimension [32]. These EEG channel selection methods rely on temporal, spectral,
or spatial characteristics. It is used to classify MI tasks in relation to regionally different
ERD/ERS patterns. However, when categorizing delicate and mixed ERD/ERS patterns,
these traits may have limitations.

The existing methods for channel selection exhibit relatively poor classification perfor-
mance because they often fail to accurately identify and eliminate all deceptive channels.
In several studies, the number of optimized features is still large, which is less informative
and error-prone. Techniques based on DCR score lack candidate channels, which causes
performance degradation. In this paper, an entropy score used for effective EEG channel
selection is proposed to improve MI classification performance. It mitigates the mentioned
limitations of the existing methods. The entropy quantifies the pattern’s unpredictability or
uncertainty, which is roughly comparable to the signal’s information content. High entropy
means a more disordered pattern, whereas low entropy means a less disordered pattern
with less information. The Shannon entropy is computed for each of the channels to obtain
entropy scores. Then, a group of high-entropy channels for further processing are dynam-
ically selected. Later, filtering techniques are applied to selected channels to decompose
into different frequency bands. Using CSP, the spatial characteristics are extracted from
each sub-band and fused to create the feature vector. The EEG features derived from the
effective channels are fed to the support vector machine (SVM) classifier. The effectiveness
of the suggested approach is assessed using an EEG dataset that is freely accessible. To
demonstrate the superiority of the EEG channel selection methodology used in this study,
the experimental findings are contrasted with the MI classification methods that are currently
in use.
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3. Data Description
3.1. Dataset 1

A publicly available dataset, BCI Competition III (IVA), is used in this study to evaluate
the proposed approach. The dataset was received from the Berlin BCI group. It includes the
Campus Benjamin Franklin of the Charité, Department of Neurology, Neurophysics Group
(Gabriel Curio), and Fraunhofer FIRST, Intelligent Data Analysis Group (Klaus-Robert
Müller, Benjamin Blankertz). A detailed description of the dataset is available in [33]. Five
healthy subjects (aa, al, aw, av, and ay) aged 24 to 25 completed MI tasks on each trial to
record the dataset as EEG signals. They were instructed not to move their hands or arms
during the recordings and not to move their eyes. The dataset consists of four sessions,
each with 70 runs, for a total of 280 runs per subject. Out of 280 runs, 168, 224, 84, 56, and
28 runs for subjects aa, al, aw, av, and ay, respectively, made up the training set, whereas
the remaining runs made up the test set. During the 3.5 s that the visual cues suggested,
respondents were instructed to carry out one of two motor imagery tasks: right hand
or right foot movement. One of the aforementioned activities was given to the users to
consider, with goal cue intervals of 1.75 to 2.25 s, during which the subject might unwind.
The 128-channel Ag/AgCl electrode cap was used to record the EEG signals. Positions
were measured for 118 EEG channels using the worldwide 10/20 system. The bandpass
filter was used to filter the measured MI-based EEG signals between 0.05 and 200 Hz, and
the signals were subsequently digitized at 1000 Hz with a 16-bit precision. The dataset
is downsampled at 100 Hz for further processing. Table 1 represents the summary of
Dataset 1.

Table 1. Summary of the Dataset 1.

Dataset Name BCI Competition III IVA

Subjects aa, al, aw, av, ay

Number of Subjects 5

Channels 118

Sample Frequency 100 Hz

Classes Left Hand, Right Hand, Foot

Tasks Each subject completed any two of the classes

Visual Cues Duration 3.5 s

Total Trials 280 per subject (140 trials for each of the two classes)

Samples per Trial 350 (3.5 s × 100 Hz)

3.2. Dataset 2

The second dataset used in this study is obtained from BCI Competition IV Dataset
I [34], which is also publicly available. The summary of Dataset 2 is presented in Table 2.
There are seven healthy subjects, namely a, b, c, d, e, f, and g. The EEG signals were
recorded using 59 channels. The sampling frequency of Dataset 2 is 100 Hz. The left hand,
right hand, and foot are the three classes of motor imagery tasks that are involved. Each
subject completed any two of the classes. Four seconds of visual cues in the shape of arrows
were displayed on the screen, and during that time, the subject completed a specific mental
task. The signals were interspersed with two seconds of a blank screen and two seconds
of a fixation cross. The fixation cross was superimposed on the cues and shown for six
seconds. Thus, each trial lasts for 4 s, and then there is a 4 s rest interval. There are 200 trials
in total for each subject and 100 trials for each of the two classes that are chosen by the
particular subject. A trial lasts 4 s, and there are 400 samples in a trial (4 s × 100 Hz).
Different parameters of Dataset 2 are illustrated in Figure 1.
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Table 2. Summary of the Dataset 2.

Dataset Name BCI Competition IV Dataset I

Subjects a, b, c, d, e, f, g

Number of Subjects 7

Channels 59

Sample Frequency 100 Hz

Classes Left Hand, Right Hand, Foot

Tasks Each subject completed any two of the classes

Visual Cues Duration 4 s

Total Trials 200 per subject (100 trials for each of the two classes)

Samples per Trial 400 (4 s × 100 Hz)

Figure 1. The timing sequence of BCI competition IV dataset I (Dataset 2).

4. Methodology

The number of channels is increased day by day to enhance the spatial resolution of
EEG-based BCI implementation. All the channels used in the recording of EEG are not
effectively usable in different applications. The issue for selecting application-dependent
effective channels is the demand to improve EEG classification performance. Such a
method is implemented in this study. The methodology starts with the calculation of
Shannon entropy for each channel in a trial. The entropy measure is used to identify
channels having significant information. Based on the entropy scores, an optimal number
of effective channels are selected for further analysis. Subsequently, the EEG signals with
the selected channels are decomposed into distinct sub-bands. The narrowband approach
enables the features of frequency-specific components of the EEG data. The sub-band
trials are generated by aggregating similar sub-bands obtained from all selected channels.
Common spatial pattern (CSP)-based features are then extracted from the sub-band trials. A
feature vector is constructed by combining the features obtained from different sub-bands.
The vector encapsulates the relevant information extracted from the EEG data. Finally,
classification is performed using a support vector machine (SVM). The block diagram of
the proposed channel-selection-based approach is illustrated in Figure 2. The following
steps summarize the proposed method:

• The entropy of each channel of a trial is calculated. The Shannon entropy is used here.
• The obtained entropy score is used to select the adequate number of channels.
• The EEG signals of the selected channels are decomposed into a finite set of sub-bands

using the Butterworth bandpass filter.
• Sub-band trial is generated by an accumulated similar sub-band obtained from all

of the selected channels. Common spatial pattern (CSP)-based features are extracted
from the sub-band trial.

• A feature vector is formulated by combining the features extracted from each sub-
band trial.

• The classification is performed by implementing a support vector machine (SVM)
along with the feature vector.
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Figure 2. Block diagram of the proposed MI classification system based on channel selection.

4.1. Data Preprocessing

For Dataset 1, the visual cues are illustrated for 3.5 s, as shown in Figure 3. The EEG
signals from 0.5 s to 3 s after the cue are used in this study. Pre- and postimagination are
thought to last for the first 0.5 s (0–0.5 s) and the last 0.5 s (3–3.5 s), respectively. For Dataset
2, the visual cues are illustrated for 4 s, as shown in Figure 1. The EEG signals from 2 s to
6 s after the cue are used in this study for Dataset 2. Then, the EEG signal of both datasets
is passed through a fifth-order Butterworth bandpass filter with a frequency range from
8 Hz to 35 Hz.

Figure 3. The timing sequence of the BCI competition III dataset IVA (Dataset 1).

4.2. Effective Channel Selection

All the EEG channels are not equally effective for motor imagery (MI) classification.
Efficient channel selection considerably improves the classification accuracy of MI tasks. An
entropy-based information-theoretic approach is implemented here to select the effective
EEG channels. The multichannel EEG is denoted as Xm

l =
[
xm

l (1)xm
l (2) . . . xm

l (N)
]T , where

m is the trial index (m = 1, 2, . . . , M), l is the channel index (l = 1, 2, . . . , L), and n is the index
of sample (n = 1, 2, . . . , N). The entropy measures the information of the pattern [35–39].
The Shannon entropy score is used in this study to identify the effective EEG channels. For
a specific single subject, the average entropy of the l-th channel over M trials is defined as

hl = − 1
M

M

∑
m=1

N

∑
n=1

p(xm
l (n)) log p(xm

l (n)), (1)

where p(xm
l (n)) is the probability of the occurrence of the n-th sample on the l-th channel

of the m-th trial. The entropy vector H = [h1, h2, . . . ., hl , . . . , hL] is sorted in descending
order, and the channels with higher entropy scores are chosen as the effective channel to
improve MI classification performance. The EEG data of reduced channels consisting of
the selected channels only are denoted by X

′
.
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4.3. Sub-Band Decomposition

Electrophysiological noises frequently contaminate the multichannel raw EEG. Fur-
thermore, some narrowband components of the EEG signal respond more strongly to the
specific MI task. Therefore, the use of sub-band signals of selected EEG channels would be
more accurate in classifying MI activities. According to a previous study, the majority of
brain activities connected to MI tasks take place at the frequency range of 7–30 Hz [40,41].
Then, the EEG signal is split into four sub-bands using a zero-phase Butterworth bandpass
filter. The extracted four sub-bands are Mu (8–13 Hz), low beta (13–22 Hz), high beta
(22–35 Hz), and full-band (8–35 Hz). Figure 4 and 5 shows the sub-bands of channel C3
for subject ‘al’ and ‘a’ of the BCI Competition III (IVA) dataset and BCI Competition IV
(I) dataset.
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Figure 4. Channel C3 of Subject ‘al’ from the BCI Competition III IVA dataset yielded four unique
sub-bands: 8–35 Hz, 8–13 Hz, 13–22 Hz, and 22–35 Hz.
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Figure 5. The four sub-bands: 8–35 Hz, 8–13 Hz, 13–22 Hz, and 22–35 Hz of channel C3 selected from
Subject ‘a’ of BCI Competition IV dataset I.

4.4. Feature Extraction

The potential feature extraction is one of the most important steps in BCI implementa-
tion. The features have a direct influence on the BCI system performance. Recent studies
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have looked at modifying or developing feature extraction algorithms [42]. The most popu-
lar and well-known feature extraction technique in multichannel EEG-based BCI systems
is the CSP [41,43,44]. Multichannel EEG data are projected onto a low-dimensional spatial
subspace using the CSP technique. The CSP determines spatial filters that maximize the
variance ratio between two classes of data. The filter serves to extract effective features for
classification. The most discriminative spatial information between the MI tasks to execute
the effective classification of EEG signals is applicable in BCI implementation. Let X′

c1
and

X′
c2

denote the training trials of EEG signals with selected effective channels from class c1
and c2, respectively. The CSP method derives the features by simultaneously diagonalizing
both classes’ covariance matrices. The EEG data are transformed into a projection matrix
using a spatial filter w ∈ Rl that maximizes the variances between two classes [45].

w = arg max
wT B1w
wT B2w

s.t ∥w∥2 = 1. (2)

By resolving an extended eigenvalue problem, the optimal solution to Equation (2) is
achieved. The largest and lowest eigenvalues V generated by the eigenvectors are included
in the spatial filter w = [w1, w2, . . . , w2V ] ∈ Rl×2V . Thus, the feature vector of any trial of
sub-band s is constructed as f s =

[
f (s)1 , f (s)2 , . . . , f (s)2V

]
. The log-transformation is used to

normalize the elements of f (s)v

f (s)v = log
(

var
(

wT
v x

))
, v = 1, 2, . . . , 2V, (3)

where var(.) represents the variance. The CSP is used to extract a subset of features
from each sub-band. The features obtained from each sub-band are concatenated as
F = [ f 1, f 2, . . . , f s] to create the feature vector for the particular trial, where f s represents
the features of s sub-band and s = 1, 2, . . . , S (S represents all sub-bands together). The
feature vector F is used to classify the MI tasks using SVM.

4.5. Classification

The proposed channel selection approach to MI Classification is evaluated using a
support vector machine (SVM) classifier with a radial basis function (RBF) kernel. The
effectiveness of the SVM is also compared with a linear discriminant analysis (LDA)
classifier and an artificial neural network (ANN). The ANN is implemented with one
hidden layer of size 10, sigmoid activation function, and one output layer of size 2 with
linear function. The detailed description of SVM, LDA, and ANN is available here [46], [47],
and [48], respectively.

5. Experimental Results

The performance of the proposed channel-selection-based method is assessed using
the BCI competition III (IVA) dataset and the BCI competition IV(I) dataset. Right hand
and right foot movement are two motor imagery tasks that are considered for classification.
The signals of each channel of EEG data are decomposed into four sub-bands described
in the Sub-band Decomposition Section. The CSP is applied to each sub-band of EEG
signals to extract spatial information. From each of the four sub-bands, two sets of spatial
filter pairs are extracted, producing four features. Thus 16 (4 feature × 4 sub-band)-
dimensional feature vector is derived to feed to the classifier. The classification accuracy
of the individual subject is evaluated using the k-fold (k = 5) cross-validation approach.
The dataset is randomly divided into k equal groups. One group is designated for testing,
while the rest is for training. The procedure is carried out over k times. The classification
accuracy specified in Equation (4) is obtained by averaging the outcomes of the k iterations.
With the use of the BCI Competition III (IVA) and IV (I) datasets, several experiments
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are conducted to illustrate the performance of the proposed approach method. Several
performance metrics, Accuracy, Precision, Recall, and F1 score, are computed as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 score = 2 × Precision × Recall
Precision + Recall

(7)

where TP, TN, FP, and FN stand for true positive, true negative, false positive, and false
negative, respectively. The classification performance of Dataset 1 and 2 with various
classifiers is summarized in Table 3 and Table 4, respectively.

Table 3. Performance of the proposed method using SVM, ANN, and LDA classifiers in terms of
classification accuracy (Acc.), precision (Prec.), recall (Rec.), and F1 score (F1) of dataset 1. Boldface
denotes the best result.

Subjects No. of
Channels

Classifier

SVM ANN LDA

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

aa 30 86.43 84.96 87.14 86.04 83.75 84.38 82.16 83.26 81.43 80.73 82.29 81.50

al 62 97.86 97.24 98.56 97.90 98.14 97.56 97.67 97.61 98.21 97.29 99.29 98.28

av 67 78.93 78.64 77.96 78.30 71.21 73.12 65.04 68.84 68.57 68.12 72.57 70.27

aw 63 97.86 96.67 97.88 97.27 96.43 95.33 97.19 96.25 96.07 96.55 97.86 97.20

ay 59 95.72 93.98 95.36 94.67 94.07 94.16 95.56 94.85 96.07 95.60 95.00 95.30

Mean 91.36 90.30 91.38 90.83 91.08 88.91 87.52 88.16 88.07 87.66 89.40 88.51

Table 4. Performance of the proposed method using SVM, ANN, and LDA classifiers in terms of
classification accuracy (Acc.), precision (Prec.), recall (Rec.), and F1 score (F1) of dataset 2. Boldface
denotes the best result.

Subjects No. of Channels

Classifier

SVM ANN LDA

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

a 23 80.00 78.30 78.78 78.54 79.00 73.08 78.89 75.87 78.50 79.41 76.43 77.89

b 31 67.00 67.00 67.00 67.00 61.80 62.44 61.00 61.71 59.50 58.88 62.00 60.40

c 41 80.00 79.45 81.00 80.22 73.90 74.44 74.20 74.32 72.00 71.43 74.00 72.69

d 46 91.00 90.41 91.00 90.7 88.20 87.79 89.10 88.44 89.50 87.38 93.00 90.10

e 39 90.00 90.68 90.00 90.34 91.00 91.88 90.00 90.93 91.00 90.04 92.60 91.29

f 31 91.00 90.15 90.00 90.07 85.95 88.69 83.00 85.75 86.50 84.75 89.00 86.82

g 17 80.50 79.25 82.00 80.6 79.50 79.39 80.40 79.89 79.50 83.27 77.00 80.01

Mean 82.79 82.18 82.83 82.50 79.91 79.67 79.51 79.56 79.50 79.31 80.58 79.89

Table 3 illustrates that the SVM achieves the highest classification accuracy for indi-
vidual subjects except ‘al’ and ‘ay’. The LDA performs better than that of SVM with these
two subjects. The average classification accuracy of the SVM classifier outperforms ANN
and LDA by 2.64% and 3.29%, respectively. Table 3 also demonstrates that for most of the
cases, the F1 score, recall, and precision of the SVM classifier achieve higher performance.
The mean value of the SVM classifier’s F1 score, recall, and precision is higher than the
ANN and LDA classifiers. For subjects ‘aa’, ‘av’, and ‘aw’, SVM achieves the highest
accuracy, F1 score, recall, and precision performance than ANN and LDA. The ANN
achieves the highest recall for the subject ‘ay’, and the LDA obtains the highest accuracy,
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precision, and F1 score for the subject ‘ay’. Table 4 illustrates that SVM achieves the highest
classification accuracy across all the subjects except ‘e’. It is noted that the best accuracy
of subject ‘e’ is achieved by both ANN and LDA. The mean accuracy of SVM is 2.88%
and 3.29% higher than that of ANN and LDA. The SVM classifier demonstrates superior
performance compared with both the ANN and LDA classifiers in terms of mean accuracy,
precision, recall, and F1 score across all the subjects. The implementation of the method is
available at https://github.com/Shiam-Cse-Ru/EEG (accessed on 17 April 2024).

6. Discussion

Figures 6 and 7 show the results of dataset 1 and 2, respectively, for the individual
subjects in terms of classification accuracy for MI-BCI utilizing all channels, as well as
the proposed channel selection method. All the channels are used to implement the
conventional CSP-SVM technique. Performance with all channels is consistently worse than
that of the proposed method. It has been noted that the channel selection strategy performs
better than the average accuracy across all subjects and for each subject individually.
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Figure 6. Comparison of the proposed channel selection method’s performance (accuracy) vs. all
channels of Dataset 1.
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Figure 7. Comparison of the proposed channel selection method’s performance (accuracy) vs. all
channels of Dataset 2.
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The proposed approach selects the least possible channels for each subject with maxi-
mum performance. The results of the experiment show that higher accuracy is achieved for
a subject using fewer effective channels (see Figures 6 and 7). The average classification ac-
curacy of the proposed channel selection method with SVM is 4.86% greater than that of the
use of all channels. In [49,50], the 30 channels are manually selected to classify the MI tasks.
The information represented by EEG is very much subject-dependent. A uniform method
of manual channel selection does not guarantee effectiveness in an intersubject scenario.
The EEG data and subject-dependent channel selection approach are supposed to work
better for MI task classification. Considering the underlying neurological assumptions, an
entropy-based approach is implemented in this study to select an effective channel for BCI
implementation. It is based on subject-specific EEG data.

The number of channels used for the MI classification is one of the crucial variables
affecting accuracy. Individual subject performance is shown in Figure 8 as a function of the
number of effective channels selected by the proposed entropy-based approach. Although
the classification accuracy of the majority of subjects initially improved with the number of
channels, whereas the end performance is lower than the best accuracy reached with an
optimal number of selected channels. It occurs because the use of fewer channels initially
includes fewer features, leading to lower accuracy. The inclusion of a significantly higher
number of channels of redundant information reduces the accuracy. With an effective
number of selected channels, the highest accuracy is attained for each subject. In this
experiment, the number of channels with the highest average subject-level accuracy is
taken into account.

Figure 8. Individual subject performance (classification accuracy) and their average as a function of a
number of selected channels (using an SVM classifier) of Dataset 1.

Figure 9 shows the selected effective channels by the proposed channel selection
approach. It demonstrates how different combinations of channels are used to recognize
the MI tasks. The distribution of the selected channels in the cerebral cortex’s motor
regions is evident from Figure 9. The selected channels are 30, 62, 67, 63, and 59 for the
subjects “aa”, “al”, “av”, “aw”, and “ay”, respectively, as shown in Figure 9. With the
aforementioned carefully selected channels, the proposed method achieves the maximum
classification accuracy.
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Figure 9. Distribution of the selected effective channels (green circles) of individual subjects of
Dataset 1.

The performance of the proposed method is compared with recent channel selection
techniques, as illustrated in Tables 5 and 6. The number of selected channels is indicated
within the parentheses. It is noted that individual methods have selected different numbers
of channels for different subjects. The challenging task is to fix up for the classification of
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motor imagery tasks with optimal performance. In comparison with previous techniques,
the proposed method performs better in terms of accuracy across all the subjects. It is
compared with the recently developed channel selection algorithm, such as dynamic
channel relevance [30], channel selection using a correlation coefficient [25], CSP-R-MF [29],
LRFCSP [31], CCS-RCSP [23], and FCCR [32] to understand its superiority. The dynamic
channel relevance (DCR) score was utilized to find the effective EEG channels in [30] with
a mean classification accuracy of 87.58%. The proposed method achieves the highest mean
classification accuracy (91.36%) compared with other recently developed methods.

Table 5. Performance comparison in terms of accuracy (%) with Dataset 1 using different cutting-edge
channel-selection-based methods. Bold font is used to indicate the best outcome.

Methods

Subjects
Accuracy (Number of Selected Channels) Mean ± STD

aa al av aw ay

stdWC [51] 84.50 (16) 98.10 (19) 72.80 (12) 95.10 (13) 92.50 (20) 88.80 ± 9.10

DCRCC [30] 93.60 (24) 79.2 (33) 94.6 (11) 85.54 (26) 84.94 (31) 87.58 ± 6.46

CSCC [25] 89.29 (10) 98.21 (7) 73.47 (12) 92.86 (9) 89.29 (7) 88.62 ± 9.22

CSP-R-MF [29] 82.14 (12) 96.42 (12) 72.14 (12) 84.38 (12) 94.28 (12) 85.87 ± 9.83

LRFCSP [31] 83.93 (22) 96.42 (7) 74.49 (6) 88.84 (7) 89.29 (11) 86.59 ± 8.10

CCS-RCSP [23] 83.03 (42) 96.42 (33) 70.91 (52) 92.41 (14) 92.46 (67) 87.05 ± 10.28

FCCR [32] 78.57 (10) 98.21 (10) 72.45 (5) 87.05 (15) 93.25 (9) 85.90 ± 10.51

Proposed Method 86.36 (60) 97.51 (60) 76.20 (60) 95.81 (60) 95.38 (60) 90.25 ± 8.98

The correlation coefficient is used in [25] for selecting distinctive channels and achieved
88.62 % mean classification accuracy. Using the efficient channel selection strategy, the
proposed method improves noticeable accuracy. It has been noted that the CCS-RCSP tech-
nique obtains a mean accuracy of 87.05% using correlation coefficients to pick MI-related
channels. The technique described in [29], CSP-rank for multiple frequency bands (CSP-
R-MF), selects the MI-relevant channels for each frequency band. They extracted features
from those channels using the least absolute shrinkage and selection operator (LASSO)
technique and obtained a mean accuracy of 85.87%. The proposed method outperforms
the methods described in [25,30,51], CSP-R-MF [29], LRFCSP [31], CCS-RCSP [23], and
FCCR [32], by 2.56%, 3.78%, 2.74%, 5.49%, 4.77%, 4.31%, and 5.46%, respectively, in terms
of classification accuracy using Dataset 1. Table 6 shows the comparative performance
of proposed method with recently developed methods using Dataset 2. It shows that the
methods FCCR and CSP-R-MF consider only ‘a’, ‘b’, ‘f’, and ‘g’ subjects, while others
consider all the subjects. The mean accuracy of the proposed method outperforms all the
recently developed methods, as shown in Table 6. Considering the overall performance of
MI task classification, the proposed information-theoretic EEG channel selection method
is effective for BCI implementation. The traditional machine learning approaches SVM,
LDA, and ANN are employed in this study rather than the deep learning methods. The
proposed approach exhibits several advantages. The mentioned traditional methods are
suitable for limited training data and less prone to overfitting. Less training data is more
preferable for BCI implementation. The deep learning approach sometimes results in better
performance, but it requires higher computational power and a high volume of training
data. Such requirements make deep learning less preferable in the BCI paradigm. Addition-
ally, this study focuses on effective EEG channel selection to enhance the MI classification
performance. Thus, the proposed method provides a pragmatic and effective approach to
implementing an effective BCI system. The experimental findings exhibit the effectiveness
of the proposed approach to EEG classification. The results can lead to a broader acceptance
and incorporation of BCIs into daily life applications like communication, rehabilitation,
and other areas. The main limitation of the proposed channel-selection-based method is
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that it is subject-dependent and applicable to classify only two MI tasks. It is not tested
with the data collected in a real real-world application environment.

Table 6. Performance comparison in terms of accuracy (%) with Dataset 2 using different cutting-edge
channel-selection-based methods. Bold font is used to indicate the best outcome.

Methods

Subjects
Accuracy (Number of Selected Channels) Mean ± STD

a b c d e f g

Improved SFFS [52] 69.00 (6) 63.00 (15) 87.00 (26) 94.00 (29) 96.00 (19) 65.00 (8) 72.00 (22) 78.00 ± 14.00

FCCR [32] 77.00 (14) 71.00 (9) 76.50 (9) 77.00 (18) 75.36 ± 2.53

GSFS [53] 75.00 (6) 72.00 (13) 89.00 (11) 78.00 (9) 84.00 (14) 78.00 (15) 83.00 (12) 79.80 ± 5.38

CSP-R-MF [41] 81.50 (24) 63.00 (24) 79.00 (24) 87.50 (24) 77.75 ± 9.06

CSRI [54] 72.80 (8) 66.18 (12) 83.72 (26) 96.10 (13) 83.50 (15) 76.33 (14) 87.33 (17) 80.85 ± 9.18

Proposed Method 80.00 (23) 67.00 (31) 80.00 (41) 91.00 (46) 90.00 (39) 91.00 (31) 80.00 (17) 82.79 ± 8.73

7. Conclusions

In this study, an effective EEG channel selection approach is introduced to enhance
motor imagery classification performance. The aim of the proposed method is to reduce
redundant information by selecting effective channels. The use of a higher number of
irrelevant EEG channels can increase the redundant information, which may cause the
degraded performance of MI task classification. Effective channel selection is an efficient
way to overcome the mentioned problems, leading to improved EEG classification accu-
racy. After the selection of potential channels, the EEG signals are decomposed into four
sub0bands, and CSP-based features are extracted from individual sub-bands, yielding
multiband features. The feature vector is derived by combining the features obtained from
the sub-band signals. An SVM is employed to classify the MI tasks using the obtained
feature vector. The proposed system improves the binary MI classification performance
with two publicly available datasets compared with the state-of-the-art methods. The
future extension of this work is to develop a method for subject-independent EEG channel
selection and implementation for the multiclass MI classification paradigm.
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Abbreviations
The following abbreviations are used in this manuscript:

fMRI Functional Magnetic Response Imaging
MEG Magnetoencephalogram
EOG Electrooculography
ERD Event-Related Desynchronization
ERS Event-related synchronization
CSP Common Spatial Pattern
SVM Support Vector Machine
ANN Artificial Neural Network
LDA Linear Discriminant Analysis
BSS Blind Source Separation
RCSP Regularized Common Spatial Pattern
RBF Radial Basis Function
FBCSP Filter-Bank Common Spatial Pattern
TSGSP Time Constrained Sparse Group Spatial Pattern
SCSP Sparse Common Spatial Pattern
DCR Dynamic Channel Relevance
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