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Abstract: Data from the Neonatal Oxygenation Prospective Meta-analysis (NeOProM) indicate that
targeting a higher (91–95%) versus lower (85–89%) pulse oximeter saturation (SpO2) range may reduce
mortality and necrotizing enterocolitis (NEC) and increase retinopathy of prematurity (ROP). Aiming
to re-evaluate the strength of this evidence, we conducted a Bayesian reanalysis of the NeOProM data.
We used Bayes factors (BFs) to evaluate the likelihood of the data under the combination of models
assuming the presence vs. absence of effect, heterogeneity, and moderation by sex. The Bayesian
reanalysis showed moderate evidence in favor of no differences between SpO2 targets (BF10 = 0.30)
in death or major disability, but moderate evidence (BF10 = 3.60) in favor of a lower mortality
in the higher SpO2 group. Evidence in favor of differences was observed for bronchopulmonary
dysplasia (BPD) (BF10 = 14.44, lower rate with lower SpO2), severe NEC (BF10 = 9.94), and treated
ROP (BF10 = 3.36). The only outcome with moderate evidence in favor of sex differences was BPD.
This reanalysis of the NeOProM trials confirmed that exposure to a lower versus higher SpO2 range
is associated with a higher mortality and risk of NEC, but a lower risk of ROP and BPD. The Bayesian
approach can help in assessing the strength of evidence supporting clinical decisions.

Keywords: extremely preterm infants; neonatal oxygenation prospective meta-analysis; pulse
oximeter saturation; mortality; necrotizing enterocolitis; retinopathy of prematurity; bronchopul-
monary dysplasia

1. Introduction

The Oxygen Paradox states that while oxygen is essential for aerobic life forms, it
is also inherently dangerous to those same life forms [1]. Arguably, the moment of life
in which this paradox manifests itself in a more pronounced way is the transition from
intrauterine to the extrauterine life. At birth, a newborn is exposed to the oxidative shock of
transitioning from the relative hypoxia of fetal life to the atmospheric normoxia of postnatal
life [2–4]. While this transition is generally smooth in term infants, because they have
adequate antioxidant defenses, this is not the case in premature infants. Furthermore, the
physiologically hypoxic intrauterine environment is a major stimulus for the development
of organs and systems [5,6]. Preterm birth disrupts this physiological development, forcing
immature organs and systems to assume their physiological functions too early. This
alters the type of signals and stimuli that these organs and systems will receive for their
subsequent development. Two other aspects need to be taken into account. The first is that
an environment of oxidative stress may already have been induced by the pathological
condition, or endotype, responsible for preterm birth [7]. The second is that therapeutic
interventions, such as oxygen supplementation, mechanical ventilation, or parenteral
nutrition, together with postnatal exposure to infectious inflammatory processes, may
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substantially increase the oxidative stress load [2–4]. Saugstad coined the term “oxygen
radical disease of neonatology” in 1981, proposing that oxidative stress has a spectrum of
effects in the neonate and might play a role in the pathogenesis of many complications of
prematurity, including bronchopulmonary dysplasia (BPD), retinopathy of prematurity
(ROP), or necrotizing enterocolitis (NEC) [8].

Oxygen therapy remains a difficult conundrum in neonatal care, as efforts to reduce
the complications associated with hyperoxemia and oxidative stress in extremely preterm
infants (i.e., gestational age below 28 weeks) may affect their survival [9,10]. The best
available evidence on what range of pulse oximeter saturation (SpO2) should be targeted
for extremely preterm infants from birth or shortly thereafter comes from the Neonatal
Oxygenation Prospective Meta-analysis (NeOProM) Collaboration [11]. This prospective
meta-analysis used harmonized individual participant data from five randomized con-
trolled trials (RCTs) involving approximately 5000 infants [12–17]. The RCTs were the
SUPPORT (Surfactant, Positive Pressure, and Oxygenation Randomized Trial), the three
(Australia, New Zealand, and United Kingdom) BOOST II (Benefits of Oxygen Saturation
Targeting II), and the COT (Canadian Oxygen Trial) [12–17]. The five trials included similar
populations of extremely preterm infants, compared the same target SpO2 ranges, used
similarly modified investigational oximeters to mask for allocation of the groups, and inves-
tigated the same short- and long-term outcomes. The NeOProM data showed that targeting
a lower SpO2 range (85–89%) versus a higher SpO2 range (91–95%) increased mortality
with a risk ratio (RR) of 1.17 and a 95% confidence interval (CI) of 1.04 to 1.31 (p = 0.01).
The lower saturation range was also associated with an increased risk of developing severe
NEC (RR 1.33, 95% CI 1.10 to 1.61, p = 0.003), but decreased the risk of developing severe
ROP (RR 0.81, 95% CI 0.74 to 0.90, p < 0.001) [11].

Biological sex is increasingly recognized as an essential factor driving susceptibility,
pathophysiology, outcomes, and response to therapy in clinical studies in neonatology [18–21].
Male preterm neonates have a higher risk of mortality before hospital discharge, respiratory
distress syndrome, BPD, NEC, late-onset sepsis, severe intraventricular hemorrhage, severe
ROP, and neurodevelopmental impairment [18–20]. In addition, sex-specific effects of
interventions in preterm infants are common [18,21–27]. This has led to a call for the
consideration of sex as a biological variable in data collection, analysis, and reporting
of studies, as well as for the evaluation of the interaction between treatment and sex by
appropriate statistical methods [18]. When the NeOProM investigators analyzed their data
disaggregated by sex, they found some differences in relevant outcomes such as NEC or
ROP [11]. However, these differences were not “statistically significant” (p > 0.05) according
to the frequentist null hypothesis significance testing (NHST).

The dominance of NHST p-values when comparing two groups in biomedical research
is overwhelming [28]. However, a limitation of the NHST is that the failure to reject the null
hypothesis (H0, no effect) when the p-value is below a predefined threshold (typically 0.05)
does not mean that we have found evidence supporting H0. Conversely, if we reject H0
when the p-value is above 0.05, this does not necessarily mean that we have found evidence
to support the alternative hypothesis (H1, there is an effect) [29–32]. Bayesian statistics is
increasingly recognized and applied in biomedical research as an alternative to overcome
these and other limitations of NHST [33–39]. The Bayes factor (BF) is a tool used in Bayesian
inference for hypothesis testing as a way to quantify the relative degree of support for a
hypothesis in a data set [32,40–43]. BFs quantify evidence on a continuous scale, allowing
for more nuanced conclusions rather than all-or-none (significant vs. non-significant)
conclusions, and can help distinguish between evidence of absence (H0 should be accepted)
and absence of evidence (inconclusive evidence for both H0 and H1) [32,33,40–44].

Our present objective was to reanalyze the overall and sex-disaggregated results of
the NeOProM studies using a Bayesian approach [40,41,45]. The Bayesian framework may
provide a wider, and arguably more informative, set of interpretations than that typically
provided by a frequentist analysis [33,44].
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2. Materials and Methods

This study was exempt from obtaining formal institutional review board approval and
from the requirement to obtain informed patient consent because it is secondary research
of a publicly available data set [11].

The sex-specific data from each of the five studies included in the NeOProM were re-
entered into a new database and the values of log risk ratio (logRR) and the corresponding
standard error and 95% confidence interval (CI) of each individual study were calculated
using COMPREHENSIVE META-ANALYSIS V4.0 software (Biostat Inc., Englewood, NJ,
USA). The results were further pooled and analyzed by a Bayesian-model-averaged (BMA)
meta-regression [45], a moderation analysis extension to BMA meta-analysis [40,41]. We
performed the BMA in R using the RoBMA R package [46]. BMA employs Bayes factors
(BFs) and Bayesian model averaging to evaluate the likelihood of the data under the
combination of models assuming the presence vs. the absence of the meta-analytic effect,
heterogeneity, and moderation [40,41,45]. The BF10 is the ratio of the probability of the data
under H1 over the probability of the data under H0. We used the categories proposed by
Lee & Wagenmakers for the interpretation of the BFs [47]. The evidence in favor of H1
(BF10 > 1) was categorized as weak/inconclusive (1 < BF10 < 3), moderate (3 < BF10 < 10),
strong (10 < BF10 < 30), very strong (30 < BF10< 100), and extreme (BF10 > 100). The evidence
in favor of H0 (BF10 < 1) was categorized as weak/inconclusive (1/3 < BF10 < 1), moderate
(1/10 < BF10 < 1/3), strong (1/30 < BF10 < 1/10), very strong (1/100 < BF10 < 1/30), and
extreme (BF10 < 1/100). The BFrf is the ratio of the probability of the data under the random
effects model over the probability of the data under the fixed effect model and BFmod is the
ratio of the probability of the data under the moderated models (i.e., by sex differences)
vs. the non-moderated models. Furthermore, BFs for the presence vs. absence of the effect
at the different level of the moderator (e.g., BFfemale, BFmale) were calculated using the
Savage–Dickey density ratio [48,49]. The categories of strength of the evidence in favor of
the random effects (BFrf > 1) or the fixed effect (BFrf < 1), differences by sex (BFmod > 1) or
absence of differences by sex (BFmod < 1), and the presence of the effect by sex subgroups
(BFfemale > 1, BFmale > 1) or absence of the effect by sex subgroups (BFfemale < 1, BFmale < 1)
were similar to those described above for BF10.

We used neonatology-specific prior distributions based on the Cochrane Database of
Systematic Reviews for logRR, logRR~Student-t (µ = 0, σ = 0.18, ν = 3), and
tau = inverse-gamma (k = 1.89, θ = 0.30) [50], and tested for the moderation by sex by
specifying a ∆µi~Normal (µ = 0, σ = 0.18 x s) prior distribution on the difference between
each category and the grand mean, with s = 1/2 or s = 1/4 (i.e., the expected difference in
each moderator level corresponding to 1/2 or 1/4 of the mean effect size).

3. Results

The NeOProM reported 30 categorical outcomes disaggregated by sex. In addition, we
pooled the data of positive pressure (with and without endotracheal tube) and supplemental
oxygen at 36 weeks’ postmenstrual age (PMA) to obtain an estimate of moderate-to-severe
BPD as defined by Jobe & Bancalari [51]. The overall and sex-disaggregated BMA results
are shown in Tables 1–3. These tables show the analyses with s = 1/4 (i.e., the expected
difference in each moderator level corresponding to 1/4 of the mean effect size). Supple-
mentary Tables S1–S3 show the results with s = 1/2 (i.e., the expected difference in each
moderator level corresponding to 1/2 of the mean effect size). Supplementary Tables S4–S6
show the original results of the frequentist analysis [11] compared with the results of the
Bayesian analysis.



Antioxidants 2024, 13, 509 4 of 12

Table 1. Bayesian-model-averaged (BMA) regression of the outcome death and/or major disability in
the NeOProM trials.

Outcome

All Female Male

BF10 BFrf BFmod BFFemale BFMale
RR

95% CrI
RR

95% CrI
RR

95% CrI

L U L U L U

Death or major
disability

(primary analysis)
1.03 0.98 1.09 1.00 0.94 1.08 1.03 0.97 1.09 0.30 0.09 0.76 0.45 0.48

Death or major
disability

(supportive analysis)
1.04 0.98 1.10 1.00 0.93 1.09 1.03 0.98 1.10 0.35 0.12 0.88 0.52 0.59

Death or major
disability

(secondary analysis)
1.05 0.97 1.14 1.02 0.93 1.14 1.04 0.96 1.14 0.51 0.16 0.75 0.53 0.55

Death or major
disability

(trialist defined)
1.07 0.99 1.14 1.02 0.93 1.14 1.06 0.99 1.15 1.04 0.18 1.06 0.85 1.19

Major disability
(primary analysis) 1.00 0.92 1.09 0.98 0.91 1.07 1.02 0.95 1.09 0.21 0.17 0.84 0.43 0.42

Major disability
(supportive analysis) 1.01 0.93 1.10 0.98 0.91 1.07 1.02 0.95 1.10 0.21 0.17 0.92 0.46 0.46

Major disability
(secondary analysis) 0.97 0.85 1.11 0.98 0.86 1.10 1.00 0.88 1.11 0.38 0.35 0.89 0.54 0.53

Major disability
(trialist defined) 1.03 0.94 1.14 0.99 0.90 1.11 1.04 0.96 1.14 0.32 0.22 1.14 0.57 0.63

Death prior to
18–24 months’ age

corrected for
prematurity

1.15 1.01 1.30 1.12 0.95 1.31 1.13 0.98 1.30 3.60 0.50 0.84 2.17 2.45

Death prior to 36 weeks’
postmenstrual age 1.15 1.01 1.32 1.13 0.95 1.32 1.14 0.97 1.33 3.33 0.50 0.86 2.08 2.26

Death prior to discharge 1.14 1.01 1.29 1.12 0.94 1.29 1.13 0.98 1.30 3.15 0.45 0.88 1.96 2.22

BF: Bayes factor; CrI: credible interval; L: lower limit; RR: risk ratio; U: upper limit. RR > 1 indicates higher risk
with lower SpO2 range (85–89% vs. 91–95%).

Regarding the overall results, the Bayesian analysis showed moderate evidence in
favor of H0 (BF10 = 0.30) for the main outcome (death or major disability at 18–24 months’
age corrected for prematurity) (Table 1, Figure 1). When the two components of this major
outcome were analyzed separately, the Bayesian analysis showed moderate evidence in
favor of H1 (BF10 = 3.60) for mortality (lower in the group exposed to the high SpO2
range) and moderate evidence in favor of H0 (BF10 = 0.21) for major disability (Table 1,
Figure 1). The evidence in favor of H1 was also moderate when mortality was defined
before 36 weeks’ PMA (BF10 = 3.33), and before hospital discharge (BF10 = 3.15). The
evidence in favor of H0 was moderate to inconclusive for the other definitions of major
disability used by the investigators (Table 1).
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Table 2. Bayesian-model-averaged (BMA) regression of the outcomes related to neurodevelopmental
impairment in the NeOProM trials.

Outcome

All Female Male

BF10 BFrf BFmod BFFemale BFMale
RR

95% CrI
RR

95% CrI
RR

95% CrI

L U L U L U

Cerebral palsy with
GMFCS ≥ 2 1.01 0.81 1.26 1.01 0.84 1.23 1.01 0.84 1.22 0.55 0.59 0.95 0.67 0.66

Severe visual
impairment

(trialist defined)
1.05 0.75 1.52 1.02 0.77 1.44 1.04 0.78 1.45 0.83 1.00 1.02 0.89 0.90

Deafness requiring
hearing aids or worse 1.01 0.77 1.34 1.00 0.79 1.29 1.02 0.81 1.30 0.67 0.97 1.03 0.77 0.76

Bayley-III language
and/or cognitive

scale < 85
1.00 0.92 0.92 0.99 0.91 1.07 1.01 0.94 1.09 0.22 0.16 0.77 0.40 0.39

Bayley-III cognitive
scale < 85 1.04 0.91 1.20 1.02 0.91 1.18 1.02 0.92 1.17 0.41 0.43 0.86 0.54 0.53

Bayley-III language
scale < 85 1.03 0.94 1.13 0.99 0.91 1.11 1.03 0.95 1.12 0.30 0.30 0.93 0.54 0.51

Bayley-III language or
cognitive scale < 70 0.96 0.81 1.12 0.98 0.82 1.11 0.98 0.83 1.11 0.48 0.51 0.91 0.58 0.58

Bayley-III cognitive
scale < 70 1.02 0.82 1.30 1.02 0.84 1.27 1.01 0.84 1.25 0.58 1.00 0.97 0.68 0.67

Bayley-III language
scale < 70 1.01 0.85 1.20 1.00 0.86 1.16 1.01 0.88 1.17 0.43 0.43 0.92 0.56 0.57

BF: Bayes factor; GMFCS: Gross Motor Function Classification System; CrI: credible interval; L: lower limit;
RR: risk ratio; U: upper limit. RR > 1 indicates higher risk with lower SpO2 range (85–89% vs. 91–95%).

Table 3. Bayesian-model-averaged (BMA) regression of secondary outcomes in the NeOProM trials.

Outcome

All Female Male

BF10 BFrf BFmod BFFemale BFMale
RR

95% CrI
RR

95% CrI
RR

95% CrI

L U L U L U

PDA medically or
surgically treated 1.01 0.96 1.07 1.00 0.94 1.06 1.01 0.96 1.07 0.17 0.05 0.60 0.30 0.30

PDA surgically treated 1.13 0.97 1.32 1.10 0.94 1.33 1.09 0.93 1.32 1.35 0.38 0.90 1.06 1.06

Severe NEC 1.26 1.04 1.53 1.24 0.96 1.53 1.26 1.01 1.55 9.94 0.43 0.99 5.82 6.52

Treated ROP 0.81 0.65 1.03 0.84 0.65 1.07 0.83 0.65 1.06 3.36 8.97 0.98 2.40 2.43

Positive airway press
with ETT at 36 weeks’

PMA
0.99 0.82 1.19 0.97 0.83 1.15 1.02 0.86 1.18 0.47 0.71 1.15 0.73 0.72

Positive airway press
w/o ETT at 36 weeks’

PMA
1.10 0.81 1.02 0.92 0.80 1.05 0.94 0.82 1.06 1.32 0.70 0.83 1.07 0.99

Suppl. O2 w/o positive
press. at 36 weeks’ PMA 0.83 0.75 0.92 0.82 0.73 0.93 0.84 0.75 0.95 99.49 0.21 0.93 49.31 31.11

Moderate-to-severe
BPD 0.89 0.82 0.95 0.85 0.78 0.97 0.93 0.83 1.03 14.44 1.10 3.41 12.32 1.32

Discharged home on
oxygen 1.01 0.90 1.13 1.00 0.91 1.11 1.01 0.92 1.12 0.30 0.38 0.83 0.46 0.46

Readmission to hospital 1.01 0.95 1.08 0.98 0.92 1.05 1.02 0.96 1.09 0.17 0.25 0.91 0.43 0.43

BF: Bayes factor; BPD: bronchopulmonary dysplasia; CrI: credible interval; ETT: endotracheal tube; L: lower
limit; NEC: necrotizing enterocolitis; PDA: patent ductus arteriosus; PMA: postmenstrual age; press: pressure;
ROP: retinopathy of prematurity; RR: risk ratio; Suppl.: supplementary; U: upper limit. RR > 1 indicates higher
risk with lower SpO2 range (85–89% vs. 91–95%).
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Figure 1. Bayesian reanalysis of the results of the NeOProM study. (a) Summary of the overall
and sex-disaggregated results. RR > 1 indicates higher risk with lower SpO2 range (85–89% vs.
91–95%); (b) Summary of Bayes factors (BFs) calculated through Bayesian-model-averaged (BMA)
meta-regression. The BF10 is shown for the overall results and the BFFemale and BFMale for the
results disaggregated by sex; BPD: bronchopulmonary dysplasia; NEC: necrotizing enterocolitis;
ROP: retinopathy of prematurity.

Of the secondary outcomes related to disability, the Bayesian analysis showed mod-
erate evidence in favor of H0 for “Bayley-III language and/or cognitive scale < 85” (BF10
= 0.22) and “Bayley-III language scale < 85” (BF10 = 0.30) (Table 2). With regard to other
secondary outcomes, the Bayesian analysis showed that the evidence in favor of H1 was



Antioxidants 2024, 13, 509 7 of 12

very strong for supplemental oxygen at 36 weeks’ PMA (BF10 = 99.49, lower rate in lower
SpO2 group), strong for moderate-to-severe BPD (BF10 = 14.44, lower rate in lower SpO2
group), strong for severe NEC (BF10 = 9.94, lower rate in higher SpO2 group), and moderate
for treated ROP (BF10 = 3.36, lower rate in lower SpO2 group) (Table 3, Figure 1). In addi-
tion, the analysis showed moderate evidence in favor of H0 for PDA that was medically
or surgically treated (BF10 = 0.17), oxygen at discharge (BF10 = 0.30), and readmission to
hospital (BF10 = 0.17) (Table 3).

With regard to the results disaggregated by sex, the BMA analysis showed marked
differences between the BFs for males and females for two outcomes: supplemental oxygen
at 36 weeks’ PMA and moderate-to-severe BPD (Table 3, Figure 1). BMA regression showed
that the only outcome with moderate evidence for sex differences (BFmod = 3.41) was
moderate-to-severe BPD (Table 3, Figure 1).

To evaluate the robustness of the results, an additional analysis was performed with
the s-value set to 1/2. As is shown in Supplementary Tables S1–S3, the use of an s-value of
1/2 did not produce substantial changes in the results.

4. Discussion

The NeOProM collaboration have provided the highest quality evidence on what SpO2
ranges are most appropriate for extremely preterm infants during the first weeks of life. The
main contribution of this Bayesian reanalysis is that it allows an assessment of the strength
of this evidence in a way that goes beyond the dichotomous categorization (significant vs.
non-significant) of classical frequentist statistics. The Bayesian reanalysis showed that there
is moderate evidence in favor of H0 (BF10 = 0.30) for the primary outcome of the NeOProM
trials (death or major disability). In other words, there is moderate evidence of an absence
of difference between the two SpO2 ranges. This evidence of no difference between the
two saturation ranges was confirmed when major disability was analyzed separately from
mortality (BF10 = 0.21). Interestingly, when mortality was examined separately from major
disability, the Bayesian analysis showed moderate evidence (BF10 = 3.60) in favor of lower
mortality in the group exposed to the higher SpO2 range. This confirms the results reported
in the frequentist analysis as being “statistically significant” (p = 0.01) [11]. Regarding
other outcomes, the Bayesian analysis confirmed that exposure to the higher saturation
range was associated with a decreased risk of NEC but increased risk of ROP. In addition,
the Bayesian analysis showed that the higher SpO2 range was associated with a higher
risk of moderate-to-severe BPD. Finally, when the results were disaggregated by sex, the
BMA regression showed moderate evidence of sex differences in the effects of SpO2 ranges
on BPD.

In spite of the careful design of the NeOProM trials, there are physiological, technical,
and implementation issues with the methods and interventions used in the RCTs that raise
questions about the external validity and practical applicability of the findings [52–57].
Despite nearly identical protocols with similar pulse oximetry masking for the groups,
significant differences in the target were achieved. In both the SUPPORT and COT trials,
the median distribution of SpO2 was higher than the target. The three BOOST II trials
were the most successful in achieving the target for both groups in terms of median
values [57]. In addition, the interpretation of the results was complicated by a revision of
the calibration software for the study oximeters [56,57]. Furthermore, the two comparison
groups may have been more similar than different because of inherent variability in pulse
oximeter accuracy, lack of specification of probe placement, and differences in oxygen
dissociation curves for fetal and adult hemoglobin [52–57]. Therefore, it has been argued
that the NeOProM studies may not have been able to separate two true areas of oxygen
exposure [52–57].

The results of the NeOProM trials were not significant for the primary outcome of
death or major disability (RR 1.04, 95% CI 0.98 to 1.09, p = 0.21) [11]. In the case of non-
significant or null results, clinicians need to be able to gauge the evidence of the absence of
an effect [44]. However, the frequentist approach does not allow us to distinguish whether
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the null results indicate evidence for the absence of differences between the two saturation
ranges or whether they are inconclusive (i.e., absence of evidence). Here, we have shown
how this goal of distinguishing between the two situations can be achieved by using BFs.
The BF10 for the outcome of death or major disability in the NeOProM trials was 0.30.
Consequently, the BF01 was 3.33 (1/0.3 = 3.33). This means that the data are 3.33 times
more likely under H0 than under H1, which is considered moderate evidence in favor of
H0 (no differences between the two saturation ranges).

Despite the limitations mentioned above, the RCTs included in the NeOProM collab-
oration showed differences between the two saturation ranges in several key outcomes,
including mortality. The SUPPORT trial, the first of the NeOProM collaboration to re-
port in-hospital outcomes, reported no difference in the composite primary outcome of
death or ROP, but showed evidence that targeting SpO2 in the lower range (85% to 89%)
was associated with an unanticipated higher mortality rate (RR 1.27; 95% CI, 1.01 to 1.60;
p = 0.04) [13]. A subsequent safety meta-analysis of the SUPPORT trial along with the three
BOOST II trials reported significantly lower mortality in the higher-target group (91% to
95%). As a result, enrollment in two of the BOOST II trials was stopped early because
further enrollment could cause harm to participants [58]. Finally, the NeOProM confirmed
the higher mortality associated with the lower SpO2 range (RR 1.17, 95% CI 1.04 to 1.31,
p = 0.01) [11]. The present Bayesian reanalysis showed that the evidence for this finding
was moderate (BF10 = 3.60). In addition, the Bayesian analysis showed that the evidence
was moderate to strong for increased rates of severe NEC but lower rates of severe ROP
and moderate-to-severe BPD in the group exposed to the lower SpO2 range. Differences in
BPD are difficult to interpret because the definition of BPD is based on the need for oxygen
and/or respiratory support [51]. It is plausible that if the target saturation is higher, there
is a greater likelihood that oxygen will be required to reach that target. Interestingly, the
Bayesian analysis showed moderate evidence of no difference between the two saturation
ranges when the outcome was mechanical ventilation. This suggests that the development
of the more severe forms of lung damage would not be affected by the target SpO2 range.

Regarding other complications, both NEC and ROP are two conditions that neonatolo-
gists strive to prevent because they have a major impact on the outcome of prematurity.
The fact that one is associated with the low SpO2 range and the other with the high SpO2
range raises the clinical dilemma of accepting higher ROP rates to reduce both mortality
and NEC rates. A growing number of observational studies have reported an increase in
the rate of severe ROP in association with the introduction of higher SpO2 ranges [59–62].
However, other investigators have not confirmed this increase in ROP [63,64]. Interestingly,
neither the differences in ROP nor the differences in NEC ultimately had an effect on the
neurodevelopment of the infants in the NeOProM studies. As mentioned above, Bayesian
analysis showed moderate evidence in favor of H0 for the major disability outcome. In
addition, despite the higher rate of ROP in the group exposed to the high SpO2 range,
the Bayesian analysis showed inconclusive evidence in favor of H0 (BF10 = 0.83) for the
outcome of visual impairment at 18 to 24 months of age.

The underrepresentation of female participants in adult RCTs is a growing concern
because low inclusion rates of women may create a lack of crucial knowledge of the
adverse effects and the benefit/risk profile of any given treatment [65]. In the case of RCTs
conducted in the neonatal population, it appears very unlikely that an imbalance in the
inclusion of one of the sexes may occur, but it should be noted that the baseline risk of
morbidity and mortality is different for males and females [18–20]. Therefore, reporting
sex-stratified outcomes for both efficacy and adverse events is of high importance [18,21].
When we analyzed the potential sex differences in the various outcomes of the NeOProM
studies, we found that there were marked differences between males and females in the
strength of evidence for moderate-to-severe BPD, and oxygen requirement at 36 weeks’
PMA (Table 3). However, just as it would be wrong to conclude that the presence of
a statistically significant (p < 0.05) association for males combined with no significance
(p > 0.05) for females implies that there is a sex difference [66], we cannot conclude that the
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presence of evidence supporting H1 for one sex and H0 for the other is evidence in favor
of a difference [67]. When we tested, using BMA-regression, the possible interaction of
biological sex with the different outcomes, we found that the evidence in favor of H1 was
moderate for the outcome of moderate-to-severe BPD, but inconclusive or in favor of H0
(absence of sex differences) for the rest of the outcomes.

The NeOProM project is a major achievement and a milestone in international neonatal
research collaboration and has had a profound impact on clinical practice. The potential
association of the lower SpO2 range (85–89%) with increased mortality and development of
NEC led many NICUs worldwide to implement saturation ranges close to the high ranges
studied in the trials (91–95%), as recommended by scientific panels and organizations [68–70].
However, it should be noted that preterm infants probably have individually different
susceptibility to the damage caused by either hypoxia or hyperoxia [52–57]. Factors such as
perinatal and neonatal comorbidity, gestational and postnatal age, growth, or therapeutic
interventions may have an impact on the severity and extent of hypoxic or oxidative stress.
Therefore, is unlikely that a single narrow SpO2 range can be found that would be safe for
all extremely preterm infants [52–57]. Nevertheless, it does not appear that the efforts of
the neonatal research community will be directed towards conducting new RCTs on SpO2
limits. In a search of https://clinicaltrials.gov/ (accessed on 10 January 2024), we could
not find any ongoing RCT focusing on SpO2 limits in extremely preterm infants outside of
the birth resuscitation period.

In conclusion, the present Bayesian reanalysis of the NeOProM trials confirmed that
there is moderate evidence that exposure to a SpO2 range of 85–89% versus a range of
91–95% is associated with a higher mortality rate in extremely preterm infants. There
is strong evidence that the higher SpO2 range is associated with a lower rate of severe
NEC and moderate evidence that it is associated with a higher rate of severe ROP. Finally,
Bayesian reanalysis showed strong evidence for an association between a higher SpO2
range and BPD. This association was more apparent in females than in males, suggesting
the presence of sex differences in pulmonary susceptibility to oxygen supplementation in
extremely preterm infants. The Bayesian approach may provide a new perspective on the
scientific evidence from RCTs and meta-analyses, and can help in assessing the strength of
evidence that supports clinical decisions.
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