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Raman Spectroscopy 
Of the intrinsic optical methods, Raman Spectroscopy is one of the most established within 
medical research. The method is based on the Raman effect, which was discovered in 1928 by 
C.V. Raman and K.S. Krishnan [1], and later awarded the Nobel Prize in Physics. The Raman 
effect refers to the 1:10 million portion of photons that undergo inelastic scattering following 
excitation of electrons in a material. In biological tissues, the vibrational modes of different 
molecules in the tissue in combination with the composition of nucleic acids, proteins, and 
lipids, give the tissue a unique spectra of Raman scattering [2]. Utilizing sophisticated 
spectroscopic techniques together with laser excitation, the Raman scattering can be detected 
and converted into spectral data for the material observed [3] .   
Raman Spectroscopy has been broadly used in medicine, not least in neurosurgery, and the 
adaptations are rapidly expanding. In particular, it has proven to be a well-suited technique for 
characterization of biological tissues such as tumors [4,5]. Within brain tumor surgery, the 
Raman-based methods can be used for improving diagnostics of brain tumor biopsies [6], in 
vivo tumor detection [7], molecular classification [8] and intraoperative histopathologic 
characterization [9]. The Raman-based imaging methods that are most broadly discussed in 
neurosurgery include: Spontaneous Raman spectroscopy (SRS), coherent anti-Stokes Raman 
scattering microscopy (CARS) and stimulated Raman histology (SRH) [10].   
 
Hyperspectral Imaging  
Multispectral and hyperspectral imaging allow the capture and interpretation of wavelengths 
and color bands beyond our physiological capability (which is a narrow range of 380 to 780 
nm, with three color bands). The difference between multispectral and hyperspectral lies in the 
count and width (nm) of the bands of color that they cover: hyperspectral includes bands with 
narrow widths (10-20 nm) and up to hundreds or thousands of them, whereas multispectral 
includes three to ten bands that are much wider. From now on, we will refer to them both as 
“hyperspectral imaging”. When captured, each pixel of the hyperspectral image presents a more 
narrow and precise representation of the electromagnetic spectrum, and therefore gives us a 
more distinguished characterization of the tissue observed.   
The data that is extracted in hyperspectral imaging is presented as a hyperspectral data cube. 
Spanning three dimensions, two dimensions (2D) of space (x and y) and a third dimension in 
spectra (wavelength), the data can be variable, and is able to distinguish various tissues and 
states of the tissues by their optical properties. The optical properties of the tissues themselves 
are determined by the molecular composition [11]. There are different computational 
techniques for visualizing and interpreting the data that is acquired through hyperspectral 
imaging. With the recent progress in acquisition and interpretation of data from these systems, 
they are attracting interest for various applications within the neurosurgical field [11].   
 
Optical Coherence Tomography   
Optical Coherence Tomography (OCT) is an established optical imaging technique that has 
been implemented in clinical practice within medical specialties including cardiology [12], 
dermatology [13], and neurosurgery [14]. One of the first and foremost areas of application was 
ophthalmology, where it was first used for in vivo retinal imaging by Fercher et al. [15].   
OCT is based on utilization of broad-bandwidth light sources and interferometry with a low 
coherence length. The emitted light is coupled into an interferometer, a device that extracts 
information from interference. There are two light arms in the system, a sample arm and a 
reference arm. The sample arm emits light toward the sample of interest, usually combined with 
an objective lens to focus the light, and the reference arm towards a mirror. Backscattered light 



from the sample and light from the reference are combined to generate an interference pattern 
that is detected by a detector. Two-dimensional or three-dimensional models are then 
reconstructed by scanning through the sample surfaces [16].  
As OCT can have image resolutions of 1-10 µm in all analyzed dimensions and as it is optimal 
for transparent or semi-transparent objects of limited depth, it is well suited for imaging 
biological tissue [17].  
 
Diffuse Reflectance Spectroscopy  
Diffuse Reflectance Spectroscopy (DRS) is an optical technology that is based on properties of 
elastic scattering of light, as opposed to Raman’s, which is based on inelastic scattering. In 
DRS, the optical fiber probe collects light originally emitted by the illumination fiber after it is 
partially scattered back by the tissue. The partial scatter is a result of absorption, reflection, and 
scattering. The elastic scattering can be used for precise optical characterization of tissues [18]. 
The molecular composition determines the results of the DRS-fingerprint of the specific tissue. 
The different degree and spectrum of light absorption in different tissues also play a role in the 
tissue-specific patterns obtained. Light absorption is mainly related to the types and 
concentration of endogenous chromophores present within tissues (e.g., hemoglobin, beta-
carotene, melanin, myoglobin) [19]. 
  



Table S1 
PRISMA-P 2015 Checklist  

This checklist has been adapted for use with protocol submissions to Systematic Reviews 
from Table 3 in Moher D et al: preferred reporting items for systematic review and meta-
analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews 2015 4:1 

Section/topic # Checklist item 
Information 
reported  Line 

number(s) 
Yes No 

ADMINISTRATIVE INFORMATION   
Title  
  
Identification  1a Identify the report as a protocol of a 

systematic review 
  Line 1 

  Update  1b 
If the protocol is for an update of a 
previous systematic review, identify as 
such 

  Not 
applicable 

Registration  2 
If registered, provide the name of the 
registry (e.g., PROSPERO) and 
registration number in the Abstract 

  Not 
applicable 

Authors  

  Contact  3a 

Provide name, institutional affiliation, 
and e-mail address of all protocol 
authors; provide physical mailing 
address of corresponding author 

  Lines 460-
470 and 
484-488 

  
Contributions  3b 

Describe contributions of protocol 
authors and identify the guarantor of 
the review 

  Lines 472-
483 

Amendments  4 

If the protocol represents an 
amendment of a previously completed 
or published protocol, identify as such 
and list changes; otherwise, state plan 
for documenting important protocol 
amendments 

  Not 
applicable 

Support  

  Sources  5a Indicate sources of financial or other 
support for the review 

  Not 
applicable 

  Sponsor  5b Provide name for the review funder 
and/or sponsor 

  Not 
applicable 

  Role of 
sponsor/funder  5c 

Describe roles of funder(s), sponsor(s), 
and/or institution(s), if any, in 
developing the protocol 

  Not 
applicable 

INTRODUCTION  

Rationale  6 Describe the rationale for the review in 
the context of what is already known 

  Lines 6-11 
and 90-96 



Section/topic # Checklist item 
Information 
reported  Line 

number(s) 
Yes No 

Objectives  7 

Provide an explicit statement of the 
question(s) the review will address 
with reference to participants, 
interventions, comparators, and 
outcomes (PICO) 
 

  Lines 97-
102 

METHODS  

Eligibility 
criteria  8 

Specify the study characteristics (e.g., 
PICO, study design, setting, time 
frame) and report characteristics (e.g., 
years considered, language, 
publication status) to be used as 
criteria for eligibility for the review 

  Lines 112-
143 

Information 
sources  9 

Describe all intended information 
sources (e.g., electronic databases, 
contact with study authors, trial 
registers, or other grey literature 
sources) with planned dates of 
coverage 

  Lines 146-
151 

Search strategy  10 

Present draft of search strategy to be 
used for at least one electronic 
database, including planned limits, 
such that it could be repeated 

  Line 150 

STUDY RECORDS  

  Data 
management  11a 

Describe the mechanism(s) that will be 
used to manage records and data 
throughout the review 

  Lines 154-
163 and 
166-174 

  Selection 
process  11b 

State the process that will be used for 
selecting studies (e.g., two independent 
reviewers) through each phase of the 
review (i.e., screening, eligibility, and 
inclusion in meta-analysis) 

  Lines 154-
159 

  Data 
collection 
process  

11c 

Describe planned method of extracting 
data from reports (e.g., piloting forms, 
done independently, in duplicate), any 
processes for obtaining and confirming 
data from investigators 

  Lines 166-
174 

Data items  12 

List and define all variables for which 
data will be sought (e.g., PICO items, 
funding sources), any pre-planned data 
assumptions and simplifications 

  Lines 167-
172 

Outcomes and 
prioritization  13 List and define all outcomes for which 

data will be sought, including 
  Lines 209-

216 



Section/topic # Checklist item 
Information 
reported  Line 

number(s) 
Yes No 

prioritization of main and additional 
outcomes, with rationale 

Risk of bias in 
individual 
studies  

14 

Describe anticipated methods for 
assessing risk of bias of individual 
studies, including whether this will be 
done at the outcome or study level, or 
both; state how this information will 
be used in data synthesis 

  Lines 177-
187 

DATA 

Synthesis  

15a Describe criteria under which study 
data will be quantitatively synthesized 

  Not 
applicable 

15b 

If data are appropriate for quantitative 
synthesis, describe planned summary 
measures, methods of handling data, 
and methods of combining data from 
studies, including any planned 
exploration of consistency (e.g., I 2, 
Kendall’s tau) 

  Not 
applicable 

15c 
Describe any proposed additional 
analyses (e.g., sensitivity or subgroup 
analyses, meta-regression) 

  Not 
applicable 

15d 
If quantitative synthesis is not 
appropriate, describe the type of 
summary planned 

  Lines 218-
228 

Meta-bias(es)  16 

Specify any planned assessment of 
meta-bias(es) (e.g., publication bias 
across studies, selective reporting 
within studies) 

  Lines 183-
184 

Confidence in 
cumulative 
evidence  

17 
Describe how the strength of the body 
of evidence will be assessed (e.g., 
GRADE) 

  Lines 189-
204 

 



  



Table S2. Summary table of search strategy. The final search results are marked 
using italics. 

Source Search Results 
Web of Science 
 #1 “Diffuse reflectance spectroscopy” OR “Raman spectroscopy” OR 

“optical coherence tomography” OR “multispectral imaging” OR 
“hyperspectral imaging” OR Spectral Analysis, Raman OR 
Spectroscopy, Near Infrared OR Tomography, Optical Coherence 

272,092 

#2 Brain OR neurosurgery OR intracranial 1,528,093 
#3 Neoplasm OR neoplasma OR tumor OR tumors OR tumour OR 

tumours OR metastasis OT metastases OR glioma OR gliomas 
2,201,636 

#4 #1 AND #2 AND #3 488 
Embase 
 #1 “hyperspectral imaging”/exp AND ([article]/lim OR [article in 

press]/lim) 
576 

#2 “multispectral imaging”/exp AND ([article]/lim OR [article in 
press]/lim) 

228 

#3 “Diffuse reflectance spectroscopy”/exp AND ([article]/lim OR 
[article in press]/lim) 

2,857 
 

#4 “Raman spectroscopy”/exp AND ([article]/lim OR [article in 
press]/lim) 

41,416 

#5 “optical coherence tomography/exp AND ([article]/lim OR [article 
in press]/lim) 

50,177 

#6 “Near Infrared OR Tomography”/exp AND ([article]/lim OR 
[article in press]/lim) 

19,519 

#7 (“hyperspectral imaging” OR “multispectral imaging” OR “diffuse 
reflectance spectroscopy” OR “raman spectroscopy” OR “optical 
coherence tomography” OR “near infrared spectroscopy:ab,kw,ti) 
AND ([article]/lim OR [article in press]/lim) 

95,451 

#8 “neoplasm”/exp AND ([article]/lim OR [article in press]/lim) 3,333,893 
#9 neoplasm OR neoplasms OR tumor OR tumors OR tumour OR 

tumours OR metastasis OR metastases OR glioma OR 
gliomas:ab,kw,ti) AND ([article]/lim OR [article in press]/lim) 

2,830,101 

#10 “brain”/exp AND ([article]/lim OR [article in press]/lim) 1,062,044 
#11 “neurosurgery”/exp AND ([article]/lim OR [article in press]/lim) 208,669 
#12 (brain OR neurosurgery OR intracranial:ab,kw,ti) AND 

([article]/lim OR [article in press]/lim) 
1,941,534 

#13 #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 123,717 
#14 #8 OR #9 3,898,772 
#15 #10 OR #11 OR #12 2,256,907 
#16 #13 AND #14 AND #15 897 

Medline 
 #1 exp Hyperspectral Imaging/ 221 

#2 exp Spectroscopy, Near-Infrared/ 15,037 
#3 exp Spectrum Analysis, Raman/ 24,798 
#4 exp Tomography, Optical Coherence/ 41,925 



#5 (hyperspectral imaging or multispectral imaging or raman 
spectroscopy or diffuse reflectance spectroscopy or optical 
coherence tomography).ab,kf,ti. 

77,334 
 

#6 exp Neoplasms/ 3,625,535 
#7 (neoplasm or neoplasms or tumor or tumors or tumour or tumours 

or metastasis or metastases or glioma or gliomas).ab,kf,ti. 
2,166,761 

#8 exp Brain/  1,280,937 
#9 exp Neurosurgery/ 16,051 
#10 (brain or neurosurgery or intracranial).ab,kf,ti. 1,204,505 
#11 1 or 2 or 3 or 4 or 5 117,909 
#12 6 or 7 4,205,447 
#13 8 or 9 or 10 1,921,688 
#14 11 and 12 and 13 485 

 
 
 
Table S3 Data extraction. A summary of the data that was extracted in the Excel Microsoft 
Office 2020 data-extraction manual.  
Category  Data extracted 

Article information title, year of publication, DOI, first author, journal, country. 

Optical method details optical method, system/provider, hand-held device or not, 
exposure time/time to data acquisition, working distance, 
number of spectra/images/pixels obtained, range of 
analyzed optical spectra. 
 

Tissue characteristics in vivo/ex vivo, preparation (if applicable), tumor/tissue 
type, number of patients, number of tumor/tissue samples, 
sample size. 

Study outcomes data processing/classification method, sensitivity, 
specificity, accuracy, other precision metrics, value of 
other precision metric, control. 

Comments study-specific comments.  

 
 
  



Table S4. Characteristics of studies involving Raman Spectroscopy. 

Study Ye
ar Country 

Tumor 
(WHO 
grades) 

In/
ex 
viv
o 

Patients 
(tumor/no
rmal)  

 
Samples 
(tumor/nor
mal) 

 Spectra 
(n) 

Diagno
stic 
algorit
hm 

Riva et 
al. [20] 

20
21 Italy 

OD II-
III, A III, 
GBM IV 

Ex 
viv
o 

- 63 (38/25) 
3450 
(2073/13
77) 

RF, Gb 

Sciortino 
et al. [21] 

20
21 Italy 

A II-III, 
OD II-
III, GBM 
IV 

Ex 
viv
o 

37 
 38 2073 

RBF-
SVM, 
XGB 

Kopec et 
al. [22] 

20
21 Poland 

MET, GS 
IV, AOD 
III, MEN 
II, MT I, 
PT, NF 

Ex 
viv
o 

8 8 135600 PLS-
DA 

Jelke et 
al. [23] 

20
21 

Luxemb
ourg MEN 

Ex 
viv
o 

59 (48/11) 223 
529 
(422/107
) 

SVM 

Pekmezci 
et al. [24] 

20
21 USA 

GBM IV, 
AA III, 
AODIII, 
OD 

Ex 
viv
o 

31 179 - - 

Aguiar et 
al. [25] 

20
20 Brazil 

GBM, S, 
MB, 
MEN 

Ex 
viv
o 

- 10 
 263 

LDA, 
PLS-
DA 

Livermor
e et al. 
[26] 

20
20 UK 

GBM, A 
II-III, 
AOD III, 
OD II, 
tumor 
resection 
cavity 

Ex 
viv
o 

- 
Part 
1: 
62 

Part 
2: 
23 

11624 
(9799/18
25) 

PC-
LDA 

Bury et 
al. 1[27] 
 
 

20
20 UK 

G I-IV, 
MEN I-
III 
 

Ex 
viv
o 

- 96 (88/8) 
1911 (30 
removed
) 

PCA-
QDA 

Hollon et 
al. 1 [28] 

20
20 USA Unspecifi

ed 

Ex 
viv
o 

278 - - CNN 

Bovenka
mp et al. 
[29] 

20
19 Austria PT 

Ex 
viv
o 

20 28 (28/0) 64,087 PCA, 
kNN 

Sun et al. 
[30] 

20
19 China G II-IV 

Ex 
viv
o 

- 47 (23/24) - 
PLS, 
SVM, 
ANN 

Morais et 
al. [31] 

20
19 UK MEN I-II 

Ex 
viv
o 

- 90 (90/0) - PCA-
LDA, 



SPA-
QDA 

Galli et 
al. [32] 

20
19 

German
y 

G, MET, 
MEN, S, 
”others” 

Ex 
viv
o 

209 209 
(202/7) 

1070 
(1033/37
) 

PCA 

Uckerma
nn 
 et al. 
[33] 

20
18 

German
y G 

Ex 
viv
o 

- 36 - - 

Bury et 
al. 2 [34] 

20
18 UK MET 

Ex 
viv
o 

- 21 - PCA-
LDC 

Hollon et 
al. 2[35] 

20
18 USA 

E, PA, 
circumsc
ribed G, 
EP, GM, 
HB, 
DMG 

Ex 
viv
o 

33 - - - 

Jermyn 
et al. 1 
integrate
d[36] 

20
17 Canada MET, G 

II-IV 

In 
viv
o 

15 
161 
(92/69) 
sites 

 Bt, 
SVM 

Stables et 
al. [37] 

20
17 UK 

GBM, 
MET 
 
 
 
 
 
 

Ex 
viv
o 

41 48  
952 
(795/157
) 

KNN, 
SVM, 
LDA 
 

Jermyn 
et al. 2 
[38] 

20
16 Canada 

A II-III, 
OD II-
III, OA 
III, GBM 
IV 

In 
viv
o 

13 105 
(60/45) - - 

Liu et al. 
[39] 

20
16 China G 

Ex 
viv
o 

20 - 133 
(67/66) - 

Jermyn 
et al. 3 
[40] 

20
15 Canada 

A, OD, 
A, OD, 
OA, 
GBM, 
MET 

In 
viv
o 

17 - 

161 
(95/66) 
(analysis
) 

Bt 

Desroche
s et al. 
[41] 

20
15 Canada G 

In 
viv
o 

10 - 70 
(58/12) Bt 

Ji et al. 
[42] 

20
15 USA G 

Ex 
viv
o 

22 - - GAM 



Kalkanis 
et al. [43] 

20
14 USA GBM 

Ex 
viv
o 

17 - 
 3152 DFA 

Bergner 
et al. [44] 

20
12 

German
y MEN 

Ex 
viv
o 

- 22 (21/1) - 

Linear 
SVM, 
Radial 
SVM, 
PLS-
DA 

Auner et 
al. [45] 

20
12 USA 

A, MB, 
ODG, E, 
AEP, GG 

Ex 
viv
o 

- 19 
 435 DFA 

Leslie et 
al. [46] 

20
12 USA 

MB, E, 
OD, A, 
GG, 
“Other 
glioma” 

Ex 
viv
o 

- 64 (31/33) 
649 
(321/328
) 

- 

Kojenovi
c et al. 1 
[47] 

20
05 

Netherla
nds MEN 

Ex 
viv
o 

20 20 

38 
“mappin
g 
experim
ents” 

PCA, 
KCA, 
LDA 

Kojenovi
c et al. 2 
[48] 

20
02 

Netherla
nds GBM 

Ex 
viv
o 

20 20 

24 
“mappin
g 
experim
ents” 

PCA, 
KCA, 
LDA 

Abbreviations:  
Tumors: A = Astrocytoma; AA = Anaplastic astrocytoma; AEP = Anaplastic ependymoma; 
AG = Astroganglioma; AOD = Anaplastic oligodendroglioma; E = Embryonal; EP = 
Ependymoma; G = Glioma; GBM = glioblastoma; GG = Ganglioglioma; GM = Germinoma; 
GS = Gliosarcoma; HB = Hemangioblastoma; M = Meningioma; MB = Medulloblastoma; Met 
= Metastasis; MT = Meningothelioma; N = Normal; NF = Neurofibroma; OA = 
Oligoastrocytoma; OD = Oligodendroglioma; PA = Pilocytic astrocytoma; and PT = Pituitary. 
Diagnostic algorithms: ANN = Artificial Neural Network; Bt = Boosted trees; CNN = 
Convolutional Neural Network; DA = Discriminant analysis; DFA = Discriminant Function 
Analysis; DNN = Deep Neural Networks; GAM = Generalized additive model; Gb = Gradient 
Boosting; KCA = K-means Cluster Analysis; KNN = K- Nearest Neighbour classifier; kNN = 
kernel Neural Network; LDA = Linear Discriminant analysis; PC = Principal Components; 
PCA = Principal Component Analysis; PLS = Partial least squares; QDA = Quadrantic 
Discriminant Analysis; RBF = Radial Basis Function kernel; RF = Random Forrest; SPA = 
Successive Projections Algorithm; SVM = Support Vector Machine; and XGB = eXtreme 
Gradient Boosted trees.



Table S5. Study characteristics. Table listing the characteristics of all included studies investigating HSI. 

Reference Year Country 
Tumor 
(WHO 
grade) 

In/Ex 
Vivo 

Patient 
(n) 

Sample  
(n) 

Diagnostic 
algorithm 

Urbanos et al. 
[49] 2021 Spain G III, 

GBM In vivo 12 - SVM, RF, 
CNN 

Manni et al. 
[50] 2020 Netherlands, 

Sweden GBM IV In vivo 16 - 
2D-3D-
CNN 
(hybrid) 

Fabelo et al. 1 
[51] 2019 Spain, USA GBM In vivo 16 - 

2D-CNN, 
1D-DNN 
 

Fabelo et al. 2 
[52] 2019 Spain, USA GBM In vivo 16 - 2D-CNN, 

1D-DNN 

Ortega et al. 
[53] 2018 Spain GBM IV Ex vivo 10 21 

SVMs, 
ANNs, 
RFs 

Abbreviations: Tumor: G = Glioma, GB = Glioblastoma multiforme  
Diagnostic algorithms: ANN = Artificial Neural Networks, CNN = Convolutional Neural networks, DNN = Deep Neural Networks, RF = Random 
Forrest, SVM = Support Vector Machines 
  



Table S6. Study characteristics. Table listing the characteristics of all included studies investigating OCT. 

Reference Year Country 
Tumor 
(WHO 
grade) 

In/ex vivo Patient  
(n) 

Sample  
(n) 

Images  
(n) 

Diagnostic 
algorithm 

Möller et 
al. [54] 2021 Germany METs Ex vivo 20 22 - - 

Yashin et 
al. [55] 2019 Russia A II-III, 

GBM 
In vivo/ex 
vivo 

Ex vivo: 
30 

 
Ex Vivo: 
176 

Ex Vivo: 
274  

Visual 
assessment 

Juarez-
Chamb et 
al. [56] 

2019 USA G II-IV In vivo 21 - - - 

Kut et al. 
[57] 2015 USA - Ex vivo  37 128 4675 - 

Abbreviations: A = Astrocytoma, G = Glioma, and MET = Metastases. 
  



Table S7 Study characteristics. Table listing the characteristics of all included studies investigating DRS. 
Reference Year 

 
 

Country System Tumor 
(WHO 
grade) 

In/ex 
vivo 

Patients 
(n) 

Samples 
(n) 

Measurements 
(n) 

Diagnostic 
algorithm 

Histopathology 
(HP); Normal 
Brain Tissue 
(NBT) 
(Yes/No) 

Du Le et 
al. [58] 

2017 Canada Handheld fiber 
optic probe 

GBM, 
low 
grade G 

Ex vivo 7 22  - - HP: Yes, NBT: 
No 

Lin et al. 
1 [59] 

2010 USA Handheld fiber 
optic probe 

PA, GG, 
CS, MB, 
high 
grade G, 
MAG 

In vivo 12 - 59 - HP: Yes, NBT: 
Yes 

Majumder 
et al. [60] 

2007 USA custom designed 
fiber-optic probe 
(Visionex 
Inc.,Atlanta, GA) 

- In vivo 35 - 250  MRDF-
SMLR, 
NMC 

HP: Yes, NBT: 
Yes 

Lin et al. 
2 [61] 

2001 USA Handheld fiber 
optic probe 

A, AG, 
GBM, 
OD 
METs 

In vivo 26 - 120 - HP: Yes, NBT: 
Yes 

Abbreviations:  
Tumors: A = Astrocytoma, AG = Astroganglioma, CS = Chondrosarcoma, G = Glioma, GBM = Glioblastoma multiforme GG = 
Ganglioglioma, MAG = Monomorphous angiocentric glioma, MB = Medulloblastoma, and MET = Metastases.  
Diagnostic Algorithm: MRDF-SMLR = Maximum representation and discrimination feature-sparse multinominal logistic regression, and NMC 
= Nearest-mean classifier. 
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