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Abstract: Despite the significant progress in the fields of biology, physiology, molecular medicine,
and pharmacology; the designation of the properties of nitrogen monoxide in the regulation of life-
supporting functions of the organism; and numerous works devoted to this molecule, there are still
many open questions in this field. It is widely accepted that nitric oxide (•NO) is a unique molecule
that, despite its extremely simple structure, has a wide range of functions in the body, including
the cardiovascular system, the central nervous system (CNS), reproduction, the endocrine system,
respiration, digestion, etc. Here, we systematize the properties of •NO, contributing in conditions of
physiological norms, as well as in various pathological processes, to the mechanisms of cytoprotection
and cytodestruction. Current experimental and clinical studies are contradictory in describing the
role of •NO in the pathogenesis of many diseases of the cardiovascular system and CNS. We describe
the mechanisms of cytoprotective action of •NO associated with the regulation of the expression
of antiapoptotic and chaperone proteins and the regulation of mitochondrial function. The most
prominent mechanisms of cytodestruction—the initiation of nitrosative and oxidative stresses, the
production of reactive oxygen and nitrogen species, and participation in apoptosis and mitosis.
The role of •NO in the formation of endothelial and mitochondrial dysfunction is also considered.
Moreover, we focus on the various ways of pharmacological modulation in the nitroxidergic system
that allow for a decrease in the cytodestructive mechanisms of •NO and increase cytoprotective ones.

Keywords: nitric oxide; inducible nitric oxide synthases; iNOS; endothelial nitric oxide synthases;
eNOS; heat shock proteins; HSP

1. Introduction

Nitric oxide. Nitric oxide (•NO) is a unique molecule that, despite its extremely
simple structure, plays a pivotal role in various physiological processes within the body.
Its multifunctionality has spurred intensive research over the past decade [1–3]. •NO
serves as a crucial element in the cardiovascular system, facilitating vasodilation and
regulating blood pressure. Additionally, it participates in signaling within both the central
and peripheral nervous systems [4–6].

It has been demonstrated that •NO is essential for exerting cytotoxic effects on tumor
cells and cells affected by viruses. In this context, the mechanism of action of nitric oxide
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does not involve the activation of guanylate cyclase but is primarily attributed to the
direct effects of •NO itself. It is noteworthy that the free-radical nature of the nitric oxide
molecule, characterized by the presence of an unpaired electron at the nitrogen atom,
renders it highly reactive. In vivo, •NO has an average lifetime of 5–30 s, during which
it rapidly interacts with its targets, primarily thiols and transition metals, or undergoes
oxidation to form inactive nitrate and nitrite, for instance, via cytochrome C oxidase [7,8],
or •NO may generate reactive oxygen species. Hence, the action of •NO can occur through
direct or indirect mechanisms. Direct effects result from the reactions of •NO itself with its
targets, such as the stimulation of guanylate cyclase or the formation of nitrosyl complexes
with metals, often leading to the inactivation of enzymes containing these metal ions.
The indirect effects of •NO are defined as chemical reactions mediated by active forms of
nitric oxide, which are generated through interactions with superoxide (O2−) or oxygen
(O2). The action of these active forms of •NO leads to the development of nitrosylation
stress (resulting in the formation of nitrosoamines, S-nitrosothiols, and the deamination
of DNA bases) or oxidative stress [9]. Owing to its high lipophilicity, •NO efficiently
penetrates membranes, enabling it to diffuse from its source to distances several times the
size of the cell, thus affecting its targets within this extended range [10,11].

2. Basic Mechanisms of Nitric Oxide (•NO) Regulation
2.1. •NO Synthesis in the Body

This investigation into the origin of endogenous •NO has revealed that L-arginine
is essential for its production by active macrophages. Subsequently, it was discovered
that a family of enzymes called nitric oxide synthases (NOS) is responsible for •NO pro-
duction. These enzymes catalyze the conversion of L-arginine into •NO and L-citrulline,
simultaneously utilizing NADPH and reducing oxygen to water [12–14]. NOS enzymes
are ubiquitously present in the cells of almost all tissue types and are categorized into con-
stitutive (cNOS) and inducible (iNOS) forms based on their expression patterns. The cNOS
group typically includes neuronal (ncNOS or NOS1) and endothelial (ecNOS or NOS3)
isoforms, with primary localization in neurons and endothelial cells, respectively, although
they are also found in other cell types. iNOS is predominantly associated with macrophages
and plays a key role in the immune system [15–20]. Its expression increases in response to
activation by cytokines (such as IFN-g, IL-1b, and TNF-a) and other agents like lipopolysac-
charides (LPS). This isoform is also expressed in the liver upon stimulation, which is
associated with the barrier function of this organ [21–23]. A comprehensive study of NOS
has revealed that they are among the most intricately structured and regulated enzymes,
boasting an unusually high number of cofactors. NOS exist in the cell as dimers and are ac-
tive only in this state. Within each subunit of the dimer, distinct domains such as reductase,
calmodulin-binding, and oxygenase can be identified. The reductase domain contains the
flavins FAD and FMN: FAD serves as the primary electron acceptor from NADPH, while
FMN transfers electrons from FAD to the heme of the oxygenase domain. The oxygenase
domain contains heme, arginine (L-Arg), and tetrahydrobiopterin (BH4) binding sites.
Calmodulin-Ca2+ is believed to confer the enzyme with the necessary conformation for
internal electron transfer [24–27]. It is the variations in the binding affinity of calmodulin to
the NOS dimer that underlie the catalytic discrepancies between the isoforms: the activity
of nNOS and eNOS is highly reliant on Ca2+ concentration, whereas calmodulin binds to
iNOS so tightly that Ca2+ supplementation is unnecessary. Although the specific activities
of all NOS isoforms are comparable, in vivo, it seems that cNOS produces small amounts
of •NO over brief intervals, while iNOS generates much larger quantities of •NO over ex-
tended periods (up to several days). Thus, the expression and activity of a specific isoform
may dictate •NO’s role as either a physiological modulator or a cytotoxic agent [28–31].

In vitro studies of •NO-mediated macrophage cytotoxicity have unequivocally demon-
strated that the addition of NOS inhibitors, such as the substrate analogue NG-monomethyl-
L-arginine (L-NMMA), to the medium suppresses the cytotoxic effect of macrophages on
tumour cells. This supports the prevailing role of •NO in mediating the macrophage’s
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effect on target cells. However, it is important to acknowledge the well-known phe-
nomenon of the respiratory burst, which also plays a crucial role in pathogen destruction
by phagocytes. Additionally, recent data have emerged that complicate the understanding
of macrophage cytotoxicity induced by nitric oxide. Specifically, it has been discovered
that wound macrophages capable of •NO production do not exhibit cytotoxicity towards
•NO-sensitive cells of the P815 line. Thus, the question arises regarding the necessity and
sufficiency of •NO for the cytotoxicity of macrophages [32–36]. It should also be noted that
•NO production can have significant negative effects on the macrophages that produce
it. Studies have demonstrated that phagocytosis and the production of reactive oxygen
species are markedly inhibited in rat or peritoneal macrophages cultured under conditions
that allow •NO production. Macrophages that express iNOS or are treated with nitric oxide
exhibit nuclear and cytoplasmic condensation. Therefore, the release of •NO by activated
macrophages leads to their functional suppression, eventually resulting in apoptosis. These
phenomena are clearly attributed to •NO, as they can be prevented by the addition of NOS
inhibitors [37,38].

2.2. Mechanisms of •NO Cytotoxicity

Nitric oxide targets are currently under active investigation to determine whether •NO
itself is sufficiently cytotoxic or if its derivatives are more potent [39]. •NO in target cells is
known to generate active intermediates such as nitrosonium (NO+), nitroxyl (NO−), and
peroxynitrite (ONOO−). Some researchers posit that most of the cytotoxic effects attributed
to •NO actually stem from ONOO−, which forms through reaction with superoxide (O2−).
Indeed, peroxynitrite is significantly more reactive; it extensively nitrosylates proteins and
can serve as a source of highly toxic hydroxyl radicals (-OH) through reactions [39–42].

•NO · + O2− a ONOO− + H+ a ONOOH a ONO + · OH

OH causes lipid peroxidation and other phenomena associated with oxidative stress.
Another challenge encountered in this study of the mechanisms of nitrogen cytotoxicity
is related to the •NO donors utilized for its generation, as described above. Specifically,
S-nitrosothiols (mainly GSNO and SNAP), frequently employed in many studies, have the
capability to engage in transnitrosylation reactions. These reactions involve the transfer
of the NO+ group to thiols (such as glutathione and the SH-groups of proteins), thereby
disrupting their cellular functions [43–46]. However, it remains unclear whether such
reactions should be attributed solely to the effects of •NO itself. Some possible mechanisms
of the cytotoxic action of nitric oxide will be discussed below, and some reactions can be
induced by its derivatives. It is demonstrated that •NO (from macrophages or exogenously
administered) primarily inhibits oxidative phosphorylation in the mitochondria of target
cells [47,48]. This inhibition occurs because •NO reversibly binds to cytochrome-C-oxidase
of the mitochondrial electron transport chain. However, the inhibition of electron transport
in the mitochondrion leads to the generation of superoxide and subsequently the formation
of peroxynitrite. The conversion of nitric oxide to peroxynitrite involves a reaction between
two radicals: O2− and •NO, resulting in the formation of ONOO−, a potent oxidant in
the mitochondrial matrix. Normally, ONOO is reduced by mitochondrial reducing agents
such as NADH2, ubiquinol UQH2, and glutathione GSH. However, when produced in
excess due to loss of control (e.g., during ischemia/reperfusion or inflammation), it leads
to tyrosine nitration and mitochondrial dysfunction. Its cumulative effect contributes to
tissue aging. Another radical widely produced by both enzymatic and non-enzymatic
processes is •NO, which serves as an intra- and intercellular signaling molecule [49,50].
•NO and superoxide react in a diffusion-limited manner. This reaction halts the chain
reaction initiated by superoxide, although peroxynitrite is generally considered a harmful
molecule [51]. Peroxynitrite is a short-lived and highly reactive oxidant, thus represent-
ing another mechanism that imparts indirect toxicity to O2−, particularly targeting DNA,
proteins, and lipids. Additionally, peroxynitrite has the capability to nitrate tyrosine or tryp-
tophan residues or oxidize methionine residues [52,53]. This suppression of mitochondrial
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respiration leads to a decrease in the mitochondrial membrane potential, which can initiate
the apoptotic process [54]. Conversely, it is known that in the absence of glucose or when
glycolysis is blocked, the •NO-induced suppression of respiration leads to necrosis rather
than apoptosis [55]. There is also evidence of the direct activation of giant pore opening by
•NO, leading to the release of cytochrome C and the initiation of the caspase cascade. How-
ever, this is also controversial, as other investigators have shown that low doses of •NO
(close to physiological doses) slow giant pore opening and apoptosis, whereas peroxynitrite
(ONOO−) and nitrosothiols promote them. •NO and its derivatives can cause the perox-
idation of phospholipids and the oxidation of thiol groups of mitochondrial membrane
proteins, which also lead to the release of apoptogenic factors into the cytosol [56–58].

The nitrosylation of proteins at tyrosine residues by peroxynitrite (ONOO−) can have
profound functional consequences, as it inhibits Tyr phosphorylation, thus disrupting vital
signal transduction pathways within the cell. Recent studies have revealed that peroxyni-
trite can also nitrosylate cytochrome C within mitochondria, altering its function signifi-
cantly. This modification renders cytochrome C incapable of supporting electron transport
in the respiratory chain and is resistant to reduction by ascorbate. Concurrently, nitrated
cytochrome C is released into the cytoplasm, suggesting potential involvement in signaling
processes [59,60]. Emerging hypotheses propose that selective protein nitrosylation may
function as a regulatory mechanism akin to phosphorylation [61,62]. Peroxynitrite’s activity
extends beyond protein modification to include guanine nitrosylation and DNA strand
breaks, which can instigate mutations or trigger apoptosis pathways [63]. Additionally,
•NO exerts effects on DNA repair enzymes by inhibiting their activity. Notably, different
•NO donors impact various enzymes responsible for DNA repair, such as alkyltransferase,
formamidopyrimidine-DNA-glycosylase, and ligase, suggesting a multifaceted role for
•NO in genomic integrity maintenance and cellular signaling processes [9,64].

It is well-established that •NO can activate Poly(ADP-ribose) polymerase (PARP)
and induce ADP-ribosylation, potentially as a response to DNA damage. However, this
activation tends to lead to necrosis due to the depletion of the NAD and ATP pools,
rather than triggering apoptosis. Regarding •NO and its derivatives’ impact on DNA,
investigations into their effect on p53 expression are particularly intriguing. p53 is a crucial
protein involved in tumor suppression, genome maintenance, and the regulation of cell
cycle progression or apoptosis. It is known that p53 can upregulate the expression of
pro-apoptotic proteins such as Bax, Fas, and p53AIP (apoptosis-inducing protein), and
other apoptogenic proteins [65–68]. Additionally, during apoptosis, p53 translocates into
the mitochondrion, which may be one of the reasons for the production of ROS [69,70].

Under normal conditions, the cellular concentration of p53 remains low as it undergoes
rapid degradation. However, DNA damage triggers the accumulation of p53. Experiments
conducted on macrophages and RINm5F insulinoma cells have demonstrated p53 accumu-
lation in •NO-induced cell death scenarios [71,72]. Further research revealed that L-NMMA,
a nitric oxide synthase (NOS) inhibitor, suppresses p53 accumulation induced by cytokines
or lipopolysaccharides (LPS), indicating an active involvement of •NO in this process.
Some evidence suggests that •NO’s effect on p53 accumulation may be linked to its ability
to inhibit proteasome function, thus interfering with p53 degradation pathways [73,74].
Nevertheless, further experiments have uncovered the operation of p53-independent path-
ways in •NO-induced apoptosis [75,76]. Additional studies have elucidated a negative
feedback mechanism between the levels of •NO and p53 in various human cell types: the
accumulation of •NO leading to DNA damage triggers the expression of p53, which in turn
suppresses the human inducible nitric oxide synthase (iNOS) gene [77]. Additionally, •NO
represses iNOS expression by dampening NFκB activity in hepatocytes. Through these
intricate pathways, the precise regulation of •NO synthesis is achieved, thus mitigating its
deleterious effects on the tissue (Figure 1) [78–80].
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2.3. Involvement of •NO in the Formation of Mitochondrial Dysfunction and Mitoptosis

Since the involvement of mitochondria and •NO in apoptosis has been extensively
elucidated in this study, it is pertinent to describe their combined role in its regulation. In
experiments involving the transfection of the RAW264.7 macrophage line with human Bcl-2,
the transfected cells exhibited protection against death induced by inducible nitric oxide
synthase (iNOS) activation [81–84]. This suggests that Bcl-2 operates by nullifying the •NO-
induced upregulation of Bax protein expression. Additional experiments demonstrated
that P815 tumor line cells transfected with Bcl-2 showed resistance to the effects of the
•NO donor SNAP (S-nitroso-N-acetylpenicillin-amine) and to •NO-associated cytotoxicity
from activated murine macrophages [85,86]. Furthermore, L929 cells overexpressing Bcl-2
were shielded from apoptosis triggered by iNOS activation. A multitude of other instances
showcasing the interaction between •NO and Bcl-2 are provided in articles [87–91].

The interaction of •NO with members of the Bcl-2 superfamily is further evidenced
by the significant reduction in intracellular Bcl-2 protein levels upon exposure to •NO
within the cell [92]. This reduction may occur through caspase-induced cleavage or p53-
dependent suppression of its expression, although conflicting evidence exists regarding this
mechanism [93,94]. Additionally, the proapoptotic effect of nitric oxide manifests through
its inducible increase in Bax expression [95]. Apart from the aforementioned mitochondrial
functions, recent studies have shed light on the involvement of mitochondria not only
in the reception of apoptotic signals from •NO but also in the production of •NO itself.
Notably, a constitutive form of nitric oxide synthase (NOS) has been identified within
mitochondria [96,97].
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The initial detection of •NO production in rat liver mitochondria prompted further
investigation into the purification of mitochondrial NOS and the elucidation of its enzymatic
characteristics [98]. This isoform of NOS appears to be localized within the mitochondrial
membrane, particularly in the inner membrane [99]. It has been revealed that mitochondrial
nitric oxide synthase (mtNOS) bears a striking resemblance to macrophage inducible NOS
(iNOS) but is expressed constitutively. However, the classification of mtNOS as a distinct
isoform remains uncertain, as it remains unclear whether it represents a separate isoform or
if it is iNOS undergoing post-translational modifications that dictate its distinct subcellular
localization. Notably, mtNOS exhibits independence from calmodulin and calcium addition,
indicating a strong association with calmodulin. Purified mtNOS, when subjected to
suboptimal concentrations of L-Arginine, demonstrates a capability to generate O2−, albeit
at a relatively modest rate. This observation aligns with the documented homology of
the C-terminal domain of NOS to NADPH: cytochrome P450-oxidoreductase, which also
possesses NADPH-oxidase activity and generates O2−, albeit at a rate approximately
tenfold faster than mtNOS [100–107].

The identification of such NOS within the mitochondrion raises numerous inquiries
and suggests promising avenues for further investigation. Foremost among these is the in-
quiry into how the •NO produced within mitochondria influences apoptosis. Considering
the established role of non-mitochondrial •NO, which acts directly on mitochondria, induc-
ing a range of phenomena culminating in apoptosis, it is reasonable to speculate on the
involvement of mtNOS in the regulation of apoptosis, although conclusive evidence is yet
to be established [108,109]. Moreover, given its capacity to generate not only •NO but also
O2−, it may be implicated in the production of reactive oxygen species (ROS), potentially
contributing to various biological damages. In the context of apoptosis, intriguing insights
have emerged from investigations into the release of cytochrome C from mitochondria
upon mtNOS stimulation [110,111]. While elevated cytosolic Ca2+ levels have long been
recognized as apoptosis inducers, recent findings have underscored the significant role of
mtNOS in this process. It has been demonstrated that this form of apoptosis necessitates
mitochondrial Ca2+ uptake, triggering mtNOS activation and subsequent cytochrome C
release into the cytosol. Concurrently, there is an augmentation in lipid peroxidation (LPO).
Notably, the release of cytochrome C and LPO are effectively inhibited by NOS inhibitors
(such as L-NMMA), peroxynitrite scavengers (e.g., urate), and Bcl-2 expression. These
findings suggest that upon Ca2+-induced activation of mtNOS, peroxynitrite is generated
within the mitochondria, leading to LPO and cytochrome C release, ultimately leading
to a pattern of typical apoptosis. Further elucidation of these mechanisms promises to
enhance our comprehension of the roles played by mitochondria and •NO in various
pathways of cell death [112–116].

For instance, recent findings have demonstrated that inhibition of mitochondrial nitric
oxide synthase (mtNOS) results in the accumulation of intramitochondrial Ca2+, indicating
that •NO produced by mtNOS impedes Ca2+ accumulation. Given that the elevation in
matrix Ca2+ concentration is responsible for altering mitochondrial membrane permeability,
it is deduced (contrary to the earlier assertion) that mitochondrial •NO decelerates the
opening of the mitochondrial permeability transition pore and the subsequent release of
cytochrome C [117–123]. While there are indications that the synthesis of •NO may be
regulated through substrates of mtNOS (such as L-Arginine, NADPH) and its cofactors
(including FMN, FAD, BH4), akin to other NOS isoforms, this aspect remains largely
unexplored. Furthermore, this endogenous mitochondrial •NO may play a crucial role in
regulating mitochondrial activity by inhibiting cytochrome oxidase (complex IV), as well as
complexes I and II of the electron transport chain. Its reaction with oxygen could modulate
mitochondrial respiration by altering the availability of oxygen for electron acceptance,
thereby impacting cellular energy supply. Nevertheless, this facet of mitochondrial •NO
biology necessitates further investigation [124–130].

Summarizing all these data, we can say that the mitochondria is the central link where
many signaling pathways of apoptosis converge and are regulated. Within these pathways,
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mitochondria may assume a central role by initiating the pro-apoptotic cascade, particu-
larly under stressors such as irradiation or •NO action. Conversely, mitochondria can also
amplify certain apoptogenic signaling cascades, such as those mediated by the Fas receptor
or TNF receptor, through kinase-mediated mechanisms. Besides superoxide, both •NO
and its more aggressive derivative, peroxynitrite, are instrumental in the genesis of mito-
chondrial abnormalities and apoptosis [131–136]. Notably, neuronal mitochondria emerge
as a significant source of •NO, with evidence demonstrating the presence of a constitutive
form of NOS localized in the inner mitochondrial membrane and •NO production within
the mitochondria of hippocampal neurons. Moreover, mitochondrial NOS is capable of gen-
erating superoxide at suboptimal concentrations of L-arginine. Importantly, mitochondrial
NOS exhibits significant activation in response to the onset of glutamate excitotoxicity and
mitochondrial calcium uptake. Additionally, cytokines such as IL-1β and TNF-α contribute
to the activation of mitochondrial NOS [137–142].

This leads to the generation of peroxynitrite, which facilitates the opening of the
mitochondrial permeability transition pore (mPTP). Additionally, peroxynitrite nitrosylates
cytochrome C within mitochondria, inducing alterations in its functionality. Specifically,
this modification renders cytochrome C incapable of supporting electron transfer within
the respiratory chain and is resistant to reduction by ascorbate. Concurrently, there is
a concomitant release of cytochrome C, including nitrated forms, into the cytoplasm,
suggesting the involvement of this nitrosylation process in various signaling pathways.
Furthermore, peroxynitrite nitrosylates guanine, resulting in DNA strand breaks, mutations,
or the activation of apoptosis-related processes [138,143–145].

Excessive •NO inhibits enzymes crucial for DNA repair, targeting alkyltransferase,
formamidopyrimidine-DNA glycosylase, and ligase. Moreover, •NO activates PARP and
ADP-ribosylation, particularly under conditions of ATP depletion and the accumulation
of reduced pyridine nucleotides. Additionally, •NO exerts a positive influence on the
synthesis of the tumor suppressor protein p53. Enhanced p53 expression promotes the
upregulation of pro-apoptotic proteins such as Bax, Fas, and p53AIP (apoptosis-inducing
protein). Furthermore, •NO translocates into the mitochondria during apoptosis, poten-
tially contributing to the production of ROS and the reduction of transmembrane potential
across the inner mitochondrial membrane [72,146–150]. Currently, there exists a widely
recognized concept known as “mitochondrial dysfunction.” This represents a characteristic
pathological process lacking etiological and nosological specificity.

The progression of mitochondrial dysfunction precipitates the disturbance of mediator
reuptake (e.g., catecholamines, dopamine, serotonin), ion transport, impulse generation
and conduction, and de novo protein synthesis, as well as translation and transcription
processes. Concurrently, “parasitic” energy-producing reactions are activated, resulting
in a substantial depletion of neuronal cell energy reserves. Furthermore, the action of the
hydroxyl radical triggers the opening of mitochondrial pores, leading to the expression and
release of proapoptotic proteins into the cytosol. This pore opening occurs via the oxidation
of thiol groups within the cysteine-dependent region of the mitochondrial inner membrane
protein (specifically, the ATP/ADP antiporter), transforming it into a permeable nonspe-
cific channel pore [151,152]. The opening of these pores transforms mitochondria from
being “power plants” into “furnaces” for oxidation substrates, devoid of ATP production.
Precise biochemical investigations have revealed that disturbances in tissue oxygenation,
the hyperproduction of excitotoxic amino acids, decreased “normal” calcium (Ca2+) accu-
mulation by mitochondria, and damage to mitochondrial membrane ROS all contribute to
the increased opening of these pores and the subsequent release of apoptogenic proteins
from damaged mitochondria. In this context, the pivotal role of the neurotrophic factor
tumor necrosis factor-alpha (TNF-α) cannot be overstated, as it is intricately associated
with the opening of mitochondrial pores, subsequent membrane disruption, and the onset
of mitoptosis [138,153–159].
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3. Effects of •NO
3.1. Apoptosis and •NO

Cu has been found to be repressed in neurons with evidence of apoptosis, while
Zn-SOD is known to bind and facilitate the production of significant amounts of endoge-
nous peroxynitrite (ONOO−) [160–162]. Low concentrations of •NO donors have been
shown to inhibit neuroapoptosis induced by growth factor deprivation or TNF-α addition,
potentially through the activation of the heat shock protein HSP70 or the inhibition of
caspase-3 [163,164]. Dinitrosyl iron complexes (DNICs) at concentrations ranging from
5 to 10 µM are believed to suppress IL-1β-induced neuroapoptosis by promoting •NO
synthesis. Conversely, elevating DNIC concentration (0.5 mM) has been associated with
the induction of neuroapoptosis through the generation of ONOO− [165–169].

Conditions that lead to an increased bioavailability of •NO and a reduced forma-
tion of ONOO-, such as enhanced superoxide dismutase (SOD) activity and the presence
of reduced thiol antioxidants, render neurons resistant to Fas-induced apoptosis. Con-
versely, the decreased bioavailability of •NO and increased levels of cytotoxic forms of
•NO heighten cellular sensitivity to signals mediated through Fas receptors. Additionally,
neuroapoptosis can be induced by the synergistic action of H2O2 and Fe2+, which convert •

to peroxynitrite, while the depression of bcl-2 and induction of c-fos were simultaneously
observed. In endothelial cells, H2O2 (125–1000 µM) stimulates the activity of •NO synthase,
contributing to oxidative cellular damage [170–172].

Enzymatic antioxidants such as catalase and glutathione peroxidase, along with
α-tocopherol, exert inhibitory effects on apoptosis. However, ascorbic and gallic acids
have been shown to enhance H2O2-induced neuroapoptosis. Notably, several antioxidants,
including α-tocopherol, exhibit potent antiproliferative properties. In the presence of metal
ions with varying valence states, ascorbic acid can display pro-oxidant characteristics
and augment H2O2-induced neuroapoptosis [173–175]. Furthermore, it is noteworthy
that •NO production can have significant negative effects on the macrophages producing
it. Studies have demonstrated that phagocytosis and the production of reactive oxygen
species are markedly inhibited in rat or peritoneal macrophages cultured under conditions
conducive to •NO production. Macrophages expressing inducible iNOS or treated with
•NO have condensed nucleus and cytoplasm. Consequently, the release of •NO by acti-
vated macrophages results in their functional suppression and eventual apoptosis. These
observations are directly linked to •NO, as they are effectively prevented by the addition
of NOS inhibitors. However, an additional challenge in investigating the mechanisms of
•NO cytotoxicity is related to the •NO donors used for its generation, as described earlier.
The utilization of S-nitrosothiols, particularly GSNO (S-nitrosoglutathione) and SNAP
(S-nitroso-N-acetylpenicillamine), in numerous studies raises concerns regarding their
potential involvement in transnitrosylation reactions. These reactions entail the transfer
of NO+ groups to thiols, including glutathione and sulfhydryl groups of proteins, thereby
disrupting their cellular functions. The attribution of such reactions to the effects of •NO
itself remains ambiguous [176–182] Importantly, studies have indicated that •NO, whether
produced endogenously by macrophages or administered exogenously, primarily inhibits
oxidative phosphorylation in the mitochondria of neurocytes. This occurs because •NO
reversibly binds to cytochrome oxidase in the electron transport chain of mitochondria.
Furthermore, there is evidence suggesting that •NO can directly activate the opening of
giant pores, resulting in the release of cytochrome C and the initiation of the caspase
cascade, as previously described. Additionally, •NO and its derivatives have the capacity
to induce the peroxidation of phospholipids and the oxidation of thiol groups present on
mitochondrial membrane proteins. These processes ultimately contribute to the release of
apoptogenic factors into the cytosol [183–187].

3.2. Anti-Apoptotic Effects of •NO

In addition to the extensively described cytotoxic effects of •NO, numerous studies in
the literature have highlighted •NO cytoprotective actions. However, upon comparing the
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evidence for the antiapoptotic effects of •NO with the cytotoxic actions outlined earlier, it
becomes evident that there are contradictions on many fronts [188,189]. This discrepancy
underscores the highly ambiguous nature of •NO’s actions, which are contingent upon
various conditions.

The molecular mechanisms underlying the antiapoptotic effects of the •NO-mediated
expression of HSP may involve two potential pathways [190]. The first possibility entails
the direct suppression of apoptotic signal transduction pathways, involving the inhibition
of caspase family protease activation. The second involves the chaperone-mediated import
of precursor proteins into mitochondria by HSP. This action controls mitochondrial function
and membrane permeability, thereby preventing the release of cytochrome C, which is
required for further activation of caspases. The relationship between Hsp70 and the induc-
tion of apoptosis in obstructive nephropathy was first discussed [191,192]. Other results
have shown that Hsp70 can modulate the apoptosis cascade during renal obstruction [193].
Recently, we reported that nitric oxide prevents obstruction-induced cell death through the
mitochondrial apoptotic pathway via the induction of heat shock protein 70 [194,195]. Our
results demonstrated that the apoptotic effect induced by decreased levels of nitric oxide led
to a reduced expression of Hsp70. This was associated with a direct induction of apoptotic
signal transduction involving caspase 3 activation by decreasing Bcl-2 stabilization. For
some cell types, it has been shown that the protective effect of •NO is mediated through
the synthesis of cGMP [196,197]. Moreover, such an effect is produced by rather low doses
of •NO, similar to those produced in vivo by •NO synthases. It is assumed that cGMP
generation can activate cGMP-dependent protein kinases, which in turn affect proteins of
apoptotic cascades (e.g., caspases or Bcl-2) [198,199].

The protective effect of low doses of •NO: The pretreatment of macrophage cells with
low, nontoxic doses of GSNO (25–200 µM) induced resistance to higher doses of GSNO
(1 mM) upon repeated exposure [200,201]. Similarly, the pretreatment of macrophages
with LPS and IFN-γ in the presence of L-NMMA induced a comparable effect. Thus, the
inducible defense mechanisms that suppress •NO-induced apoptosis are activated by the
action of •NO-releasing substances as well as through pre-activation by lipopolysaccharides
or cytokines. In other studies, low doses of •NO were found to delay the opening of the
giant pore and subsequent apoptotic events [202–204].

•NO and defense proteins: Several studies have demonstrated the enhanced expres-
sion of heat shock proteins (HSP) and Bcl-2 family proteins in response to •NO. Heat shock
proteins serve to protect the cell from various stressors, primarily temperature increases, but
also oxidative stress and cytokine-induced cytotoxicity. The protective effect of •NO was
observed when hepatocytes were treated with tumor necrosis factor and when cells were
deprived of serum [205–207]. In both cases, the anti-apoptotic action of •NO correlated
with an increase in Hsp70 synthesis. Hsp70 is characterized by its function as a molecular
chaperone, assisting in protein folding and the removal of damaged proteins.

Hsp70 is known to play a crucial role in protecting the cell from ROS and mitochon-
drial damage by suppressing the interaction of proteins that transmit death signals to
the mitochondria. Bcl-2, a proto-oncogene with anti-apoptotic properties, has already
been described above. Increasing its expression upon •NO treatment prevents apoptosis,
most likely through the inhibition of giant pore opening [208–210]. A novel alternative
anti-apoptotic mechanism of •NO involves the induction of Hsp32 (hemoxygenase) and
Hsp70 through the •NO-mediated modification of intracellular antioxidant levels [190,211].
The mechanism by which •NO stimulates Hsp70 expression may involve the interaction of
•NO with thiol-containing molecules. There is ample evidence indicating that •NO readily
oxidizes low molecular weight thiols to form S-nitrosothiols and disulfides [212,213].

Among cellular low molecular weight thiols, glutathione is the most abundant and
is also one of the intracellular targets of •NO. •NO can oxidize intracellular-reduced
glutathione, thereby altering antioxidant levels within the cell and leading to oxidative
or nitrosative stress. This action stimulates the induction of the heat shock proteins
Hsp32 (hemoxygenase) and Hsp70, which protect cells from apoptotic cell death induced
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by tumor necrosis factor (TNF) plus actinomycin D and oxidative or nitrosative stress.
The pretreatment of hepatocytes with •NO has been shown to alter the redox state accom-
panied by glutathione (GSH) oxidation and the formation of S-nitrosoglutathione [214–216].
GSH-oxidizing agents (diamide) and GSH-alkylating agents (N-ethylmaleimide) induced
Hsp70 mRNA expression, whereas the GSH synthesis inhibitor (buthionine sulfoximine)
did not; this suggests that •NO induces Hsp70 expression via GSH oxidation [217,218].
The aforementioned induction may occur via the activation of heat shock. The accumula-
tion of misfolded proteins triggers the mobilization of HSP, leading to the formation of
a free pool of Hsp70 and the subsequent removal of the negative regulatory effect on HSF
activation during heat shock or other stresses. The released HSF is phosphorylated and
assembled into trimers, acquires DNA-binding activity, and leads to an increase in Hsp70
mRNA transcripts. During •NO stimulation, multiple and complex pathophysiologic
changes occur in the smooth muscle cells of blood vessels, including protein damage or
modifications due to the cytotoxic action of •NO [219,220].

4. •NO in Health and Disease: Interactions, Clinical Relevance, and
Therapeutic Implications
4.1. •NO and Superoxide Anion

Both •NO and O2− are significant mediators of inflammation. Activated macrophages
are known to release both •NO and O2−. It is generally believed that the interaction of
these radicals produces the even more cytotoxic peroxynitrite [221,222]. However, there is
evidence suggesting that the co-incubation of cells with •NO and O2− results in a cross-
protective effect, whereas separately both radicals cause apoptosis or necrosis [223,224].
It is thought that in this case, •NO acts as a scavenger of O2−, neutralizing its negative
effects. Probably, the protective effect requires a balanced presence of •NO and O2− and
a certain redox state of the cell, as it is necessary to neutralize the formation ONOO−, which
is very likely in this situation [225]. Under normal physiological conditions, a balance
between superoxide and nitric oxide exists in vivo. •NO and superoxide react together at
a diffusion-controlled rate to form peroxynitrite (ONOO−), which causes cellular damage
by oxidizing many biological molecules. Additionally, ONOO− is involved in the inactiva-
tion of Mn and Fe superoxide dismutase [226,227]. •NO can protect cells from cytotoxicity,
ROS-mediated by removing superoxide anions, which are involved in toxicity through the
formation of hydrogen peroxide or hydroxyl radicals [228]. Nitric oxide has been shown to
inhibit the formation of superoxide anions. The mechanism of this inhibition is thought to
be due to the inactivation of nicotinamide adenine dinucleotide phosphate oxidase because
of the scavenging action of •NO on superoxide [229].

The inhibition of caspases: Since cysteine is present in the active center of caspases,
and reactive nitrogen species can nitrosylate SH-groups, the initial explanation for the
suppression of the caspase cascade by nitric oxide was through such nitrosylation of
functionally important Cys, showing not only the suppression of active caspases by nitric
oxide but also the interruption of caspase activation itself. The proteolytic activation of
caspases 3 and 8 was found to be effectively inhibited by both endogenous and exogenous
•NO, and part of this inhibition was unrelated to S-nitrosylation [230,231].

4.2. •NO and Arterial Hypertension

In studies on rats with spontaneous hypertension, it has been found that the central
component of •NO-ergic regulation of blood pressure involves neurons located in vari-
ous regions of the brain, including the hypothalamus (such as the paraventricular and
supraoptic nuclei, as well as the median eminence) and the medulla oblongata (including
the nucleus of the solitary tract, dorsal nucleus, and ambiguous nucleus). Additionally, the
peripheral component comprises •NO-producing vascular endothelial cells and neurons in
the adrenal medulla.

The development of arterial hypertension is accompanied by specific changes in the
activity of •NO-ergic neurons in the brain involved in blood pressure regulation. These
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changes include a decrease in the number of neurons positive for neuronal nitric oxide
synthase (NOS) in the small cell zone of the paraventricular nucleus, fibers of the median
eminence of the hypothalamus, and neurons of the nucleus of the solitary tract. Conversely,
there is an increase in the number and activity of NOS-positive neurons in the endocrine
nuclei of the hypothalamus, as well as the dorsal and ambiguous nuclei of the medulla
oblongata. The systemic increase in blood pressure in spontaneous hypertension leads
to the inhibition of •NO-producing function in the endothelium of both muscular and
elastic vessels. Additionally, the change in •NO-ergic activity in adrenal medullary neurons
exhibits a dynamic character. Our studies also revealed a depression of •NO formation
alongside a decrease in total nitric oxide synthase (NOS) activity, both in mitochondria and
in the cytosol of the myocardium in all groups of SHR [116].

We observed a significant increase in the expression of inducible nitric oxide synthase
(iNOS) in the myocardial mitochondria of SHR rats compared with normotensive animals.
The discoordination between the activity of total NOS in mitochondria and the formation of
stable •NO metabolites in the myocardium under conditions of experimental atherosclerosis
alongside arterial hypertension, in our opinion, is associated with a surge of “parasitic”
reactions. These reactions occur when NOS produces not only •NO but also its cytotoxic
derivatives, such as peroxynitrite and the nitrosonium ion, etc. Such reactions may occur
in conditions of L-arginine deficiency, antioxidant deficiency, mitochondrial dysfunction,
increased iNOS expression, and under the influence of proinflammatory factors [232].
Our assumption is confirmed by the detection of increased content of the nitrosative
stress marker nitrotyrosine against the background of increased iNOS expression in the
mitochondrial fraction of SHR heart homogenate. Additionally, in the myocardial cytosol of
SHR rats, we observed a low level of stable •NO metabolites (1.6–2.4 times lower) compared
with normotensive rats, alongside the inhibition of endothelial nitric oxide synthase (eNOS)
activity. Analyzing the obtained results of studies on the •NO system parameters and
reduced intermediates of the thiol–disulfide system, we can conclude that in SHR rats with
the most pronounced shifts of the myocardial thiol–disulfide system (including deficit of
reduced equivalents, increased oxidation of intermediates, and deprivation of glutathione
reductase activity), there were significant changes in the neurochemical profile of •NO.
It transitioned from a molecular messenger to an agent of nitrosative stress [138]. We
have demonstrated that arterial hypertension is accompanied by the inhibition of NOS
activity and •NO deficiency. This deficiency, combined with the corresponding redox
status of mitochondria, leads to protective effects that increase the cell’s resistance to
adverse effects. In this context, the expression of inducible NOS increases in mitochondria,
particularly when arterial hypertension is combined with diabetes and atherosclerosis.
This increased expression has a compensatory value aimed at reducing blood pressure.
However, under conditions of deficiency in reduced equivalents in the thiol–disulfide
system of cardiac mitochondria, inducible NOS appears as an initiator of nitrosative stress.
In this regard, it is important to determine the factor that determines whether •NO exhibits
cytoprotective or cytotoxic properties at a certain stage of the molecular–biochemical
cascade. The thiol–disulfide system seems to play a special role in the development of
mechanisms underlying •NO cytotoxicity and target organ damage. Intermediates of the
thiol–disulfide system possess transport properties with respect to •NO, thereby increasing
its bioavailability. Moreover, many thiols, such as glutathione, cysteine, and methionine,
can significantly limit the cytotoxicity of •NO and its derivatives, thus reducing the degree
of damage to the target organ [138,182,233].

4.3. •NO and the Thiol–Disulfide System of Neurons

The addition of CDNB (80 µmol), a selective inhibitor of glutathione-S-transferase and
a glutathione conjugate, to the incubation medium of neurons resulted in the depletion
of the glutathione linkage of the thiol–disulfide system (TDS), as evidenced by the defi-
ciency of reduced forms of glutathione due to the inhibition of glutathione reductase (GR)
and glutathione-S-transferase (G-S-T) activity. This depletion leads to the uncontrolled
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production of reactive oxygen species, nitrogen, and nitrosative stress, as indicated by the
observed increase in the level of nitrotyrosine in the neuronal suspension [182,234].

Thus, the increase in nitrotyrosine in neurons treated with CDNB was found to
be more than 2.2-fold. Concurrently, there was a shift of the TDS towards oxidized
thiols, as evidenced by a decrease in the level of reduced glutathione by 6.6-fold and
an increase in its oxidized form by 3-fold. The accumulation of glutathione disulfide
proceeded against a background of decreased activity of key enzymes of TDS: glutathione-
S-transferase (G-S-T) decreased by 2.7-fold and glutathione reductase (GR) decreased by
2.3-fold compared with intact neurons at 60 min of incubation. It is important to note
that the described pathophysiological changes led to an increase in cellular damage in
the neuron suspension, as evidenced by a statistically significant (p ≤ 0.05) increase in
the number of degenerately changed neurons in the test with Hoechst 33342. A possible
mechanism of cell damage in neurons incubated with CDNB, in our opinion, may involve
the disruption of the TDS and the formation of mitochondrial dysfunction. It has been es-
tablished that the deficit of glutathione not only occurs in conditions of the accumulation of
active derivatives of •NO but also the decrease in its reduced form can be a triggering factor
for the development of nitrosative stress. Restored thiols are intracellular •NO scavengers.
Nitric oxide interacts with cysteine to form S-nitrosocysteine and with glutathione to form
S-nitroglutathione. S-nitroglutathione serves as the main transport molecule for •NO
transfer [138]. The deficiency of sulfhydryl (SH) groups inside the cell leads to a decrease
in •NO bioactivity and the accumulation of reactive oxygen species (ROS). Additionally,
the uncontrolled growth of ROS leads to the oxidation of the alkyl groups of the mito-
chondrial respiratory chain and the inactivation of mitochondrial superoxide dismutase
(SOD), further depleting the antioxidant system of the neuron. When modeling acute
cerebral ischemia in Wistar rats, we observed marked differences in the concentrations of
glutathione (GSH) and nitrotyrosine among the groups of animals with mild, moderate,
and severe neurological disorders, as reported by McGraw. After conducting statistical anal-
ysis using Pearson’s coefficient, a negative correlation of −0.8289 was observed between
neurological symptoms and reduced glutathione, while a positive correlation of 0.8272
was found with nitrotyrosine levels. The strong correlations suggest a clear dependence
between the studied parameters. Consequently, it appears feasible to compute the ratio of
the nitrotyrosine level to the reduced glutathione and utilize it for diagnosing neurological
disorders. The calculated coefficients indicate that, under normal conditions, the ratio of
nitrotyrosine to glutathione (Kn/GSH) is approximately 1.3. A mild degree of neurological
deficit is characterized by a Kn/GSH close to 5.0; in severe neurological disorders, the
Kn/GSH ratio increases substantially to about 138.5. Thus, the interaction within the
“•NO—reduced thiols” system plays a crucial role in the mechanisms of neurodegradation
and endogenous neuroprotection, with its ratio determining the fate of neurons under con-
ditions of central ischemia. The key factor of equilibrium in this system is the maintenance
of the pool of reduced thiols and, especially, glutathione at a certain level. The reduced
glutathione equivalents not only ensure the bioavailability of •NO but also safeguard the
proper functioning of the •NO system within neurons, thereby preventing the formation of
its neurotoxic derivatives [182]. A statistically significant linear correlation between the
severity of the neurological deficit and the functionality of the conjugated “•NO—reduced
thiols” system was identified. These findings provide experimental support for utilizing
the nitrotyrosine/reduced glutathione coefficient as a diagnostic parameter for assessing
the severity of cerebral stroke in clinical biochemistry. Testing its effectiveness in treating
patients with cerebral blood flow disorders appears promising.

4.4. •NO and Cerebral Ischemia

Numerous studies have demonstrated the direct involvement of •NO in the neuronal
destruction process during ischemia. This has been observed when selective inhibitors
of neuronal and inducible NOS isoforms are administered to animals with acute cerebral
circulatory disorders (ACBD), as well as in experiments involving animals with a deficiency
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in the gene encoding iNOS. Data also indicate an elevation in •NO concentration in the
brains of animals experiencing both focal and global ischemia [138]. The concentration of
•NO begins to rise within the first minutes of ischemia, peaking on the 1st to 3rd day. Mea-
surements of NOS activity revealed a significant increase in enzyme activity both within the
ischemic core and in the penumbra. However, this assessment did not differentiate between
the various NOS isoforms. The involvement of •NO in neuronal damage and death exhibits
specificity determined by NOS isoforms and the type and stage of stroke development.
In the initial phase of ischemia, the expression of constitutive calcium-dependent NOS
was triggered by transmitter autocoidosis. •NO production during this phase is not di-
rectly responsible for neuronal death but contributes to indirect mechanisms such as the
activation of phospholipases, the augmentation of hydroxyl radical formation, and the
modulation of NMDA receptor activity. Subsequently, from 7 to 14 days in global ischemia
and from 1 to 3 days in focal ischemia, during the delayed post-ischemic period, there is
a surge in •NO production involving inducible NOS activated within glia, macrophages,
and neutrophils [138]. The delayed induction of inducible NOS expression correlates with
the subsequent activation of astro- and microglia as well as inflammatory cells. In focal
ischemia, these cells, known as •NO producers, are localized within the penumbra, while
in global ischemia, they are primarily found in structures most vulnerable to oxygen defi-
ciency. Apart from •NO synthases, nitrate/nitrite reductases in warm-blooded organisms
serve as sources of •NO, capable of reducing nitrate and nitrite. Gliocytes and thymocytes
exhibit nitroreductase activity. Although xanthine oxidase has demonstrated the ability to
convert nitrate and nitrite into •NO, its role in neurodegeneration remains understudied.
Currently, there is active research into the targets of nitric oxide and efforts to elucidate
whether •NO itself is sufficiently cytotoxic or if its derivatives are more active [235].

It is well-established that •NO within target cells forms active derivatives such as
nitrosonium (NO+), nitroxyl (NO−), and peroxynitrite (ONOO−). Recent studies have
further emphasized the role of •NO and its transformation products, including perox-
ynitrite (ONOO−), nitrosonium ion (NO+), nitroxyl (NO−), and diazotrioxide (N2O3), as
primary factors in inducing nitrosative stress [182,236]. This stress arises from both the
direct interaction of •NO with metals, such as heme iron in hemoglobin and myoglobin,
iron-containing enzymes, and non-heme iron in iron-sulfur proteins and DNA, as well as
copper and zinc in enzyme active centers. Additionally, the indirect interaction of NO+

through S-, N-, and O-nitrosation with thiol, phenolic, hydroxyl, and amino groups of
proteins and DNA further contributes to nitrosative stress. Such interactions lead to re-
ceptor desensitization, the inhibition of mitochondrial enzyme activity, and nucleic acid
fragmentation. Consequently, •NO, which reversibly binds to the Fe3+ active center of
catalase, significantly inhibits its function both during the initial period of ischemia and
in the post-ischemic phase of focal cerebral ischemia. Excessive •NO levels depress heme
enzymes within the mitochondrial electron transport chain. In the post-ischemic period,
elevated •NO concentrations can interact with heme iron and paired thiol groups to form
a dinitrosyl iron complex (DNIC) [182]. Unlike •NO, DNIC serves as a potent nitrosy-
lating agent, interacting with protein thiols, histidine, aspartate, glutamine, methionine,
cysteine, and glutathione, forming N- and S-nitrosothiols. Under ischemic conditions,
DNIC undergoes irreversible nitrosylation of iron-sulfur clusters in mitochondrial proteins
(such as NADH-ubiquinone oxidoreductase, succinate-ubiquinone oxidoreductase, and
aconitase), thereby contributing to mitochondrial dysfunction [182]. Our research has
demonstrated that DNIC significantly inhibits the activity of superoxide dismutase (SOD),
as well as the enzymes involved in regulating thiol–disulfide equilibrium within cells,
including glutathione reductase, glutathione-S-transferase, and glutathione peroxidase in
neuronal suspensions.

Under ischemic conditions, the inhibition of these enzymes leads to the oxidative mod-
ification of low-molecular-weight thiols, resulting in the formation of homocysteine and the
subsequent impairment of •NO transport. This impairment leads to the generation of cyto-
toxic derivatives of •NO, which further exacerbate thiol oxidation. Neurons equipped with
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a sufficiently active thiol antioxidant system capable of regulating •NO transport exhibit
resistance to nitrosative stress, which represents the earliest neurodegradative mechanism
under ischemic conditions. It is well-documented that within the initial minutes of brain
ischemia, •NO (whether macrophage-derived or exogenous) inhibits oxidative phospho-
rylation in the mitochondria of target cells through reversible binding to mitochondrial
cytochrome-C oxidase. The suppression of electron transport in mitochondria leads to the
generation of superoxide, resulting in the formation of ONOO−. Subsequently, peroxyni-
trite synthesis occurs in cells with high activity of •NO synthase and enzymes producing
ROS (such as xanthine oxidase, NADH oxidoreductase, cyclooxygenase, lipoxygenase, and
electron transport chain enzymes). Recent studies have revealed that during the initial
stages of ischemia, peroxynitrite levels can be mitigated by mitochondrial nitroreductase,
which reconverts it back to •NO using NADPH and NADH as cofactors. The targets of
oxidative and nitrosative attacks by peroxynitrite encompass thiols, CO2, metalloproteins,
nucleic acids, transmitters, and lipids [182].

Peroxynitrite, being a relatively stable compound, undergoes rapid protonation to
form its primary product, the nitrate anion, along with hydroxyl radicals and nitrogen
dioxide, thereby determining its oxidative properties. Hence, during the initial stages of
ischemia, peroxynitrite interacts with thiols via nitrosylation, leading to the formation
of nitrosothiols. As the process progresses and lactate acidosis ensues, this interaction
shifts towards oxidation, resulting in the formation of more persistent disulfides. These
reactions significantly contribute to the mechanisms of neurodegradation by shifting the
thiol disulfide system towards oxidized thiol compounds, thereby reducing the cell’s re-
ductive potential. This oxidation process also disrupts gene expression by irreversibly
oxidizing cysteine residues within redox-dependent domains and causing the dissociation
of the MAP kinase cascade. Moreover, peroxynitrite inhibits the activity of metabolic cycles
involving methionine and cysteine, thereby impeding key enzymes regulating cysteine
levels and promoting homocysteine formation. Additionally, peroxynitrite reacts with the
metabolitotropic transmitter CO2 to form a potent nitrosylating agent, nitrosoperoxycar-
bonate. An essential mechanism of peroxynitrite’s neurotoxic action is its reaction with
thiosin to form nitrotyrosine. Peroxynitrite significantly inhibits the activity of Cu-Zn-SOD
and Mn-SOD by nitration of its 34th tyrosine residue and by binding to copper, altering
its valence. Moreover, peroxynitrite serves as a specific agent that irreversibly depresses
mitochondrial respiration during ischemia (Figure 2). Direct interaction with the iron of
active centers of key enzymes and the nitrosylation of thiol, phenol, hydroxyl, and amino
groups of the protein component of these enzymes by S-, N-, and O-elements, results
in their irreversible oxidation under heightened nitrosative stress. The suppression of
mitochondrial respiration leads to a decline in mitochondrial charge, which can trigger
the apoptotic process and, in the absence of glucose, necrosis [6,237,238]. Evidence also
suggests the direct activation of the giant pore opening by nitric oxide, leading to the release
of cytochrome C and the triggering of the caspase cascade. These findings were obtained
when mitochondria were exposed to cytotoxic derivatives of •NO such as peroxynitrite
and nitrosonium ion, whose mechanism is based on the modification of thiol proteins in
the mitochondrial pore.

•NO and its derivatives can induce the peroxidation of phospholipids. Consequently,
cytotoxic derivatives of •NO, along with hydroxyl radicals, trigger the opening of mito-
chondrial pores and the expression and release of proapoptotic proteins into the cytosol.
This pore opening occurs due to the oxidation or nitrosylation of thiol groups within the
cysteine-dependent portion of the mitochondrial inner membrane protein, specifically the
ATP/ADP-antiporter, transforming it into a permeable nonspecific channel-pore. This
transformation converts mitochondria from “power plants” into “furnaces” of oxidation
substrates without ATP formation [182,239]. Impaired tissue oxygenation, transmitter
autocoidosis, disrupted calcium accumulation by mitochondria, and damage to the mito-
chondrial membrane by cytotoxic ROS and •NO compounds further enhance pore opening,
leading to the release of apoptogenic proteins from damaged mitochondria [240]. The mito-
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chondrial pore is a channel spanning both mitochondrial membranes and comprises three
proteins: an adenine nucleotide translocator, a potential-dependent anion channel (porin),
and a benzodiazepine receptor. When this complex binds to Ca2+, substances with small
molecular weight can traverse the membrane pore. This results in a reduction in membrane
potential and the swelling of the matrix, ultimately compromising the integrity of the outer
membrane and leading to the release of apoptotic proteins from the intermembrane space
into the cytoplasm.
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The nitrosylation of proteins by tyrosine residues, facilitated by ONOO−, can have
significant functional consequences, as it suppresses tyrosine phosphorylation and dis-
rupts certain signal transduction pathways within the cell [182,241]. The balance between
•NO and the thiol–disulfide system is a critical factor determining the subsequent fate of
neurons under ischemic conditions, particularly the mode of cell death. During ischemic
brain injury, nitrosative stress emerges early, leading to thiol nitrosation and altering the
thiol–disulfide equilibrium of mitochondrial pore proteins. At this juncture, mitochondrial
NOS assumes a protective role by modulating cell death, favoring a transition towards
apoptosis. Subsequently, oxidative and carbonyl stress ensue, resulting in a significant shift
in the thiol–disulfide equilibrium towards oxidized thiols. This leads to persistent mito-
chondrial dysfunction, the depletion of cellular energy reserves, the onset of autocoidosis,
the perturbation of genomic responses, and ultimately, cell death via necrosis [242].

4.5. •NO and Endothelial Dysfunction

The primary mechanism underlying endothelial dysfunction (ED) involves a reduction
in the formation and bioavailability of •NO, accompanied by a concurrent increase in the
level of superoxide ions and the production of active vasoconstrictors [243,244]. Conse-
quently, ED manifests as an imbalance between mediators crucial for the optimal function-
ing of all endothelium-dependent processes under normal conditions [245]. Concurrently,
disruptions in the production, interaction, and breakdown of endothelial vasoactive factors
are observed, alongside abnormal vascular reactivity and alterations in the structure and
growth of blood vessels, which are indicative of vascular diseases [246].

•NO is synthesized from L-arginine under the influence of endothelial •NO synthase
(eNOS), a process involving the attachment of molecular oxygen to the terminal nitrogen
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atom of the guanidine group of L-arginine. The assessment of vascular wall integrity and
the correction of ED in cardiovascular pathology represent one of the most promising
fields of study, as they determine the likelihood of developing vascular diseases and their
complications, thus contributing to the overall prognosis of the disease [247].

Therefore, the pursuit of targeted interventions for Endothelial Dysfunction (ED) and
the development of a new class of effective drugs—endothelium protectors—represent
critical clinical and experimental endeavors. ED is a systemic pathology linked to the
compromised microstructure and secretory function of endothelium-dependent cells, re-
sulting in reduced endothelium-dependent vasodilation, hypercoagulability, increased
thrombosis, heightened vascular permeability, and lipoprotein migration into the vas-
cular intima, as well as smooth muscle cell proliferation, and myocardial and vascu-
lar remodeling [248–250]. The primary mechanism underlying the development of ED
involves a reduction in the formation and bioavailability of •NO, accompanied by the
emergence of its cytotoxic forms amidst oxidative stress and a deficiency of reduced low
molecular weight thiols [98,244]. Meanwhile, the primary causes of •NO deficiency in
endothelial cells may include a reduced content of its precursor, L-arginine, the diminished
expression or activity of endothelial nitric oxide synthase (eNOS), and a deficiency in
•NO synthesis cofactors, particularly tetrahydrobiopterin. Additionally, increased levels
of endogenous eNOS inhibitors, such as asymmetric dimethylarginine and monomethyl-
L-arginine, the elevated formation of reactive oxygen species, notably superoxide anion,
and the presence of low-density lipoproteins, especially their oxidized forms, contribute to
•NO depletion [251,252]. The molecular basis of vascular endothelial dysfunction remains
complex and not entirely understood. However, the “eNOS—L-arginine—•NO” system
holds promise as a pivotal target for the pharmacological correction of ED in the foreseeable
future [98,253]. Numerous authors have highlighted the direct involvement of •NO in cell
death processes, including endothelial cells, under conditions such as ischemia, atheroscle-
rosis, and alcohol intoxication. These findings were elucidated through the utilization of
selective inhibitors targeting constitutive and inducible isoforms of nitric oxide synthases
(NOS), alongside experiments conducted on animals with a deficiency in the gene encod-
ing inducible NOS (iNOS). Investigations have demonstrated that •NO transport occurs
concomitantly with the formation of N2O3, subsequently leading to thiol nitrosylation.
With the involvement of disulfide isomerase, •NO is released [234]. Additionally, there
exists a mechanism for •NO release from S-nitrosoglutathione, facilitated by glutamyl
transpeptidase, resulting in the formation of S-nitrosocysteinylglycine, which then liberates
•NO. Cystine plays a crucial role in the transportation of S-nitrosoglutathione, wherein it is
reduced to cysteine. The latter, upon reacting with S-nitrosoglutathione, forms S-cysteine,
thereby participating in the rapid conduction of neurons and facilitating the neuron’s
adaptive responses to ischemia. These reactions are regulated by glutathione reductase and
glutathione transferase.

Under ischemic conditions, the inhibition of these enzymes leads to the oxidative
modification of low molecular weight thiols, homocysteine formation, and the subsequent
impairment of •NO transport, resulting in the generation of cytotoxic •NO derivatives
that exacerbate thiol oxidation [254–256]. Given the current absence of specific drugs for
correcting endothelial dysfunction (ED), insights into the effects of cardiovascular drugs
from various pharmacological groups on endothelial functional characteristics hold sig-
nificant value. A comprehensive approach to treating ED in conditions such as chronic
cerebral ischemia, arterial hypertension, alcoholic myocardial and cerebral damage, and
chronic heart failure may offer substantial practical benefits [257]. This approach involves
combining fundamental cardioprotective and neuroprotective therapies with medications
that optimize energy metabolism, thereby mitigating the adverse effects of oxidative and
nitrosative stress on vascular endothelium and promoting nitric oxide formation. It is
conceivable that the future lies with drugs possessing not only cardioprotective or neuro-
protective effects but also indirect positive impacts on endothelial function. A particularly
promising avenue is the comprehensive treatment of ED in cardiovascular pathology, where
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reperfusion, antithrombotic, and cardio- or neuroprotective therapies are integrated with
medications targeting endothelial dysfunction correction [258].

In light of the above, it has become pertinent to investigate the endothelioprotective
properties of drugs exhibiting diverse pathogenetic mechanisms of action. These drugs are
known to enhance metabolism, possess antioxidant properties, serve as natural •NO donors,
and activate the •NO synthase enzyme. They also contain “essential” phospholipids and
affinity-purified antibodies to endothelial •NO synthase, offering promising avenues for
research in experimental models of cerebrovascular pathology [259].

Numerous drugs with distinct mechanisms of action exert varying degrees of influence
on vascular endothelial function. For instance, nitrates replenish endogenous •NO defi-
ciency, and ACE inhibitors not only reduce angiotensin-II (AT-II) synthesis but also prevent
kinin degradation. Statins bolster the endothelial cell barrier function against oxidized
LDL, while calcium antagonists curb AT-II and endothelin activity in vascular smooth
muscle, thereby amplifying •NO’s vasodilatory effects. Angiotensin receptor blockers
obstruct AT-II receptors, fostering •NO accumulation, while endothelin-converting enzyme
inhibitors and endothelin-1 receptor antagonists impede peptide activity [260].

Of particular interest are the “specific” effects directed at enhancing •NO synthesis,
such as replacement therapy involving L-arginine (the substrate eNOS) and tetrahydro-
biopterin (eNOS cofactor), crucial for determining the enzyme’s activity [261].

4.6. Pharmacological Modulation of the Nitroxidergic System

Pharmacological modulation of the nitroxidergic system is presented in Table 1.

Table 1. Characterization of pharmacological agents—modulators of various links—targets of the
•NO system.

Pharmacological Agent Primary Target Pharmacological Effect

S-methylisothiourea (SMT) Selective highly reactive
iNOS inhibitor

Injection w/w to rats after occlusion of
carotid arteries (1 mg/kg) over 4 days led
to a reliable protective effect only from the

1st day of the experiment, reaching the
maximum on the 4th day. SMT had

a significant neuroprotective effect [182]

N-nitro-L-arginine methyl
ester hydrochloride Selective iNOS inhibitor

Incorporation of 40 µmol into the neuronal
suspension prior to glutamate (100 µM)

had a protective effect when incubated for
30 and 60 min (decreased nitrotyrosine,
increased GSH, Cu-Zn-SOD) [182,262]

N-propyl-L-arginine
hydrochloride Selective nNOS inhibitor

Incorporation of 50 µmol into the neuronal
suspension prior to glutamate (100 µM)

had a protective effect when incubated for
30 (decreased nitrotyrosine, increased GSH,

Cu-Zn-SOD), then the effect diminished.
Injection w/w to rats after occlusion of

carotid arteries (2.5 mg/kg) during 4 days
for the first 12 h, a reliable effect [262]

4.7. Inhibitors of NOS Isoforms and Their Cytoprotective Effect of Neurons

In experimental cerebral ischemia, the application of NOS inhibitors with varying
selectivity leads to complex changes. For instance, L-NAME, a non-selective inhibitor, in-
duces the irreversible inhibition of constitutive and reversible inducible isoenzyme activity,
demonstrating prooxidant properties during the early stages. L-NAME’s inhibition of
eNOS compromises local vasodilation, exacerbating the overall pathological process [262].

N-propyl-L-arginine during the first 12 h of ischemia caused a significant decrease
in •NO level, but the effect on other parameters did not reach statistically significant
differences. The mentioned inhibitor is selective in relation to nNOS, the activity of which
is significantly increased during the first hours of ischemia. This is explained, firstly, by the
observation period—by 12 h, the hyperactivation of nNOS caused by calcium ions begins
to decrease with a parallel increase in the inducible form, and secondly, the inhibition of
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nNOS leads to the activation of the nuclear factor NF-kB, which causes the induction of
iNOS [263].

Treatment with the nNOS inhibitor—N-propyl-L-arginine—on the 1st and 4th day
did not significantly affect the studied parameters, since in more delayed periods the
contribution of this isoenzyme to the formation of nitrosative stress was not significant.
•NO hyperproduction at these stages is caused by the participation of iNOS in glial cells,
macrophages, and neutrophils. The delayed nature of the iNOS increase is associated with
the later activation of astroglia. In contrast to nNOS and eNOS, iNOS remains active for
a longer period of time and produces significant concentrations of •NO [234]. This explains
the beneficial effect of the inhibitors we found, which selectively suppress the activity of the
inducible isoenzyme late in the observation period. At the end of 1 day after the modeling
of cerebral ischemia, the administration of (S)-methylthiourea caused a significant decrease
in the manifestations of nitrosative stress, its effect was more prolonged, and they persisted
until the end of observation. On the 4th day of the experiment, the indicated drug reduced
the level of protein oxidative modification products, nitrotyrosine and MDA [234].

The application of L-NAME caused similar but less pronounced changes, which is
apparently associated with the inhibitory effect of this compound on eNOS. Our studies
have noted the role of intermediates and enzymes of the thiol–disulfide system in the
mechanisms of •NO bioavailability both in in vitro experiments and in modeling cerebral
ischemia in rats [234]. Decreased activity of enzymes in the glutathione system, primarily
GPO, which ensures the cleavage of nitrosothiols with the release of •NO, in conditions
of oxidative stress is one of the reasons for the decrease in its bioavailability. Thus, the
neurotoxic effect of •NO depends on a certain NOS isoenzyme [234]. An analysis of the
obtained data indicates the limited role of neuronal isoform. The most suitable target for
the pharmacological regulation of •NO-dependent mechanisms of neurodegradation is
iNOS, as its activity increases 12 h after the development of ischemia, and its action is
realized during the next few days.

4.8. Exogenous •NO

Exogenous •NO donors are of considerable help in studying the effect of •NO on
cells. These substances are widely used nowadays to create model systems in vitro, on
which it is possible to study the effects of •NO influence on cultures of different cells, or on
separate compartments of cells (isolated mitochondria, nuclei) [264]. These models are very
popular because they greatly simplify the system of interaction between •NO and cells in
the body. Since nitric oxide here comes from outside, the system appears to be independent
of •NO synthases and their regulation, which means that the results of •NO action are
easier to interpret. It is evident that in this context, the effects of other signaling substances
potentially accompanying biogenic •NO are largely eliminated. For instance, NOS can
synthesize O2− under certain conditions, and the pathways activating NOS may also
trigger the production of various additional mediators [117,265–267]. Exogenous donors,
in contrast to L-Arg, incorporate •NO within the structure of the molecule, facilitating the
release of this molecule in its pure form [179].

Chemical classifications of •NO donors typically include the following groups:

- Nitrates (such as nitroglycerin, sodium nitroprusside, and nitrosorbide, commonly
used in the clinic) [268–272],

- Nitrites (amyl nitrite, NaNO2),
- Nitrosothiols and substances that form various complexes with •NO: S-nitrosoglutathione

(GSNO), S-nitroso-N-acetylpenicillamine (SNAP), diethylamine-NO (DEA-NO).
•NO donors can be classified based on their mechanism of action into those that

spontaneously release •NO (non-enzymatic) and those requiring enzymatic interaction
to release nitric oxide. Currently, there are no “ideal” •NO donors for research purposes.
Firstly, •NO donors vary in their efficiency of •NO release and their ability to affect cells
to different extents. Secondly, these substances may serve as sources of side compounds,
some of which can be toxic (such as cyanide released by nitroprusside) [269,273,274].
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Among the potential •NO donors and drugs, there is a promising original molecule
called bromide 1-(β-phenylethyl)-4-amino-1,2,4-triazolium (Hypertril), a derivative of
1,2,2,4-triazole. Hypertril exhibits •NO-mimetic properties, particularly when a β1-receptor
blockade is present. It enhances the expression and activity of endothelial •NO-synthase,
thus addressing •NO deficiency. In the dose range of 7.5–20 mg/kg, “Hypertril” shows
promising effects in mitigating disorders in the L-arginine-•NO -synthase—•NO system in
spontaneous arterial hypertension. It achieves this by increasing •NO production through
the enhanced expression of endothelial NOS, thereby reducing manifestations of nitrosative
stress in the myocardium. Additionally, “Hypertril” reduces the expression of inducible
NOS, leading to dose-dependent increases in cardiomyocyte nuclei density and cardiomy-
ocyte area. Furthermore, it significantly increases RNA content in both the nuclei and
cytoplasm of cardiocytes, along with an increase in the nuclear-cytoplasmic index, indica-
tive of decreased myocardial hypertrophy. Importantly, “Hypertril” also normalizes blood
pressure [232,275]. Moreover, the administration of “Hypertril” to animals with chronic
heart failure (CHF) results in the prolongation of the depolarization phase (QRS complex)
and the repolarization phase of ventricles (T wave), as well as electrical diastole (TR inter-
val). These findings suggest a crucial property of the drug in CHF therapy, specifically its
ability to prevent the development of diastolic dysfunction [276]. The obtained results of
the experimental studies are the basis for authorization of the first phase of clinical trials of
the new drug “Hypertril” as an antianginal and antihypertensive agent.

5. •NO Scavengers
5.1. Xanthine Derivatives

The high efficacy of 8-benzylaminoxanthines in ROS inhibition assays stems from
the •NO radical’s high reactivity and the presence of a secondary amino group in these
compounds. These substituents readily undergo nitrosation reactions to produce corre-
sponding N-nitrosoamino derivatives. Pharmaceutical analyses often utilize this interaction
to qualitatively confirm the presence of such groups in drug structures [277].

It is known that these substituents easily undergo a nitrosation reaction to form the
corresponding N-nitrosoamino derivatives. This interaction is used in pharmaceutical
analysis to qualitatively confirm the presence of this group in the structure of drugs.

The •NO radical is a potent nitrosating agent, demonstrating its detrimental impact on
thiol and amino groups within protein molecules. 8-benzylaminooxanthines can function
as •NO scavengers, transforming into corresponding 8-N-nitrosobenzylaminooxanthines
under •NO radical exposure, thereby mitigating its adverse effects (Figure 3).
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However, this interaction alone does not fully account for the high antioxidant activity
observed with 8-benzylaminoxanthines in other in vitro methods. It is important to note
that the methylene group of the benzylamine fragment possesses considerable mobility
due to the electron-accepting properties of the nitrogen atom and the benzene ring. Conse-
quently, this site can undergo oxidation via dehydration reactions, functioning as a hydro-
gen atom donor. Thus, the heightened antioxidant activity of 8-benzylaminoxanthines may
arise from their capability to oxidize and form corresponding imidazole derivatives or to
undergo hydroxylation to produce corresponding hydroxy derivatives (Figure 4) [278,279].
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The hydrazide 8-benzylaminotheophyllinyl-7-acetic acid (C-3) exhibited the most
pronounced antioxidant effect due to its ability to bind •NO via the presence of a hydrazine
group in its structure, thereby acting as a spin trap. The administration of C-3 to animals
with intracerebral hemorrhage (ICH) resulted in a significant decrease in the expression
of neuronal nitric oxide synthase (nNOS) mRNA in the CA1 zone of the hippocampus by
95.3% compared with the control values, along with an increase in nNOS mRNA expression
relative to sham-operated animals. Moreover, the expression of inducible nitric oxide
synthase (iNOS) mRNA decreased % following C-3 administration relative to the control
and was at levels comparable to those of sham-operated animals [280–282]. Furthermore,
the course administration of compound C-3 to animals with ICH led to a significant decrease
in the activity of NOS, nitrites, and nitrotyrosine in brain mitochondria on the 4th day of
the experiment, respectively. The administration of C-3 also decreased the expression of
iNOS in brain mitochondria. Additionally, C-3 increased the level of HSP70 in the brain
cytoplasm and in the mitochondria of animals with ICH [283].

5.2. 1,2,4-Triazole Derivatives

The compound (S)-2,6-diaminohexanoic acid 3-methyl-1,2,4-triazolyl-5-thioacetate
(Angiolin) demonstrates •NO scavenger properties. The •NO activity of this compound is
attributed to the reactivity of both its cationic and anionic parts. Specifically, lysine interacts
with •NO through its ε-amino group, forming the corresponding N-nitroso derivative.
Concurrently, the anionic portion of Angiolin appears to generate S-nitro derivatives, sim-
ilar to those described elsewhere. It is evident that the •NO activity of both the anionic
and cationic parts of Angiolin is synergistic, explaining its pronounced effectiveness. The
mechanism of interaction between the Angiolin molecule and •NO may involve electron
transfer from the highest occupied molecular orbital of the “spin trap” to the lower unoccu-
pied molecular orbital of the nitrogen monoxide radical, leading to the formation of a more
stable complex compound. Angiolin may function as a •NO transfer molecule, enhancing
its bioavailability [284].

The administration of Angiolin (100 mg/kg) in chronic cerebral ischemia results in
increased survival of endotheliocytes in the vessels of the cerebral cortex and the vascular
wall of cerebral vessels. Additionally, it augments the number of proliferating endothelio-
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cytes and enhances the expression of vascular endothelial growth factor (VEGF). Angiolin
exhibits the ability to normalize the eNOS/iNOS ratio, as evidenced by a histoimmunohis-
tochemical study of the CA1-hippocampus. Additionally, Angiolin reduces the intensity of
nitrosative stress in the ischemic brain, as indicated by a decreased level of nitrotyrosine.
Furthermore, it enhances the expression of endogenous neuroprotective agents, such as
heat shock proteins (HSP70), observed in both the cytosol and mitochondria of neurocytes.
Interestingly, Angiolin also appears to mitigate mitochondrial dysfunction, as evidenced
by a decrease in the number of mitochondria exhibiting signs of ultrastructure disorders
(Figure 5) [182].
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6. Conclusions

Thus, despite intensive studies on apoptosis, a detailed understanding of the path-
ways regulating this process still requires further clarification. It is becoming increasingly
apparent that various mechanisms regulating cell death are intricately intertwined, making
it challenging to distinguish between pro- and anti-apoptotic components in the actions
of signaling molecules. Nitric oxide serves as a prime example, with the scientific litera-
ture presenting nearly equal evidence of both the cytotoxic and protective effects of this
compound. This complexity complicates the translation of theoretical advancements into
practical applications of such substances, as it is challenging to predict their effects at the
multicellular organism level based solely on in vitro studies. Therefore, a comprehensive
understanding of the regulation of vital cell functions is constructed through focused
investigations into the effects of specific compounds under particular conditions on the
development of specific signaling pathways.
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Abbreviations

BH4 tetrahydrobiopterin
FAD flavinadenine dinucleotide
HSP heat shock proteins
IFN interferon
IL-1 interleukin-1
L-NMMA NG-monomethyl-L-arginine
NOS nitric oxide synthase
PARP poly(ADP-ribose) polymerase
TNF tumour necrosis factor
TNFR tumour necrosis factor receptor
ROS reactive oxygen species
PCD programmed cell death
sGC soluble guanylate cyclase
cGMP cyclic guanosine monophosphate
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