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Abstract: Background: Migraine is a prevalent episodic brain disorder known for recurrent attacks
of unilateral headaches, accompanied by complaints of photophobia, phonophobia, nausea, and
vomiting. Two main categories of migraine are migraine with aura (MA) and migraine without aura
(MO). Main body: Early twin and population studies have shown a genetic basis for these disorders,
and efforts have been invested since to discern the genes involved. Many techniques, including
candidate-gene association studies, loci linkage studies, genome-wide association, and transcription
studies, have been used for this goal. As a result, several genes were pinned with concurrent and
conflicting data among studies. It is important to understand the evolution of techniques and
their findings. Conclusions: This review provides a chronological understanding of the different
techniques used from the dawn of migraine genetic investigations and the genes linked with the
migraine subtypes.

Keywords: migraine; migraine with aura (MA); migraine without aura (MO); familial hemiplegic
migraine (FHM); genetics

1. Introduction

Migraine is a common episodic brain disorder known for its attacks of severe unilat-
eral headaches, accompanied by photophobia, phonophobia, nausea, and vomiting [1–3].
According to the Global Burden of Disease Study in 2020, migraine remains second among
the etiologies of disability [4,5], affecting 18% of women and 6% of men. Two prevalent
types of migraine are migraine with aura (MA) and migraine without aura (MO). MA is a
severe headache preceded by transient neurologic symptoms such as visual, sensory, and
speech disturbances, which are not found in MO [6]. In addition, in the latest International
Headache Society (IHS) criteria, MA includes motor and brainstem symptoms [1] (Table 1).
The possible underlying mechanism of the aura is a brief wave of nervous system cell
depolarization, propagating to the zones in the occipital lobe (cortical spreading depolar-
ization), including the visual cortex, leading to the suppression of brain activity [7]. The
exact relationship between cortical spreading depression (CSD) and headache is unknown,
but there is evidence that CSD activates trigeminal nociceptors in rats [8,9].

Clinically, MA and MO are two different diagnosable entities, with the latter being
more prevalent [10]. The international classification of headache disorder (ICHD-3) criteria
for the diagnosis of the mentioned types of migraine are shown in Table 1 [11]. However,
there is a historical unsettled debate on whether MO and MA are different disease entities
or different manifestations of the same disease. This debate, while not directly related to
the genetic basis of migraine, is an important aspect of the overall understanding of the
condition and its subtypes.
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Table 1. a. ICHD-3 criteria for migraine with aura diagnosis [11]. b. ICHD-3 criteria for migraine
without aura diagnosis.

a

A. At least 2 attacks fulfilling criteria B and C

B. One or more of the following fully reversible aura symptoms:
1. Visual
2. Sensory
3. Speech and/or language
4. Motor
5. Brainstem
6. Retinal

C. At least 2 of the following 4 characteristics:
1. At least 1 aura symptom spreads gradually over greater than or equal to 5 m, and/or more symptoms occur in succession
2. Each individual aura symptom lasts 5–60 m
3. At least 1 aura symptom is unilateral
4. The aura is accompanied, or followed within 60 m, by a headache

D. Not better accounted for by another ICHD-3 diagnosis, and transient ischemic attack has been excluded

b

A. At least 5 attacks fulfilling criteria B–D

B. Headache attacks lasting 4–72 h (when untreated or unsuccessfully treated)

C. Headache has at 2 two of the following 4 characteristics:

1. Unilateral location

2. Pulsating quality

3. Moderate or severe pain intensity

4. Aggravation by or causing avoidance of routine physical activity (e.g., walking or climbing stairs)

D. During headache at least one of the following occurs:

1. Nausea and/or vomiting

2. Photophobia and phonophobia

E. Not better accounted for by another ICHD-3 diagnosis

Note 1: When, for example, 3 symptoms occur during an aura, the acceptable maximal duration is 3 × 60 m.
Motor symptoms may last up to 72 h. Aphasia is always regarded as a unilateral symptom, dysarthria may or
may not be. Note 2: One or a few migraine attacks may be difficult to distinguish from symptomatic migraine-like
attacks. Furthermore, the nature of a single or a few attacks may be difficult to understand. Therefore, at least five
attacks are required. Individuals who otherwise meet the criteria for 1.1 Migraine without aura but have had fewer
than five attacks should be coded 1.5.1 Probable migraine without aura. When the patient falls asleep during a
migraine attack and wakes up without it, the duration of the attack is reckoned until the time of awakening. In
children and adolescents (aged under 18 years), attacks may last 2–72 h (the evidence for untreated durations of
less than two hours in children has not been substantiated).

Hemiplegic migraine, a debilitating chronic disorder diagnosed as familial (FHM) or
sporadic (SHM), is a rare condition that comprises an aura and migraine stage. Affected
individuals usually experience reversible neurological symptoms [12], such as hemiplegia
or motor impairment, in the aura phase before the onset of migraine headaches [1,11].
The familial variant, an inherited autosomal dominant channelopathy [13], affects an
individual’s first- or second-degree relatives [14], and can be divided into three unique
types as follows [15]:

(1) FHM1 defined by mutations in the CACNA1A gene in chromosome 19,
(2) FHM2 with a mutant ATP1A2 gene in chromosome 1,
(3) FHM3 with SCN1A mutations in chromosome 2.

Although the genes implicated in the familial form are quite well understood [16,17],
their role in conjunction with other unknown genes in the sporadic form is relatively ob-
scure [18]. Sporadic hemiplegic migraine is akin to the familial version in that both share
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clinical commonalities and, in some cases, genetic causes [19]. To illustrate, a 57-year-old
women, who displayed an array of symptoms, such as hemiparesis, had a genetic mutation
(T1174s) in the sodium voltage-gated channel gene (SCN1A), which led to a sporadic hemi-
plegic migraine diagnosis; the aforementioned gene is also implicated in familial hemiplegic
migraine, which suggests a genetic overlap between the two hemiplegic migraine vari-
ants [20]. Although many studies have found analogies between the two variants [21,22],
the full extent of the genetic basis for the sporadic version remains contentious [23].

In this article, we aim to review the literature on the genetics of migraine. The goal of
this review is to provide a chronological perspective on the advancements in the genetics
of MO and MA since their first investigation. In addition, we aim to discuss the current
knowledge of familial hemiplegic migraine.

2. Migraine without Aura and Migraine with Aura

The first population study on MO/MA genetics was published by Rasmussen et al. in
1992 [24], and the first twin study was published in 1998 by Ziegler et al. [25]. In 1995, the
first candidate-gene association study (CGAS) was conducted by Frosst et al. [26]; however,
the bulk of CGAS migraine research was published after the year 2004 [27–36]. Then, linkage
studies, latent class analyses, and trait component analyses were adapted [37–39]. Finally,
genome-wide association studies (GWAS), RNA sequencing, and exome/genome sequencing
studies were applied to migraine genetics in 2010, 2016, and 2019 by Anttila et al. [40],
Perry et al. [41], and Williams et al. [42], respectively. In this section, we will delve deeper into
the findings of every research technique in migraine genetics. Figure 1 displays the chronology
of MO/MA genetics research.
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2.1. Genetic Load of MO and MA

Migraine has long been observed to cluster in families, with several patients having their
first-degree relatives affected by the condition [43]. Starting in the 1990s, migraine and its
genetic mechanism has been demonstrated by twin, family, and population studies [25,43–48].
Population-based studies have shown an increase in familial migraine risk [24,44–46,49].
Indeed, the risk of migraine was 50% higher in relatives of migraine probands [46]. Russel et al.
showed that first-degree relatives of patients with MO had approximately a two-fold
increased risk for MO, and 1.4 times the risk of having MA. In contrast, they showed
that first-degree relatives of patients with MA had a four-fold increase in MA risk, but no
increased risk for MO [44]. In addition, another study found a three-fold increase in the
risk of MO and a two-fold increase in the risk of MA among first-degree relatives [24,43,49].
Additionally, twin studies provided a great insight into the heritability of migraine. For
instance, Gervil et al. and Ulrich et al. analyzed Danish twin populations for the inheritance
of MO and MA, respectively [48,50]. The results showed a higher pairwise concordance
rate in monozygotic twins (MZ) when compared to dizygotic twins (DZ) (MA p < 0.001 and



J. Clin. Med. 2024, 13, 2701 4 of 30

MO p < 0.05) (Table 2) [47,48,50–52]. In addition, pro-band-wise concordance was shown
to be higher in MZ when compared to DZ in both MO and MA, as well as in different
genders. Furthermore, a study of 30,000 twin pairs showed that genetic factors contribute
equally to migraine phenotype as compared to the environment [53]. Finally, a recent
study published in 2015 showed a heritability rate for migraine of 42% [54]. All of these
published data lead to the conclusion that both MO and MA are a combination of genetics
and environmental factors (e.g., stress and bright light) [54,55]. In addition, heritability was
seen to be higher in migraine with aura than migraine without aura, leading to a higher
genetic susceptibility [56–58].

Table 2. Pairwise concordance rate and proband-wise concordance rate in monozygotic (MZ) and
dizygotic (DZ) twins, reported by [47,48,50–52]. (Inspired from Russel et al., 2001).

Men Women Overall

MZ DZ MZ DZ MZ DZ

Migraine with aura

Pairwise concordance rate 36% 17% 32% 8% 34% 12%

Proband-wise concordance rate 53% 29% 48% 15% 50% 21%

Migraine without aura

Pairwise concordance rate 17% 8% 33% 23% 28% 18%

Proband-wise concordance rate 29% 15% 50% 37% 43% 31%

Initially, due to the assumption that a migraine trait is a simple Mendelian transmis-
sion, several studies have been conducted, but have failed to clearly discern the mode of
inheritance [59–61]. For instance, a study suggested a “sex-limited” inheritance of MO [62].
Another study suggested an autosomal recessive inheritance for MO and MA [60]. Several
transmission patterns were hypothesized, but it is widely accepted nowadays that migraine
is a genetic multifactorial trait [43,45,63]. Several genes have been correlated to MO and/or
MA, which will be discussed below.

2.2. Are MO and MA Different Diseases?

Some clinicians might argue that MA and MO are different manifestations of the same
disease [64,65]. Indeed, headache symptoms are virtually identical and might co-occur in
the same patient [66], and the type of migraine can change over the years (aura attacks may
develop in the elderly) [67]. The same prophylactic and treatment drugs are also effective
in both [66]. However, each MO and MA has its own diagnostic criteria in the ICHD-3 [11],
and genetic studies have shown different genetic loads for both [68,69].

Some studies have shown a common genetic basis for MA and MO. The international
Brainstorm consortium, which compared genetic information between 265,218 patients and
784,643 controls, showed a significant genetic correlation between MO and MA [70]. In
addition, the analysis of 23,000 single nucleotide polymorphisms (SNPs) showed that the
majority of those analyzed were standard in MO and MA patients [71]; recently, Zhao et al.
showed similar results by taking into account all available genetic information [72]. Con-
versely, several studies showed different genetic components for MO and MA [40,73].
Recently, a study analyzed the polygenic risk score of 21 migraine-associated SNPs and
showed their association with MO only. However, many argue that research techniques
such as genome-wide association studies (GWAS) particularly identify MO genes, as GWAS
detects only top potential SNPs [2,3]. This study involved 152 MA patients compared to
the 295 MO cases, which might lead to diminished statistical power when detecting MA
genes [2]. In conclusion, with the available evidence, MO and MA are more alike than
different; however, further studies are needed to discover the causal genes.
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3. Various Techniques Unveiling the Genetic Basis of MO and MA

Several techniques have been used to characterize the genetic basis of MO and MA,
starting with the population studies described above. The main methods used to reach this
goal were as follows:

(1) candidate-gene association studies (CGAS),
(2) linkage studies,
(3) genome-wide association studies (GWAS),
(4) exome/genome sequencing,
(5) RNA and transcriptome sequencing.

3.1. Candidate-Gene Association Studies (CGAS)

For several years, the genetic basis of migraine was analyzed via focusing on hypoth-
esized candidate genes from hypothesized migraine pathophysiological pathways. For
instance, migraine has been linked to neurological, vascular, hormonal, and inflammatory
pathways [74]. Using CGAS, approximately 100 genes were correlated with migraine [6].

Homocysteine is an excitatory amino acid that plays a role in the pathophysiology
of cerebrovascular diseases [75]. Knowing that migraine has a cerebrovascular basis [27],
researchers hypothesized that the genes responsible for homocysteine metabolism might be
involved in the etiology of migraine. For example, the methylenetetrahydrofolate reductase
gene (MTHFR), which is involved in the metabolism of folate, catalyzes the formation of
5-methylenetetrahydrofolate from 5,10-methylenetetrahydrofolate. The latter is the active
form of folate and donates a carbon molecule for homocysteine for it to be converted into
methionine [76]. A mutation in MTHFR was hypothesized to cause hyperhomocysteinemia
and, consequently, migraine. Indeed, Frosst et al. reported an association between the
homozygous C667T mutation of MTHFR and hyperhomocysteinemia [26]. Most studies
identified the T-allele of the MTHFR C677T polymorphism to correlate with migraine,
specifically MA (but no MO) [27–36]. Scher et al. studied 187 MA and 226 MO patients,
in addition to 1212 control non-migraineurs. The group showed that the T/T MTHFR
genotype was associated with increased odds of MA when compared to controls (odds
ratio [OR], 2.05; 95% confidence interval; p < 0.006) [32]. Additionally, Lea et al. studied
652 Caucasian migraineurs and showed that the T/T genotype confers an increased risk
for MA (OR: 2.0–2.5), but no increased risk for MO (p > 0.05) [29]. Conversely, a study by
Todt et al. showed no association between the C667T genotype and MA (OR: 0.61–1.25 and
p = 0.45) [77]. A possible explanation for their results was that their study’s sample sizes was
composed of migraineurs with severe symptoms, and, thus, the MTHFR C667T allele could
be found only in patients with mild to moderate MA [77]. Also, the International Headache
Genetics Consortium (IGHC) data showed no clear evidence of MTHFR correlation in the
5175 migraineurs studied using genome-wide association studies (GWAS) [78].

The dopamine system has been hypothesized to be involved in the pathophysiology
of migraine [79]. Studies have shown that D1 and D2 dopamine receptors exist in mice’s
and rats’ trigeminal ganglion and trigeminal nucleus [80–82]. Additionally, studies have
shown that administering apomorphine or piribedil (dopamine agonists) increases the
cerebral blood flow [83,84]. Other animal studies have shown vasodilation in response to
low dopamine doses and vasoconstriction with high doses [85]. As a result, researchers
investigated the correlation between the genes involved in the dopaminergic pathway
and migraine. The dopamine system is a series of steps, starting from phenylalanine
and ending with norepinephrine and epinephrine [79]. Within these steps, dopamine is
converted to norepinephrine by dopamine-β-hydroxylase (DBH), and norepinephrine is
converted to epinephrine by catechol-O-methyltransferase (COMT) [79]. Finally, upon the
release of dopamine in the synaptic cleft, a reuptake mechanism is mediated by presynaptic
transporters called dopamine transporters (DAT1 and DAT2) [79]. As such, a mutation in
any of the above genes would increase dopamine, and scientists hypothesized a potential
increased migraine susceptibility. Two case–control studies have found an increased
frequency of migraine in individuals with a homozygous COMT c.472 A > G (Val158Met)
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when compared to those with the Val/Val genotype [86,87]. However, Hagen et al. showed
no association between the Val158Met polymorphism and migraine [88]. In addition, a
study investigated the correlation of two SNPs, one within the promoter (−1021C→T) and
another (+1603C→T) in exon 11 of the DBH gene in two different cohorts [89]. Results
showed an association between the allelic and genotypic frequency distribution of DBH
SNPs and migraine in both investigated cohorts [89].

Other genes of the serotonergic system, GABA-A receptor system, insulin receptors,
estrogen receptors, LDL receptors, and ion transporters correlated with migraine due
to their potential role in its pathophysiology and positive study results [66]. However,
similarly to the case of MTHFR and COMT, most of the associations were not replicated and
were subsequently disproven. For example, the study of 841 MA patients and 884 controls
for thousands of genetic markers in 155 ion transport genes by Nyholt et al. was positive
initially, but replication in an independent data set was negative [90]. In addition, 21 genes
were associated with MA in another study, but the results could not be replicated in a larger
data set [2,78]. Two other genes worth mentioning are the insulin receptor gene (INSR,
chromosome 19p13) and the LDL receptor gene (19p13.2). These genes were associated
with migraine, but were later disproven. The INSR gene was disproven in a sequencing
study, and the LDL receptor gene was disproven because it could not be replicated in
another study [91–94]. These disappointing results are due to small sample sizes (less than
a few hundred cases), a lack of matching the samples for gender, age, and background, and
diagnosis issues [2]. The lack of replication of most CGAS studies raises suspicion that
other studies may be false positives; thus, other techniques were used to study the genetics
of migraine.

3.2. Loci Linkage Studies
3.2.1. Traditional Linkage Studies

Historically, linkage studies have contributed valuable inputs to the genetics of mi-
graine by pinpointing chromosomal loci in families with migraine [66]. Initially, genotyping
was achieved using microsatellite markers or genome-wide scans. For example, Russo et al.
analyzed the genetics of 10 Italian families with MA and linked the loci 15q11-q13 with
their MA diagnosis using regional microsatellite markers [95]. This locus represents the
genomic region of three GABA-A receptor genes. Additionally, a study of a migraine family
of 106 individuals from northern Sweden linked the 6p12.2-p21 locus with MO and MA
through the use of genome-wide scanning [96]. Replication success for these linkage studies
has been scarce, except for a few loci [66]. Wessman et al. and Bjornsson et al. pinned
the 4q locus in studies involving Finnish and Icelandic families, respectively [97,98]. The
Finnish study revealed locus 4q24 and the Icelandic study revealed locus 4q21 (Table 3).
However, many unanswered questions remain concerning these loci; it is unclear whether
they contain genes for MO, MA, or both. For these reasons, the validity of the traditional
linkage studies results is questionable [66]. Other concerns include a high migraine preva-
lence and the subjective diagnosis of migraine, which can lead to difficulty in obtaining
accurate pedigrees that can link migraine genes.

As a result, alternative linkage studies were used to eliminate this controversy, and two
prominent alternatives were the latent class analysis (LCA) and trait component analysis
(TCA). Using these methods, researchers can identify loci that could explain an underlying
pathophysiological mechanism of a specific symptom [66].
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Table 3. Summary of traditional linkage studies results (following the International Headache
Classification (IHS) classification guidelines).

Articles Country Migraine Type Genotyping Method Chromosomal Locus

Nyholt et al., 2000 [37] Australia MA/MO Regional microsatellite markers Xq25-q28

Jones et al., 2001 [99] USA MA Regional microsatellite markers 19p13

Carlsson et al., 2002 [96] Sweden MA/MO Genome-wide scan 6p12.2-p21

Lea et al., 2002 [100] Australia MA/MO Regional microsatellite markers 1q31

Wessman et al., 2002 [97] Finland MA Genome-wide scan 4q24

Björnsson et al., 2003 [98] Iceland MO Genome-wide scan 4q21

Cader, Noble-Topham et al., 2003 [101] England MA Genome-wide scan 11q24

Soragna et al., 2003 [102] Italy MO Genome-wide scan 14q21.2-q22.3

Russo et al., 2005 [95] Italy MA Regional microsatellite markers 15q11-q13

Anttila et al., 2008 [103] Australia and Finland MA Genome-wide scan 10q22-q23

3.2.2. Latent Class Analysis (LCA)

Latent class analysis was introduced to eliminate the dichotomy of migraine diagnosis.
This method focuses on multiple factors of migraine, including symptom severity, leading
to a spectrum of clinical presentations. For example, Nyholt et al. [38] (frontrunners of LCA)
and Ligthart et al. [104] clustered their patients based on migraine severity and associated
symptoms. For instance, Nyholt et al. included pulsation in their classification, and
classified their sample into four categories as follows: (1) asymptomatic individuals (CL0),
(2) patients with a mild form of recurrent non-migrainous headaches (CL1), (3) patients with
a moderately severe form of migraine, often without visual aura (CL2), and (4) patients with
a severe form of migraine, often with aura (CL3) [38,64]. As expected, more individuals
were labeled using the LCA approach, and none that were diagnosed using the IHS
classification were missed [66]. Both of these studies pinned the 5q21 locus. The study by
Ligthart et al. also reports the 10q22-q23 locus, in addition to another LCA study on the
Australian and Finnish population [103]. This locus was reported using traditional linkage
studies and TCA studies (Table 3).

3.2.3. Trait Component Analysis (TCA)

As part of the effort to eliminate the diagnostic bias, researchers adopted the TCA
method (starting with Palotie et al.) [103]. Similarly, TCA eliminates the dichotomous diag-
nostic approach of the IHS and uses the questionnaire information more optimally [103].
More specifically, researchers focus on specific trait components, or, in other words, in-
dividual clinical symptoms of migraine, and link chromosomal loci to this phenotypic
group [39]. This could eliminate clinical heterogeneity and diagnostic issues. Loci 4q24,
17p13, and 10q22-q23 were linked to different migraine phenotypes using the TCA method
(Table 4). Interestingly, 4q24 and 10q22-q23 were reported in Finnish and Australian linkage
studies, respectively, using the IHS MA classification [97,103]. The latter mutation is the
most significant, as it was replicated in Australian and Dutch studies [104]. The remaining
gap unfilled by these new phenotyping methods is the identification of gene variants from
the loci, which would give insight into the pathophysiology of specific symptoms and
migraine in general.
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Table 4. Summary of linkage studies performed with latent class analysis (LCA) and trait component
analysis (TCA).

Article Country Phenotypic Classification Chromosome Locus

Latent Class Analysis

Nyholt et al., 2005/
Anttila et al., 2006 [38,39] Australia Pulsation 5q21

Anttila et al., 2006/
Anttila et al., 2008 [39,103]

Australia and
Finland Migrainous headache 10q22-q23

Anttila et al., 2008/
Ligthart et al., 2008 [103,104] Netherlands Migrainous headache 10q22-q23

Trait Component
Analysis

Nyholt et al., 2005/
Anttila et al., 2006 [38,39] Finland

Age at onset, photophobia,
phonophobia, pain
intensity, laterality,
pulsation

4q24

Anttila et al., 2006/
Anttila et al., 2008 [39,103] Finland Pulsation 17p13

Anttila et al., 2008/
Ligthart et al., 2008 [103,104]

Australia and
Finland

Laterality, pain intensity,
phonophobia,
photophobia, pulsation,
nausea/vomiting

10q22-q23

3.3. Genome-Wide Association Studies

In the last decade, genome-wide association studies (GWAS) contributed significantly
to our knowledge of the genetic basis of migraine. Unlike the other techniques, GWAS
requires no prior hypothesis about the role of a DNA variant [105]. Instead, hundreds
of thousands to millions of SNPs that are roughly equally dispersed in the genome are
analyzed for association with a phenotype, and that is by comparing the results to the
controls. The association is considered significant if the p-value is <5 × 10−8, according to
the GWAS catalog [106]. This method has been effective in gene associations where other
studies did not show results [105].

Ten migraine GWAS studies were conducted in the last decade, which were listed with
their findings in Table 5 [40,63,73,74,107–112]. The first study was conducted by Anttila
et al. in 2010 [40], and it consisted of 2748 patients with MA and 10,747 matched controls
obtained from Finland, Germany, and the Netherlands. A single SNP reached genome-wide
significance, which was the rs835740 on chromosome 8q22.1 (p = 5.38 × 10−9, OR = 1.23).
This finding was replicated in a meta-analysis showing p = 1.69 × 10−11. This SNP is lo-
cated between two genes implicated in glutamate homeostasis, which are MTDH (astrocyte
elevated gene 1, AEG-1) and PGCP (plasma glutamate carboxypeptidase gene). MTDH has
been shown to downregulate SLC1A2 (also known as GLT-1 and EAAT2) in cultured astro-
cytes; the latter gene encodes for the major glutamate transporters in the brain [113,114]. As
such, a decrease in the activity of MTDH and/or PGCP (which metabolizes glutamate) will
increase glutamate in the synaptic clefts. This was a plausible hypothesis for researchers
as this neurotransmitter has been linked to the pathophysiology of migraine [40]. It is
important to note that the relationship between MTDH and migraine remains controversial,
as the correlation did not reach significance in subsequent studies [63,107]. Additionally,
Gupta et al. [109] showed that the variant rs934937 on chromosome 6p24 increases the risk
for migraine. This locus encodes for the PHACTR1 gene, which renders carriers susceptible
to other vascular diseases, including coronary artery disease, cervical artery dissection, and
hypertension. This gene was also suggested by Freilinger et al. [73] to correlate with MO.
This gene was thought to affect the vascular system, and further studies have been com-
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pleted to characterize its pathophysiological mechanism (check the fine mapping section
below) [115].

Table 5. Summary of genome-wide association study (GWAS) results.

Article Phenotype Genes Pathway

Anttila et al., 2010 [40] MA MTDH Glutamate transport
PGCP Glutamate metabolism

Chasman et al., 2011 [108] Migraine TRPM8 Pain related
LRP1 Neurotransmission
PRDM16 Tissue structure and function [116]

Freilinger et al., 2012 [73] MO MEF2D Neurotransmission
ASTN2 TGF-beta signaling
TGFBR2 TGF-beta signaling
PHACTR1 Vascular endothelial function

Anttila et al., 2013 [107] MA/MO AJAP1 Metalloproteinase → tumor invasion
TSPAN2 Metalloproteinase → tumor invasion
FHL5 cAMP regulation

MO MMP6 Neurotransmission
C7ORF10 Glutaric acid excretion

Gormley et al., 2016 [63] MA/MO SLC24A3
Ion homeostasisITPK1

GJA1

Gupta et al., 2016 [109]
(phenome-wide AS) Migraine PHACTR1 Vascular endothelial function

Gerring et al., 2018 [111] Migraine NFKBIZ

Immune system and inflammation

TNFSF10
TNFAIP3
CXCR4
ABCB1
NFIL3

Guo et al., 2020 [109]
(GWAS + transcriptome wide AS) Migraine ITGB5

Neurogenic inflammation, endothelial
function, and calcium homeostasis

SMG6
ADRA2B
ANKDD1B
KIAA0040

Hautakangas et al., 2021 [112] MA HMOX2 Inflammation (vascular)

CACNA1A Voltage-dependent calcium channel
(neurogenic)

MPPED2 Metalloproteinase
MO SPINK2 Protease inhibitor

FECH Ferrochelatase

Finally, the largest and most recent meta-analysis on migraine was conducted by Hau-
takangas et al. [112] in 2022, which included 102,084 migraine cases and 771,257 controls.
The team identified three variants associated with MA as follows: (1) rs12598836 in HMOX2,
(2) rs10405121 in CACNA1A, and (3) rs11031122 in MPPED2. HMOX2 is a constitutive
gene that plays a role in heme catabolism, leading to antioxidant and anti-inflammatory
effects [117]. CACNA1A encodes the alpha-1a subunit of the voltage-dependent P/Q
calcium channel, and has been linked repeatedly to familial hemiplegic migraine (FHM), a
subtype of MA [118]. Finally, MPPED2 is a metallophosphoesterase domain-containing
protein which has been linked to various functions, including tumor suppression [119]. On
the other hand, the meta-analysis suggested two variants associated with MO as follows:
(1) rs7684253 in the locus near SPINK2, a serine peptidase inhibitor, and (2) rs8087942 in
the locus near FECH, responsible for the synthesis of ferrochelatase.
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At first, GWAS results seemed paradoxical, mainly because the results of these studies
showed a more robust genetic association in MO [107], which is contradictory to the results
from twin studies and population studies (showing that migraine with aura is more genetic).
One possible explanation is that GWAS detects mainly variants with moderate or high
allele frequencies (≥0.05); thus, relatively rarer alleles cannot be detected. Consequently,
experts hypothesize that these rare alleles could be responsible for the genetic susceptibility
of MA. As a result, researchers adopted RNA and exome/genome sequencing approaches
to assess the contribution of such variants [3].

3.4. Fine Mapping of Potential Migraine Susceptible SNPs

Research was not limited to identifying possible SNPs using GWAS or other techniques.
Instead, these potential loci were studied further using various methods. It is important to
know that many of the SNPs correlated to migraine have unclear mechanisms of action.
Thus, the fine mapping of these potential loci is of great value for understanding the genet-
ics and pathophysiology of migraine. This approach occurs as follows: (1) association-test
statistics are used to prioritize a set of SNPs that would likely contain disease-causing
SNPs, (2) connecting these variants with genes using resources such as the Encyclopedia
of DNA Elements (ENCODE), NIH Roadmap Epigenomics, and FANTOM5, and (3) con-
ducting functional experiments to discern the exact pathophysiological mechanism of this
variant/allele [6]. For example, the relationship of PHACTR1 to migraine has been inves-
tigated, and the pathophysiological mechanism has been suggested. After rs9349379 has
been correlated to migraine (step 1), it was found to be on intron 3 of the PHACTR1 gene
(step 2) [109]. Using the CRISPR-edited stem cell-derived endothelial cells, they demon-
strated that this SNP regulates the endothelin 1 gene (EDN1), which is located 600 kb
upstream of PHACTR1 and encodes a protein that promotes vasoconstriction, extracellular
matrix production, fibrosis, and vascular smooth muscle cell proliferation (step 3) [120].

3.5. RNA Sequencing and Transcriptomic Studies

As discussed, GWAS detects high-frequency alleles exclusively, thus, rare variations
that give insight into the genetics of migraine are not pinned by these studies. This problem
was solved by using more specific techniques such as RNA sequencing and transcriptomic
studies. To prevent the capturing bias, researchers have adopted RNA sequencing as a
method to investigate migraine genetics. This technique allows investigators to identify
novel transcripts, research the role of alternative splicing and gene fusion, and quantify
the gene expression level related to migraine [121]. The final goal was also met using
transcriptomic methods [41]. Table 6 summarizes studies in which RNA sequencing or
transcriptomic studies were adapted.

Table 6. Summary of studies using RNA sequencing and transcriptomic studies.

Articles Phenotype Genes Pathways

Perry et al., 2016 [41]
(Transcriptomic study) Migraine IL6

Inflammatory pathway
SOCS3
IFNB
CXCR4
CCL2
NFKBIA

Renthal et al., 2018 [122] Migraine CACNA1A
Ion channelsSCN1A

NOTCH3

Starobova et al., 2018 [123] Pain Neuropeptide Y

Ion channels
SCN9A
SNC10A
SCN11A
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Table 6. Cont.

Articles Phenotype Genes Pathways

Perry et al., 2016 [41]
(Transcriptomic study) Migraine IL6

Inflammatory pathway
SOCS3
IFNB
CXCR4
CCL2
NFKBIA

Renthal et al., 2018 [122] Migraine CACNA1A
Ion channelsSCN1A

NOTCH3

Starobova et al., 2018 [123] Pain Neuropeptide Y

Ion channels
SCN9A
SNC10A
SCN11A

Jeong et al., 2018 [124] Migraine LRRC8 Immune response, glutamate signaling pathway, and
reactive oxygen species regulationWSCD1

Kogelman et al., 2019 [125] MA NMNAT2 Unknown
RETN

Vgontzas et al., 2020 [126] MA, MO HCK Central Nervous System
ARHGEF26
WSCD1
TSPAN2
NEGR1
SLC24A3
GPR182 Neurovascular cells
NOTCH4

Peripheral Nervous SystemMYO1A
HELLS

Kogelman et al., 2021 [127] MA, MO CPT1A Fatty acid oxidation
SLC25A20
ETFDH

Notch signaling pathwaysMAML2
ADAM15
ADAM17
CARD9 Immune-related pathways
SH2D2A
CD300C

Renthal et al. (2018) [122] studied single-brain cell RNA sequencing data from cortical
cells (neurons, oligodendrocytes, astrocytes, microglia, and endothelial cells). The anal-
ysis indicated that 70% and 30% of neuronal migraine-associated genes are significantly
enriched in inhibitory and excitatory neurons, respectively, considering that many genes
(such as SCN1A and CACNA1A) are found in both neuron types. Additionally, the study
showed that 40% of known migraine-associated genes are enriched in a specific brain cell
type. Vgontzas et al. (2020) [126] studied single-cell RNA sequencing data from the central
and peripheral nervous system (neurons, glial cells, neurovascular cells). They showed that
11.1% of migraine-associated genes were selectively enriched in the central nervous system
(HCK, ARHGEF26, WSCD1, TSPAN2, NEGR1, SLC24A3), 5.5% in neurovascular cells
(i.e., GPR182, NOTCH4), and 3.7% in the peripheral nervous system (MYO1A, HELLS).
Kogelman et al. performed RNA sequencing from the venous blood of MO and MA pa-
tients [125]. In 2019, the group compared 17 MO and 9 MA female patients to 20 female
controls, and they showed that the genes NMNAT2 and RETN are differentially expressed
in MA patients when compared to the controls; however, these results were not replicated in
an independent cohort. In 2021 [127], the group compared the gene expression in MA and
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MO patients during the attack and after treatment. Results showed that 33 genes are differ-
entially expressed between the two phases of migraine; most of these genes play a role in
fatty acid oxidation (CPT1A, SLC25A20, and ETFDH), immune-related pathways (CARD9,
SH2D2A, CD300C), and notch signaling pathways (MAML2, ADAM15, and ADAM17).
Perry et al. [41] conducted a transcriptomic study of the expression of inflammation and
immune response genes in chronic migraine patients’ calvarial periosteum. They found
that 26 genes were upregulated and 11 genes were downregulated. The upregulated genes
were associated with the activation of leukocytes, the production of cytokines, and the
inhibition of NF-kB, while the downregulated genes were associated with the prevention
of macrophage activation and cell lysis. The genes correlated to the pathophysiology of the
periosteum are IL6, SOCS3, IFNB, CXCR4, CCL2, and NFKBIA.

3.6. Whole Exome or Whole Genome Sequencing (WES or WGS)

WES reveals nucleotide sequences in the coding region of the DNA, or the exon. WGS
is more inclusive as it detects nucleotide sequences in both the coding and non-coding re-
gions of the DNA (exons and introns). Applying the latter technique is important to identify
the polymorphisms in the introns that might be responsible for migraine manifestation.

Ibrahim et al. completed whole exome sequencing on 16 individuals with no mutations
in the FHM gene [128]. They associated ATP10A (p.Ala881Val) and ATP7B (p. Leu795Phe)
variants with migraine. ATP10A encodes an ATPase with flippase activity on plasma
membrane lipids, and ATP7B encodes transmembrane copper transporters. Interestingly,
the ATP10A is found on locus 15q11-q13, which was pinned in 2005 by Russo et al. [95]
using linkage studies (described previously). Additionally, the team suggested the pos-
sibility of CACNA1C (p.Ile662Leu) and CACNA11 (p.Arg111Gly) influence [128]. These
genes encode voltage-gated calcium channels, similar to CACN1A1, which was pinned
in FHM and MA (using GWAS). Another project detected the genes ATXN1 (contributes
to glutamate signaling), FAM153B, and CACNA1B (voltage-gated calcium channels) in a
population of 620 migraineurs [129,130]. This study was also replicated in 1930 migraine
patients, and the same genes were detected. This work represents a combination of GWAS
and RNA sequencing. However, it is important to mention that WES or WGS are expensive
techniques that come with the burden of increased cost. They also impose some storage
burden, which might affect the data quality [74]. In addition, these techniques might result
in a capturing bias. For instance, WES is ineffective in capturing all mutations, particularly
structural variants such as repetitive regions [131]. Also, migraine susceptibility loci are
not limited to coding regions; many loci are in non-coding genomic regions that regulate
splicing patterns or downstream genes [132]. Table 7 shows the genes hypothesized to be
associated with migraine using WES/WGS.

Table 7. Summary of whole exome and whole genome sequencing studies (WES and WGS).

Article Phenotype Genes Pathway

Williams et al., 2019 [42] (WES and WGS) Migraine ALPK1 Centrosome cilia functions
Immune response and inflammation

Rasmussen et al., 2020 [129,130] (WGS and
RNA seq) MA/MO ATXN1 Glutamate signaling

FAM153B Voltage-gated calcium channel
CACNA1B

Ibrahim et al., 2020 [128] (WES) Migraine ATP10A
ATPaseATP7B

CACNA1C Voltage-gated calcium channel
CACNA1I
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3.7. Other Techniques

RT-PCR has been used on animal and cell models by Royal et al. [133] to study migraine
genetics. The team studied two variants of the TRESK protein, a K+ channel encoded by
the KCNK18 gene. These two variants are TRESK-MT and TRESK-C110R, which are
non-functional variants of the potassium channel. Both were associated with migraine;
however, only the TRESK-MT variant was shown to correlate with the MA phenotype,
leading to the hyperexcitability of trigeminal neurons. The reason for this association is that
TRESK-MT produces another variant, the TRESK-MT2, which co-assembles with TREK1
and TREK2, two other K+ channels, and inhibits them. Additionally, miRNA has been
demonstrated to play a role in migraine pathophysiology [134,135]. miR-34a-5p and miR-
382-5p have been shown to upregulate acutely during migraine attacks (both MO and MA);
these markers were found in the blood and in cerebrospinal fluid (CSF), respectively [134].
Similarly, Tafuri et al. [135] showed that miRNA-27b was upregulated and miRNA-181a,
miRNA-let-7b, and miRNA-22 were downregulated in MO patients when compared to
healthy controls.

4. Monogenic Syndromes

The largest effect of migraine genetics was implied from rare monogenic syndromes
with migraine symptoms. Such syndromes present as a set of symptoms, including mi-
graine. As such, researchers correlated the genes mutated in those monogenic syndromes
to migraine, which helped investigate the pathophysiological mechanism behind different
types of migraine. Examples of these monogenic syndromes are included below.

4.1. CADASIL

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoen-
cephalopathy (CADASIL) is an inherited disease caused by a mutation in the NOTCH3
gene found on chromosome 19. This gene encodes for a transmembrane receptor exclu-
sively restricted to human vascular myocytes [136]. Histopathological studies of vascular
tissue in CADASIL patients suggest the thickening and alteration of standard physiologic
structure throughout the body [137]; however, the cerebral vasculature seems to be respon-
sible for the majority of the disorder’s symptoms, usually including migraine, as the first
presenting sign of the disease [136]. Interestingly, a study conducted by Tan et al. [138]
showed that more than 75% of 300 symptomatic CADASIL patients experienced migraine,
which were accompanied by auras approximately 90% of the time. However, other studies
indicate different numbers.

Nevertheless, taking all of the results together, migraine prevalence in CADASIL
patients would be around 38%, which is still higher than the general population [138].
Several mechanisms have been proposed to explain the increased prevalence of migraine
with auras in CADASIL patients as compared to the general population. One such mech-
anism centers around the idea that episodic ischemia generated by the vascular changes
in the disease could be responsible for a more pronounced cerebral hypoperfusion phase,
leading to cerebral blood flow changes similar to those observed in CSD [139], and thereby
accounting for more severe auras [140]. Other plausible mechanisms include the possibility
that the vascular abnormalities in CADASIL patients could decrease the threshold for CSD,
as demonstrated in mice with mutated or deleted NOTCH3 genes [141], that the brainstem
involvement in the disease process in CADASIL patients increases their susceptibility for
migraine with auras, or that the NOTCH3 gene is involved in the pathway of migraine
auras, since genetic studies have shown that family members of migraine patients have an
increased risk of experiencing migraine themselves [44,142].

4.2. D-CAA

Cerebral amyloid angiopathy (CAA) is a cerebrovascular disease characterized by
the accumulation of β-amyloid molecules in the leptomeninges of the central nervous
system and the cerebral vessels [143]. This disease can lead to a severe intracerebral
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hemorrhage (ICH) in elderly patients [144]. However, preceding the ICH symptoms,
migraine with aura often manifests as a presenting sign and an early marker of hereditary
cases of CAA, especially Dutch-type CAA (D-CAA). This was seen in a study conducted by
Koemans et al. [145], which found a 56% prevalence of migraine with aura in 86 recruited
D-CAA patients. Interestingly, migraine was the initial symptom in approximately 80% of
the cases [145]. As is the case with other cerebrovascular angiopathies, the exact mechanism
behind the onset of migraine in this type of disease is not very well understood. However,
several similar theories to the ones mentioned previously have also been suggested.

4.3. COL4A1-Related Disorders

COL4A1 is a gene located on chromosome 13 that encodes for the α-1 subunit of type
IV collagen. This subunit plays an important role in the basement membrane of several
different tissues in the body, especially the vascular tissue surrounding the blood vessels.
Mutations of this gene cause a COL4A1-related brain small-vessel disease, which targets
fragile vessels; this leads to hereditary infantile hemiparesis, retinal arteriolar tortuosity
and leukoencephalopathy, and familial porencephaly [146,147]. Several studies show
that migraine with aura may be a symptom of this mutation, as presented in a study of
six affected family members, where 50% presented with auras [148]. This is also seen in
a systematic review conducted by Lanfranconi et al. [149], in which 10 out of 52 carrier
subjects had experienced migraine.

4.4. FASPS

Familial advanced sleep-phase syndrome (FASPS) is an autosomal dominant disorder
caused by a missense mutation in the CSNK1D gene, which encodes for the Casein Kinase Iδ
(CK1δ) [150], a serine/threonine kinase which phosphorylates several important target pro-
teins in order to regulate the cell cycle, cell differentiation, proliferation, and the circadian
clock [151,152]. Patients usually experience an earlier sleep onset and morning awakening,
often described as “morning larks” [153]. Interestingly, in two different mutations (T44A
and H46R) of the CSNK1D gene in transgenic mice, a co-segregation was also found with
MA [150,154,155]. In essence, sensitization to pain resulting from nitroglycerin-triggered
migraine reduced the threshold for CSD, and increased calcium signaling were detected
in the T44A transgenic mice [150,155], thus explaining the co-presence of MA with the
disease. Involved in migraine pathogenesis, the CSNK1D gene provides evidence for the
involvement of the hypothalamus in the development of and susceptibility to migraine.

4.5. KCNK18

The TWIK-related spinal cord potassium channel (TRESK) is a member of the two-
pore domain potassium (K2P) channel family—an important modulator of the resting
membrane potential—encoded by the KCNK18 gene [156]. A frameshift mutation in this
gene produces a truncated and non-functional channel, which can also suppress the levels
of the wild-type channel and increase the susceptibility to migraine with aura [157]. This
mutation was first discovered in a patient suffering from MA, and was later also confirmed
in seven of the patient’s relatives who also suffered from the same disease [156].

4.6. ROSAH Syndrome

Heterozygous missense variants of the α-kinase gene ALPK1 are responsible for the
pathogenesis of ROSAH syndrome, named after its five main symptoms: retinal dystrophy,
optic nerve edema, splenomegaly, anhidrosis, and migraine headache [42]. This gene has
been detected at high levels in the retina, in the retinal pigment epithelium, and in the optic
nerve. It is important to note that migraine is also a frequent feature of the disease.

4.7. HERNS

Hereditary endotheliopathy with retinopathy, nephropathy, and stroke (HERNS)
is an autosomal dominant systemic multi-infarct disorder that was first described by
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Jen et al. [158] in 1997 in a Chinese American family. As its name implies, this disease
first manifests as visual impairment due to macular edema and as renal dysfunction with
albuminuria [158]. The neurologic symptoms usually appear in the second decade of life,
most commonly emerging as migraine headaches, in addition to psychiatric manifestations,
hemiparesis, dysarthria, and others [158,159]. The mechanism behind the disease is gener-
alized vascular damage in different capillaries and arterioles of the body, including retinal,
cerebral, and renal areas [158,160].

4.8. MELAS

Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS)
syndromes are most commonly caused by an A to g transition mutation at position 3243 of
the mitochondrial genome [161,162]. It is characterized by recurrent attacks of migraine-like
headaches with vomiting, epilepsy, and stroke-like episodes, accompanied with blindness,
deafness, cognitive impairment, and cardiac conduction defects, among others [163–166].
Even though the transition cited previously is the primary mutation seen in MELAS, it
is, however, a polygenic disease caused by several mutations that involve mitochondrial
tRNA and protein-coding genes, some of which are also involved in other mitochondrial
diseases, such as LHON, Leigh Disease, and MERRF [167]. However, surprisingly, studies
performed by Buzzi and colleagues [168] and Cevoli et al. [169] on maternal lineages with
MELAS showed that most subjects were monosymptomatic, with the disease manifesting
only as migraine. In addition, all of the migraine-only subjects did not carry the 3243 A > G
tRNA Leu (MELAS) mutation, suggesting that this mutation does not contribute to the
maternal multigenerational migraine with or without aura [168].

4.9. RVCL-S

Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations
(RVCL-S) is a rare systemic small-vessel disease caused by an autosomal dominant muta-
tion in the three-prime repair exonuclease 1 (TREX1), mainly affecting the white matter of
the CNS [170,171]. The amyloid-negative angiopathy involves mostly small vessels such
as arterioles and capillaries in several locations of the body, including the retina and the
brain [172]. This disorder is characterized by retinopathy, neurological deficits, and other
systemic symptoms, including anemia, liver disease, kidney injury, and Raynaud’s phe-
nomenon [170]. Migraine with and without aura are sometimes also reported by affected
patients, as reported by 42% of patients in cross-sectional studies [172–175]. These kinds
of migraine tend to occur in adult RVCL-S patients, compared to the earlier onset (child-
hood or adolescence) in the general population, which could suggest that vasculopathy is
responsible for the onset of the migraine in these patients [175].

4.10. CCM

Familial cerebral cavernous malformations (CCM) is a heritable autosomal dominant
disease characterized by at least three mutations in three different loci as follows: CCM1 on
chromosome 7q, CCM2 on chromosome 7p, and CCM3 on chromosome 3p, characterized
by vascular abnormalities in the central nervous system (CNS), leading to epileptic seizures
and hemorrhagic strokes [176–179]. Several studies have also found migraine to be a
symptom of this disorder [179].

5. Familial Hemiplegic Migraine (FHM)

As discussed, familial hemiplegic migraine (FHM) represents a rare autosomal domi-
nant subtype of MA with an obligatory presence of a motor aura, represented by reversible
motor weakness—hence the “hemiplegic” part of the disease—that is most often, but not
always, unilateral [180,181]. Additionally, the diagnostic guidelines of the third edition of
the International Classification of Headache Disorders, provided by the Headache Classifi-
cation Committee of the International Headache Society, require the presence of at least one
first- or second-degree relative having a migraine with motor auras (Table 8) [11]. The age
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interval of clinical appearances is flexible, stretching from 5 to 30 years old in most cases,
with migraine tending to appear more in younger people [182]. Aside from the essential
motor aura symptoms, a population-based study by Thomsen et al. showed that the other
most common aura types were sensory, visual, and aphasia [183]. Even though motor,
sensory, and visual auras were essentially similar to those seen in MA, their duration was
significantly longer in FHM than in MA [180]. Many trigger factors have been implicated
in the appearance of FHM, including acute stress, emotional fluctuation, excess or lack
of sleep, minor head trauma, and menstruation in women [184–186]. In addition, more
than two-thirds of FHM patients displayed a co-occurrence of basilar migraine (BM) as
well, defined according to the IHS guidelines [183]. An overlap between epilepsy and
migraine has also been suggested by the presence of seizures in certain specific pathogenic
cases of FHM [187,188]. Being genetically heterogeneous, FHM has been divided into three
subtypes, based on the genetic mutation responsible for the disease presentation (Figure 2).

Table 8. ICHD criteria for familial hemiplegic migraine diagnosis [11].

A. Fulfilling hemiplegic migraine criteria

1. Attacks fulfilling the criteria for migraine with aura
(Table 1).

2. Aura consisting of both of the following:

2.1. fully reversible motor weakness,
2.2. fully reversible visual, sensory, and/or

speech/language symptoms.

B. At least one first- or second-degree relative who
experienced attacks fulfilling criteria in “A”.
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5.1. FHM1

Familial hemiplegic migraine type 1 (FHM1) was first identified to be related to a
specific genetic mutation in 1996, when Ophoff et al. demonstrated the presence of a
CACNA1A mutation on chromosome 19p13. This gene encodes the pore-forming α1 sub-
unit of the P/Q type calcium channel CaV2.1, which is found on presynaptic and somato-
dendritic membranes [21,189]. In fact, the study found four missense mutations associated
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with the presentation of the disease. However, several other mutations have been added to
the list [190,191].

5.1.1. Calcium Channels

As indicated by Bolay et al. [8], the most plausible and acceptable mechanism of mi-
graine auras today is an increased cortical spreading depression (CSD) in the brain; genetic
mutations in the aforementioned trio of genes are linked with augmented concentrations of
neurotransmitters and potassium ions at the synaptic cleft, which may cause the cortical
spreading depression commonly seen in migraine aura [192]. Contemporary studies that
have physiologically induced visual auras have implicated cortical spreading depression in
the onset of a migraine aura, which is accompanied by symptoms such as visual, language,
or motor impairments [193]. Although the etiology of a migraine aura remained highly
debated, understanding the involvement of specific channels may provide valuable insights.
In recent studies involving mice, those with R192Q or S218L missense mutants in the α1
subunit of the Cav2.1 Ca2+ channels exhibited spontaneous cortical spreading depression
events (CSD); mutant mice had a reduced threshold and a greater propagation speed for
these events, which align with FHM1 clinical phenotypes [194].The role of CaV2.1 channel
activity in CSD has been thoroughly investigated by Ayata et al. [195] using in vivo cortical
microdialysis on leaner and tottering mice, with tgla and tg mutations in the α1A subunit
of CaV2.1, respectively. These mutations have been shown to decrease the density of Ca2+
currents significantly and increase the activation threshold of CaV2.1 channels, thereby
reducing the probability of their activation when compared to wild-type mice [196]. In
essence, the previously mentioned in vivo studies showed a two-fold reduction in gluta-
mate release in the mutant mice as compared to the wild type and a 10-fold increase in the
resistance to CSD following KCl-induction and electrical stimulation [195]. As such, these
findings support the assumption that a decreased Ca2+ influx through the CaV2.1 channels
increases the resistance to CSD, hence decreasing the plausibility of an aura. Therefore,
it would be logical to assume that the mutations seen in FHM1 should have an opposite
gain-of-function effect to increase the susceptibility of CSD in patients.

5.1.2. Specific Mutations

A study conducted by van den Maagdenberg et al. [197] on knockin transgenic mice
models with the R192Q human mutation responsible for FHM1 found that CaV2.1 channels
in the mutant mice open more rapidly and have a lower activation threshold, thereby
opening at lower potentials when compared to wild-type channels. In addition, the current
density through the mutant CaV2.1 channels was higher than that in wild-type channels,
and neurotransmission at the synapses was also increased through an elevated neuromus-
cular junction concentration of glutamate with approximately constant concentrations of
GABA, an inhibitory neurotransmitter [197]. Other studies also showed that the increased
contribution of these P/Q calcium channels causes an increase in the release of glutamate
by cortical neurons at physiologic microtubule Ca2+ levels [198]. These findings support
the previously stated hypothesis that FHM1 results from gain-of-function mutations of
the CaV2.1 channels, leading to a reduced threshold for the CSD. This was further sup-
ported by Eikermann-Haerter and colleagues [199], who showed that mutant mice with
the same R192Q mutation had an elevated frequency of CSD and an increased speed of
propagation following KCl induction stimulation studies. Even though R192Q mutant mice
expressed pure FHM1 symptoms with hemiplegia only, S218L, another studied mutation
in the same knockin mice, showed a more severe phenotype, characterized by seizures,
cerebellar symptoms, coma, and possibly fatal cerebral edema occurring after minor head
trauma due to more severe calcium channel dysfunction [197,199]. In addition, further
studies showed that the underlying mechanism for the phenotypic differences between
these two mutations is the level of the subcortical spread of the depression, in such a way
that the spread is limited to the striatum only in the R192Q mutations, but more diffused
to involve the hippocampus and the thalamus in the S218L mutation [200]. Thus, being
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highly susceptible to CSD, FHM1 patients develop more severe and prolonged hemiplegic
auras. Motor deficits were significantly more prolonged (around 20 more minutes) in these
FHM1 mutant mice when compared to the wild type [199].

5.2. FHM2

The gene responsible for the familial hemiplegic migraine type 2 (FHM2) was first
identified in 2003 when the gene encoding the α2 subunit, the Na+/K+ ATPase, in neurons
and astrocytes—ATP1A2 gene of chromosome 1q23—was discovered in two Italian fami-
lies [201]. In essence, four α subunits have been identified for the Na+/K+ ATPase [202,203],
with the testis-specific α4 subunit and the ubiquitous α1 subunit expressing no pathological
mutations. However, the neuron-specific α3 subunit and the astrocyte-specific α2 subunit
demonstrate mutations that cause neurological manifestations, essentially rapid-onset dys-
tonia Parkinsonism and FHM2, respectively [204,205]. A more recent case study featuring
a male adolescent who was diagnosed with familial hemiplegic migraine (FHM2) revealed
a heterozygous genetic mutation within the ATP1A2 gene (c.1133C > T); this missense
mutation may inhibit the function of the α2 subunit of the Na+/K+ ATPase [206].

5.2.1. Na+/K+ ATPase

Na+/K+ ATPase pumps are essential for maintaining the resting membrane potential
in neurons [207] and generating an ion gradient that is needed for neurotransmitter and
nutrient uptake by the cells. As for the glial- and neuron-specific Na+/K+ ATPase pumps,
they play an important role in clearing K+ ions from the synaptic cleft after neuronal trans-
mission, a clearance that follows an initial fast phase and a late slow phase by driving K+
ions into the cells, while extruding Na+ ions to the outside [208,209]. This process is essen-
tial for the reuptake of glutamate from the synaptic cleft, which is mostly performed via the
Na+-dependent glutamate uptake transporters primarily expressed in astrocytes [210,211].
Also, an actual physical association has been suggested linking this Na+/K+ ATPase sub-
unit to glutamate transporters [212], and this was further asserted by an approximately
identical localization of the α2 subunit of this Na+/K+ ATPase and glutamate transporters
GLAST and GLUT1 in the somatosensory cortex of rats [213]. Hence, it would be logical
to assume that the FHM2 mutations should be loss-of-function mutations, keeping high
glutamate and/or K+ levels in the synaptic cleft, which can increase the susceptibility to
CSD. The involvement of both α2 and α3 subunits of the Na+/K+ ATPase pumps in CSD
has been shown in hippocampal slices, where the administration of ouabain, an inhibitor
of the Na+/K+ ATPase, at concentrations that have minimal effects on the α1 subunit,
significantly reduced the induction threshold for CSD via y increasing the extracellular
levels of K+ [214].

5.2.2. Specific Mutations

Several different mutations have been implicated in the pathogenesis of the disease,
most of them being missense mutations [215–218]. Two specific mutations, W887R and
L764P, have been shown to cause a loss of function in the Na+/K+ ATPase pumps, demon-
strated by the inhibition of their currents while maintaining their plasma membrane
expressions, suggesting the inactivation of these channels [219]. Other mutations, such
as T345A, R689Q, and M731T, have normal function but altered kinetics, demonstrated
by a decreased catalytic turnover and an increased affinity for extracellular K+ [220,221].
A study conducted by Leo et al. [222] generated knockin mice with the human W887R
mutation responsible for FHM2. As expected, homozygous mutations were lethal. This
was attributed to selective apoptosis in the amygdala and piriform cortex in response to
the neuronal hyperactivity and to a depression of the brainstem reticular formation activity,
demonstrated by an abolished respiration [223,224].

On the other hand, heterozygous mutations allowed for viable mice with a hyper-
contractile heart [225]. In essence, the study showed that, even though the mutant R887
allele is correctly transcribed and translated, it is sequestered by the endoplasmic reticu-
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lum and proteasome system, inhibiting its expression on the cell surface, in contrast to
previous findings [222]. In vivo electrical cortical stimulation showed an increased sus-
ceptibility of the mutant mice to CSD when compared to the wild type, demonstrated
through a decreased induction threshold and a higher propagation velocity [222]. This
is most probably due to an accumulation of K+ in the synaptic cleft above physiological
ranges, due to a decrease in the number and/or the activity of the α2 subunit of Na+/K+
ATPases in astrocytes, leading to a constant stimulation of the nervous system, eventually
advancing to a CSD [181]. Other mutations were also noted in a large clinical investigation,
comprising FHM2 patients alongside their clinical manifestations. Those with pure FHM
had R65W, R202Q, R593W, and T762S variants in the ATP1A2 gene. Conversely, those with
FHM and epilepsy displayed mutations such as R548C, E825K, and R928P in this gene.
Individuals with FHM accompanied by epilepsy and intellectual disabilities harbored the
T378N, G615R, and D718N mutants [226].

5.3. FHM3

Familial hemiplegic migraine type 3 (FHM3) was linked to a specific gene in 2005
after discovering a mutation in the SCN1A gene on chromosome 2q24 in three German
families [227]. This gene encodes the α1 pore-forming subunit of the voltage-gated Na+
channel NaV1.1.

5.3.1. Voltage-Gated Sodium Channels NaV1.1

The expression of NaV1.1 channels peaks during the third postnatal week, and then
decreases dramatically to approximately half its peak expression in adult life. It is most
likely localized to the brainstem, cortex, substantia nigra, and the caudate nucleus, as indi-
cated by studies on adult rat brains [228]. These channels are mostly concentrated in the
somatodendritic area, especially in hippocampal, pyramidal, and inhibitory neurons [229].
A study conducted by Yu et al. [230] showed that heterozygous and homozygous loss-
of-function mutations of the SCN1A gene in Scn1a+/− and Scn1a−/− mice, respectively,
experienced a decreased sodium current intensity in inhibitory GABAergic neurons, with-
out any significant effect on excitatory neurons in the brain. Even though homozygous
mice experienced ataxia and died on the 15th postnatal day, heterozygous mice suffered
from seizures that led to severe myoclonic epilepsy in infancy (SMEI), and most were
killed by the 21st postnatal day [230]. In essence, these findings suggest that the decreased
sodium currents through mutant NaV1.1 channels in GABAergic neurons led to a decrease
in GABA release throughout the nervous system. This phenomenon resulted in hyperex-
citability responsible for the generation of seizures and epilepsies in affected mice. A study
conducted by Gargus et al. [231] confirmed that the SCN1A gene known to be responsible
for SMEI is, in fact, the exact gene responsible for the onset of FHM3. Thus, one would
assume that a similar mechanism could also be found in FHM3 mutant NaV1.1 channels,
where hyperexcitability could potentiate the appearance of CSD.

5.3.2. Specific Mutations

Even though a loss-of-function mutation was expected to be responsible for the patho-
genesis of the migraine, as previously observed in the appearance of SMEI [230], FHM3
proved to result from gain-of-function mutations [232–234]. Jansen and colleagues [235]
generated the first transgenic mouse model for FHM3 expressing the L263V mutation. The
excessive firing of inhibitory GABAergic neurons could increase CSD susceptibility via
increasing extracellular K+ concentrations [236]. In addition, Wiwanitkit [237] found that
the FHM3 protein is more resistant than both FHM1 and FHM2.3.1.

5.4. FHM4

Even though the involvement of three genes has been established in the onset of
FHM, new research suggests the involvement of a fourth gene, PRRT2, in the rise of
familial hemiplegic migraine. A novel case study featured a Portuguese patient with a
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heterozygous missense mutation (c.938C > T;p.Ala313Val), which inhibits the protein’s
stability and subcellular localization [238]. In another study, a 13-year-old FHM patient who
harbored a microdeletion in the chromosome 16p11.2 loci displayed a haploinsufficiency
for the PRRT2 gene, which encodes a proline-rich transmembrane protein [239]. Further
research studies are necessary to further elucidate the involvement of this gene in FHM;
however, these physiological consequences indicate that the PRRT2 gene may be the fourth
gene involved in the pathogenesis of FHM.

5.4.1. PRRT2 Protein

The PRRT2 protein is vital in proper neuronal development, healthy synaptic forma-
tion, and the release of neurotransmitters into the synaptic cleft. A variety of mutations
in this gene, such as missense or deletions, has resulted in haploinsufficiency, which can
be associated with various diseases, such as FHM or benign familial infantile epilepsy
(BFIE) [240]. This protein is localized within the cortical layers of several neurological struc-
tures, such as the cerebral cortex, and may play a role in negatively modulating the Nav1.2
and Nav1.6 Na+ channels; mutations in this gene have led to hyperexcitability and an
increased Na+ current in mutated neurons [241]. Thus, this protein is vital in maintaining
neuronal network stability. A loss of function in this gene may be associated with synaptic
deregulation or a decrease in the number of synapses, neuronal hyperexcitability, and the
inhibition of the synchronous release of neurotransmitters by affected neurons [242].

5.4.2. Specific Mutations

A genetic variant in the PRRT2 gene (NM_145239.3:c.938C > T; p.Ala313Val) was
discovered via a WES family analysis in a 40-year-old male patient suffering from migraine
with aura [243]. A physiological consequence of this missense mutation is disrupted protein
stability; alterations in amino acid polarity impact the chemical dynamic between neighbor-
ing residues, which alters the three-dimensional folding of the protein. In another clinical
study, twenty-two FHM patients from four families exhibited mutations in the PRRT2
gene as follows: c.649_650insC, c.649dupC, c.843C > G, and c.649dupC. Though limited,
these studies indicate that mutations in the PRRT2 gene may be a genetic mechanism for
hemiplegic migraine; however, further studies are needed to thoroughly examine the role
of this gene [243].

6. Conclusions

It is crucial to study the history of migraine genetics and refer back to previously
adapted techniques in its study. MA/MO genetics was studied initially using population
and twin studies to learn about their heritability; then, many genetic techniques were
used, including CGAS, GWAS, linkage studies, exome/genome sequencing, and RNA
sequencing. Different loci were correlated to migraine using these techniques, with some of
them pinned using more than one technique. Additionally, monogenic syndromes played
a major role in identifying the genes responsible for migraine genetics. This review summa-
rizes the major findings of the techniques used to study MO/MA genetics since its dawn.
Additionally, great work has been completed to discern the genes responsible for FHM and
SHM; we discussed the identified genes and their pathophysiological mechanisms which
could be referred to for further reference. The study of migraine genetics has its limitations,
including the diversity of techniques and results. Further studies are needed to advance
this field further and decrease the ambiguities.
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Abbreviations

MA Migraine with aura
MO Migraine without aura
FHM Familial hemiplegic migraine
CSD Cortical spreading depression
ICHD-3 International Classification of Headache Disorders-3
CGAS Candidate-gene association studies
LCA Latent class analysis
TCA Trait component analysis
GWAS Genome-wide association study
MTHFR Methylenetetrahydrofolate reductase
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