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Abstract: Leaf spot disease is an extremely common disease in the growth process of maize in
Northern China and its degree of harm is quite significant. Therefore, the rapid and accurate
identification of maize leaf spot disease is crucial for reducing economic losses in maize. In complex
field environments, traditional identification methods are susceptible to subjective interference and
cannot quickly and accurately identify leaf spot disease through color or shape features. We present
an advanced disease identification method utilizing YOLOv8. This method utilizes actual field images
of diseased corn leaves to construct a dataset and accurately labels the diseased leaves in these images,
thereby achieving rapid and accurate identification of target diseases in complex field environments.
We have improved the model based on YOLOv8 by adding Slim-neck modules and GAM attention
modules and introducing them to enhance the model’s ability to identify maize leaf spot disease.
The enhanced YOLOv8 model achieved a precision (P) of 95.18%, a recall (R) of 89.11%, an average
recognition accuracy (mAP50) of 94.65%, and an mAP50-95 of 71.62%, respectively. Compared to the
original YOLOv8 model, the enhanced model showcased enhancements of 3.79%, 4.65%, 3.56%, and
7.3% in precision (P), recall (R), average recognition accuracy (mAP50), and mAP50-95, respectively.
The model can effectively identify leaf spot disease and accurately calibrate its location. Under
the same experimental conditions, we compared the improved model with the YOLOv3, YOLOv5,
YOLOv6, Faster R-CNN, and SSD models. The results show that the improved model not only
enhances performance, but also reduces parameter complexity and simplifies the network structure.
The results indicated that the improved model enhanced performance, while reducing experimental
time. Hence, the enhanced method proposed in this study, based on YOLOv8, exhibits the capability
to identify maize leaf spot disease in intricate field environments, offering robust technical support
for agricultural production.

Keywords: corn diseases; disease identification; YOLOv8

1. Introduction

As one of the major staple crops in China, maize holds a significant position in the
country’s agricultural landscape. It serves not only as a cornerstone of food production, but
also plays a crucial role in maintaining social stability and ensuring national food security.
Its importance is evident not only in meeting the daily dietary needs of people, but also in
contributing to economic development, agricultural sustainability, and rural livelihoods.
The cultivation of maize not only addresses food security issues but also supports the
development of rural communities, fosters agricultural innovation, and strengthens the
foundation of the national food system. Its strong adaptability to diverse growing condi-
tions has resulted in widespread cultivation in many regions of China [1]. Originating from
the south-central region of the Americas, maize was introduced to China from Europe in
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the first half of the 16th century and has shown a strong ability to survive under harsh
growing conditions. With its high yield, versatile applications, cold and drought resistance,
and adaptability, maize stands as one of China’s most productive food crops [2]. Not only
is it an important source of feed for animal husbandry, farming, aquaculture, etc., but
maize is also one of the indispensable raw materials in many fields such as food, healthcare,
light industry, chemical industry, etc. However, in recent years, serious outbreaks of corn
diseases have seriously threatened the yield and quality of corn [3]. To address this issue,
researchers have introduced technologies in the field of machine vision to implement a
fast and effective identification of maize diseases based on their characteristics. Through
this process, researchers were able to quickly understand the development of the disease,
providing reliable data to support the adoption of appropriate protective and management
measures. The introduction of this technology has greatly reduced the negative impact of
corn diseases on yield and quality. In general, the application of machine vision technology
to corn diseases offers a novel scientific and technological tool for agricultural produc-
tion. This contributes to maintaining food security and advancing sustainable agricultural
development in China.

China is among the most severely affected countries globally when it comes to crop
pests and diseases, with over 1700 perennial species occurring annually [4]. Hence, the
management of crop diseases has become one of the primary solutions to address the
food issue. The traditional manual methods of detecting diseases are totally dependent on
the observation experience of farmers or asking experts to come to their homes for guid-
ance, which are slow, inefficient, expensive, subjective, inaccurate, and not time-sensitive
processes [5]. In recent years, the convergence of machine vision and image processing
technology has introduced a novel approach to address these challenges. By adopting the
method of segmenting images and extracting image features for corn disease recognition,
this technique overcomes the defects of traditional manual disease detection methods, such
as their low recognition rates, as well as being time-consuming and labor-intensive [6].
However, despite the progress made using this method, the final results do not achieve the
desired accuracy, due to the tedious and time-consuming feature extraction process.

With the continuous evolution of the Internet, researchers, including Hinton [7], in-
troduced the concept of deep learning, leading to swift research and development in the
field. Currently, deep learning has been successfully applied across various fields, yielding
remarkable results. The advent of deep learning introduces fresh ideas and methodologies
for identifying agricultural diseases. Integrating deep learning technology into agricultural
disease identification not only reduces workload, but also effectively improves the accu-
racy of disease recognition. This is pivotal for the precise identification of crop diseases.
Researchers have successfully developed a convolutional neural network model, which
has achieved remarkable results in crop disease recognition [8]. The convolutional neural
network model has made significant strides in image feature extraction, capable of automat-
ically extracting image features with good adaptability and high recognition accuracy for
enhanced images [9]. However, in complex field environments, the generalization ability
and recognition accuracy of these models are still somewhat degraded and they cannot fully
adapt to the changing environments in the field. Subsequently, new algorithms, including
the YOLO series [10], Fast R-CNN [11], and others, have emerged, one after another. These
algorithms have achieved significant improvements in accuracy and computational speed.
Currently, most deep learning models for detecting maize leaf spot disease focus more on
accuracy, with long detection times that cannot achieve real-time detection. Moreover, these
models are mostly tested in laboratory settings and cannot effectively simulate real-field
conditions, thus limiting their practical application in production. Hence, the application of
deep learning technology to address issues in the field of crop disease identification holds
not only significant theoretical research significance, but also crucial practical value.

To tackle the issues of diminished recognition accuracy and efficiency in identifying
corn leaf spot disease, an enhanced method, rooted in YOLOv8, is proposed in this paper.
The key improvements of this method include the following:
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(1) The incorporation of the Slim-neck module replaces the original backbone network
in YOLOv8, rendering the model more lightweight and consequently reduces computa-
tional costs.

(2) The GAM attention mechanism is introduced to enhance the computational cost
of important areas and to obtain more effective information to assist the model to more
accurately locate disease-generating areas.

(3) Introducing the CIoU on top of the LInner−CIoU , by employing an auxiliary bound-
ing box, in order to accelerate the convergence of the model and, thus, reduce the experi-
mental time consumed.

2. Data and Methods
2.1. Data Collection and Dataset Construction

The images were collected from a corn planting field in Beishifo Village, Laiyuan
County, Baoding City, Hebei Province, China. In order to ensure that the collected data were
representative, we collected the diseased plants at different time periods and under different
shooting backgrounds, as shown in Figure 1. As can be observed through Figure 1A,B,
under low light conditions, the disease showed obvious features with clear shapes that
were easy to identify, while, under strong light conditions, the overall features of the disease
became blurred and the color was similar to that of the light, which was not easy to identify.
There are many disturbing conditions in the actual field environment, such as leaf shading
and soil, as shown in Figure 1C. In total, we acquired 3120 images with a resolution of
640 × 640 pixels. Given that some of the collected images were not usable, we selected
1000 images of corn leaf spot disease from publicly available datasets to add to the dataset
to ensure data completeness and diversity.

Figure 1. Data image. (A) Less light; (B) plenty of light; and (C) shaded by leaves.

To effectively enhance data quality, improve the generalization ability of model train-
ing, and prevent overfitting phenomena, we conducted data augmentation on some of
the acquired images. By means of rotating, mirroring, brightness adjustment, adding
Gaussian noise, and random masking, we expanded the data to 5521 images to further
enhance the representativeness of the data. The enhanced data are shown in Figure 2. This
series of operations aims to ensure that the model can accurately perform leaf spot disease
recognition in various contexts, creating more favorable conditions for model training and
performance enhancement.

To achieve a more efficient identification of corn leaf spot disease, the data were first
manually labeled. This series of operations aims to ensure that the model can accurately
perform leaf spot disease recognition in various contexts, creating more favorable conditions
for model training and performance enhancement. Afterward, the labeled data were
divided into training, validation, and test sets, maintaining an 8:1:1 ratio. Ultimately, we
obtained 4416, 552, and 553 images to fulfill the requirements for comprehensive training
and model evaluation. This labeling and division process aims to provide sufficient and
accurate training data for the model to improve its performance in real applications.
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Figure 2. Enhanced data.

2.2. Methodology Research
2.2.1. YOLOv8 Network Models

The YOLO family of algorithms is a class of single-stage target detection algorithms,
i.e., only one feature extraction is required to accomplish target detection. These algorithms
redefine target detection as a way of solving regression problems. Since its inception in
2015 by Joseph Redmon et al., the YOLO family of algorithms has seen multiple iterations
and improvements, including YOLOv1 [12], YOLOv2 [13], YOLOv3 [14], YOLOv4 [15],
and the most recent version, YOLOv8 [16]. The architecture of YOLOv8 is predominantly
composed of inputs, the backbone network, Backbone, the Neck module, and outputs [17].
In the Backbone and Neck sections, YOLOv8 utilizes the C2f structure, enabling the amal-
gamation of diverse gradient features and fine-tuning to notably enhance the overall model
performance. Within the Head segment, YOLOv8 incorporates the widely used decoupled
head structure, effectively segregating the classification and detection functions. Simultane-
ously, the model’s performance is further enhanced by incorporating the Distribution Focal
Loss function into the loss function. These optimizations make YOLOv8 perform well in
the target detection task.

2.2.2. Slim-Neck Module

The original YOLOv8 model consumes a significant amount of time in the process of
detecting maize leaf spot disease, but, due to the real-time nature of detecting the disease,
so to address the serious time-consumption problem, the introduction of the Slim-neck
lightweight network structure in the YOLOv8 model is considered to reduce the complexity
of the network results, so as to reduce the serious time-consumption problem of the model
in the process of detecting the target.

The Slim-neck module is a lightweight network structure widely used in real-time
detection [18]. Currently, many lightweight networks, such as Xception [19] and Mo-
bileNets [20], are using depth-wise separable convolution (DSC) to effectively reduce the
time-consuming problem of target detection. While these methods have shown notable
success in decreasing computation time, they have also led to a decrease in the overall
target detection accuracy of the model.

GSConv (Grouped Separable Convolution) is introduced in the Slim-neck module to
replace the traditional Conv convolution. GSConv is a hybrid convolution that combines
SC, DSC, and Shuffle, as depicted in Figure 3A. GSConv transfers the information generated
using SC to the information of each part in DSC by applying Shuffle. This method com-
prehensively integrates the information generated using SC and DSC, facilitating the even
exchange of feature information across different channels. This results in the extraction
of richer information about maize leaf spot disease. Additionally, GSConv significantly
reduces computational costs when compared to the original model’s Conv convolution, ef-
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ficiently simplifying the model’s network structure complexity, while maintaining optimal
performance.

Figure 3. Slim-neck module. (A) Structure of GSConv; (B) structure of VoV-GSCSP.

The Slim-neck module introduces a one-time aggregation method based on GSConv,
forming the VoV-GSCSP module. In this paper, the VoV-GSCSP module is employed to
replace the C2f module, further simplifying the network structure of the model, based on
the introduction of GSConv. Thus, the purpose of lightweighting the network structure is
achieved. The structure of the VoV-GSCSP module is shown in Figure 3B.

The main network of the model has been improved by introducing the Slim-neck
module. While ensuring that the model’s accuracy is not compromised, this modification
significantly reduces the complexity of the model’s network structure. It addresses the
significant time-consumption issue during the identification process and offers effective
methodological support for subsequent research.

2.2.3. GAM Attention Mechanisms

Presently, the most widely employed attentional mechanisms include the SE (Squeeze
and Excitation) [21] attentional mechanisms and the CBAM (Convolutional Block Attention
Module) [22] attentional mechanisms.

The SE attention mechanism aims to allocate distinct weights to each channel using
a weight matrix to acquire more information about key elements. Its internal structure is
shown in Figure 4A.The CBAM attention mechanism is a method that combines spatial
and channel attention mechanisms, as shown in Figure 4B.

Both the SE Attention Mechanism and the CBAM Attention Mechanism perform
attention operations in their respective dimensions, not fully considering the interrela-
tionship between the two dimensions of channel and space, neglecting the importance
of cross-dimensional information. Therefore, this paper adopts the GAM (Global Atten-
tion Module) [23] attention mechanism, i.e., the global attention mechanism, as shown in
Figure 4C.

Introducing the GAM module into the model, this innovative design achieved a
significant performance improvement, while adding only a small number of parameters,
and the GAM attention mechanism can effectively mitigate the issue of information loss
through information between the two channels. The GAM attention mechanism proves
effective in capturing the small target diseases that are often overlooked in the intricate
field environment. It also optimally allocates computational resources, thereby enhancing
the network model’s detection capabilities for maize leaf spot disease. The integration of
the GAM and Slim-neck modules makes the improved model better able to cope with the
task of detecting corn leaf spot disease and provides a more reasonable method to support
agricultural development.
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Figure 4. Diagram of the internal structure of various attention mechanisms. (A) SE internal structure
diagram; (B) CBAM internal structure diagram; (C) internal structure of GAM.

2.2.4. Loss Function Improvement

In target detection algorithms, the performance of detection depends largely on the
design of the loss function. Within the target detection loss function, the edge loss function
holds significance and a well-designed one can markedly elevate the performance of the
detection model. In YOLOv8, the CIoU [24] loss function is used. CIoU is one of the
most widely used loss functions, which covers the coverage area, centroid distance, and
aspect ratio.

The relevant formulas are as follows:

CIoU = IoU − ρ2(b, bgt)

c2 − αv (1)

α =
v

1 − IoU + v
(2)

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

(3)

Lossc = 1 − CIoU (4)

IoU represents the intersection over union between the predicted box and the ground
truth box; ρ is the Euclidean distance between the centers of the predicted box and the
ground truth box; b and bgt are the coordinates of the centers of the predicted box and the
ground truth box; c is the diagonal distance of the minimum closure region between the
predicted box and the ground truth box; w and h are the width and height of the predicted
box, and wgt and hgt are the width and height of the ground truth box.

Currently, most of the IoU-based edge loss functions accelerate convergence by intro-
ducing new loss terms; however, this approach ignores the limitations of the new loss terms
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themselves. In practice, this strategy cannot be adjusted according to different detectors
and detection tasks and, thus, may exhibit a slower convergence and a poorer generaliza-
tion ability in different detection tasks. Therefore, this paper adopts Inner-IoU Loss [25],
which calculates the IoU Loss through auxiliary edges; its structure is shown in Figure 5.
This approach is more adaptable and can be customized for specific detectors and tasks,
enhancing the model’s convergence speed and generalization capability.

Figure 5. Inner-IoU Loss architecture diagram.

The Inner-IoU formula is as follows:

bgt
l = xgt

c − wgt × ratio
2

(5)

bgt
r = xgt

c +
wgt × ratio

2
(6)

bgt
t = ygt

c − hgt × ratio
2

(7)

bgt
b = ygt

c +
hgt × ratio

2
(8)

bl = xc −
w × ratio

2
(9)

br = xgt
c +

w × ratio
2

(10)

bt = yc −
h × ratio

2
(11)

bb = ygt
c +

h × ratio
2

(12)

inter =
(

min
(

bgt
r , br

)
− max

(
bgt

l , bl

))
×

(
min

(
bgt

b , bb

)
− max

(
bgt

t , bt

))
(13)

union =
(
wgt × hgt)× (ratio)2 + (w × h)× (ratio)2 − inter (14)

IoUinner =
inter
union

(15)

Among them, xgt
c and ygt

c represent the centers of the GT frame and Inner GT frame,
respectively. xc and yc represent the center points of the anchor frame and Inner anchor
frame, respectively, and ratio represents the scale factor.
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In this study, the integration of Inner-IoU Loss with CIoU results in a significant
performance enhancement, while concurrently simplifying the network model’s complexity.
The improved model well solves the overfitting problem during training and accelerates
the model convergence by detecting the task to adjust the appropriate auxiliary edge scale,
thus improving the overall performance of the model.

LInner−CIoU The formula is as follows:

LInner−CIoU = LCIoU + IoU − IoUinner (16)

2.2.5. Improved Network Structure

In this paper, YOLOv8n is used as the base model to be improved to adapt to the
recognition and detection of maize leaf spot disease in the complex environment of a real
field. Based on the above description, the improvement of YOLOv8n is as follows: in the
backbone network and Neck part, GSConv and VoV-GSCSP are used to replace the Conv
convolution and C2f module in the base model, reducing the complexity of the model
network structure. The GAM attention mechanism is introduced at the end of the Neck
module to enhance feature extraction capabilities by integrating information from each
dimension. This aids the model in more effectively pinpointing the location of the disease,
thereby preventing unnecessary computational resource wastage. Finally, Inner-IoU Loss
is introduced on the basis of CIoU, so that the model can adjust the auxiliary edge scale
in a timely manner that is most suitable for the detection task, accelerating the model
convergence and improving the generalization ability of the model, as shown in Figure 6.

Figure 6. Improved YOLOv8 network structure diagram.

3. Experiments and Analysis of Results
3.1. Experimental Environment

The experimental environment is set up in the Autodl workstation and the main
hardware configuration is shown in Table 1:
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Table 1. Experimental environment.

Configure Parameters

CPU Intel(R) Xeon(R) Platinum 8358P CPU @ 2.60 GHz
Random access memory (RAM) 80 G

GPUs GeForce RTX 3090
Display memory 24 G

Training environment CUDA 11.8
Operating system Ubuntu 20.04

Development environment (computer) Python 3.8.10 Pytorch 2.0.0

The initial learning rate is 0.01, the momentum silver is 0.937, the image input size is
640 × 640 pixels, the batch size is set to 16, and the training rounds are set to 800.

3.2. Evaluation Indicators

In this paper, Recall, Precision, mean average precision (mAP50), mAP50-95, total
parameter count, and inference time are primarily used as the evaluation criteria for
assessing and comparing the improved model with other control models. In this case,
Recall indicates the probability of being correctly recognized in positive samples and
Cha-accuracy indicates the probability of being correctly recognized in all samples.

The relevant formulas are as follows:

Recall =
TP

TP + FN
(17)

Precision =
TP

TP + FP
(18)

mAP =
∑k

i=1 APi

k
(19)

where TP is True positives, i.e., positive samples are correctly recognized as positive
samples. FN is False negatives, i.e., positive samples are incorrectly recognized as negative
samples. FP is False Positives, i.e., negative samples are incorrectly recognized as positive
samples. APi represents the area under the precision–recall curve. mAP stands for mean
Average Precision.

3.3. Analysis of Results
3.3.1. Performance Analysis of Algorithm

To further assess the performance of each algorithm, several comparative experiments
were conducted during the experiment to identify the most suitable algorithm for this study.
To investigate the performance of different attention mechanisms, various commonly used
attention mechanism modules were selected for comparison in the experiments. These
included the SE attention mechanism module, MCA attention module, Context attention
module, and other attention modules, along with the GAM attention module used in this
paper. The experiments were conducted on the same dataset, following the aforementioned
experimental parameter settings. The experimental results reveal that the GAM attention
module employed in this study exhibits a superior recognition performance compared to
other attention modules on the same dataset, as depicted in Figure 7.

Based on the introduction of the GAM attention module, this paper introduces the
Slim-neck module, which replaces the traditional Conv convolution and C2f module at the
backbone network and Neck side of YOLOv8. At the same time, a comparison is made
with the introduction of the GDM module, the DWConv module, and the RFA module.
The experimental results demonstrate that the Slim-neck module utilized in this study
outperforms other modules significantly, in terms of recognition effectiveness, as illustrated
in Figure 8.



Agriculture 2024, 14, 666 10 of 14

Figure 7. Attention mechanism accuracy comparison chart.

Figure 8. Comparison of the accuracy of different modules.

3.3.2. Ablation Experiments

To assess the impact of the enhanced modules on the recognition accuracy of YOLOv8,
an ablation test is employed for comparison, as shown in Table 2.

Table 2. Ablation experiment results.

Module (in Software) P R mAP50 MAP50-95 Total
Parameters

Detection
Time/ms

YOLOv8n

GAM Slim-neck LInner−CIoU
× × × 91.39 84.46 91.09 64.32 3,157,200 11.7√

× × 93.46 86.93 92.65 67.42 3,620,112 13.1
×

√
× 93.91 85.81 92.08 66.53 2,528,851 10.4

× ×
√

94.03 86.96 92.79 68.56 3,157,200 11.3√ √
× 94.3 87.01 93.21 69.75 2,829,091 11.1√

×
√

93.73 87.87 94.03 68.03 3,620,112 13.1
×

√ √
93.51 85.27 92.86 64.74 2,528,851 10.3√ √ √
95.18 89.11 94.65 71.62 2,829,091 11.3

Through a meticulous examination of the data presented in Table 2, it becomes evident
that the introduction of the GAM attention module has yielded noteworthy advancements
in comparison to the baseline model. Despite a noticeable increase in the overall parameter
count, there has been a commendable improvement in key performance metrics. Specifically,
the precision (P), recall (R), and mean average precision at 50 (mAP50) have demonstrated
enhancements of 2.07%, 2.47%, and 1.56%, respectively.

This notable improvement underscores the effectiveness of the GAM attention module
in directing the model’s focus towards pertinent areas of interest, resulting in a marked
enhancement in precision. Moreover, following its integration, there have been discernible
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increments of 0.27%, 1.57%, and 1.38% in P, R, and mAP50, respectively, indicating an
augmented recognition accuracy and generalization capability of the model.

Upon the incorporation of the Slim-neck module, further improvements are observed,
with P, R, and mAP50 experiencing increases of 0.84%, 0.08%, and 0.56%, respectively.
Notably, this enhancement is achieved alongside a substantial reduction in the model’s
total parameter count, suggesting that the Slim-neck module effectively streamlines the
model’s architecture, while preserving its performance integrity.

In summary, the introduction of the GAM attention module, Slim-neck module, and
their associated enhancements have demonstrated their efficacy in enhancing the perfor-
mance of the YOLOv8 model. This corroborates the viability of the algorithmic refinements
proposed in this study, as depicted in Figure 9.

Figure 9. Validation results graph.

3.3.3. Comparison Test

To assess the performance of the enhanced YOLOv8 model, a comparative analysis is
conducted with contemporary mainstream neural network models. The experiments use
the YOLOv3, YOLOv5, YOLOv6, YOLOv8, and Faster R-CNN models, using the above
experimental parameters with the same dataset, training, and testing; the final experimental
results are shown in Table 3.

Table 3. Comparison results of accuracy of different models.

Model P R mAP50 mAP50-95 Total
Parameters

Detection
Time/ms

Improved model 95.18 89.11 94.65 71.62 2,829,091 11.3
YOLOv3 90.00 84.61 89.96 64.04 4,058,603 13.6
YOLOv5 90.67 82.92 90.25 62.33 2,654,816 10.9
YOLOv6 90.89 81.40 89.07 62.61 4,500,080 13.9
YOLOv8 91.39 84.46 91.09 64.32 3,157,200 11.7

Faster R-CNN 95.41 87.03 93.42 69.63 28,342,195 68.6
SSD 94.40 86.36 92.83 68.60 23,745,908 45.3

According to the data in Table 3, compared with the current mainstream neural net-
work model, the improved YOLOv8 model in this paper achieves a 95.18% check accuracy
and 89.11% recall rate, under the same parameter settings and dataset conditions, and
its mean average precision (mAP50) is 94.65%. The better performance indicates that the
improved YOLOv8 model is able to capture the key information more accurately, fuse the di-
mensional features more adequately, allocate the computational resources more reasonably,
and prevent the wastage of computational resources as much as possible, which improves
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the recognition accuracy of the model. This enables the model to quickly and accurately
localize disease locations and identify disease types in complex field environments.

To enhance the credibility of the detection capabilities of the upgraded YOLOv8 model,
we employed the optimized weight file of the improved YOLOv8 model to analyze and
authenticate images depicting maize leaf spot disease, sourced from the PlantVillage public
dataset. The outcomes of this validation process are illustrated in Figure 10. As depicted
in Figure 10, it becomes apparent that the enhanced YOLOv8 model adeptly discerns the
precise locations of maize leaf spot disease occurrences, free from any instances of False
Positives. Consequently, when considering these findings alongside our experimental data,
the maize leaf spot disease recognition methodology proposed in this study, anchored in
YOLOv8, demonstrates its practical utility for meeting production demands.

Figure 10. The inference validation graph of the PlantVillage public dataset.

4. Conclusions

In this study, we present an enhancement strategy for the YOLOv8 model. Building
upon the original YOLOv8 architecture, we introduce the GAM attention module. This
module guides the network to prioritize the relevant region by amplifying global informa-
tion interaction and amalgamating multidimensional information features. Consequently,
this minimizes the inefficient utilization of computational resources in complex field envi-
ronments and mitigates the impact on recognition outcomes. Additionally, we introduced
the Slim-neck module to replace the original Conv and C2f modules, thereby maintain-
ing the model’s recognition accuracy, while simplifying the model structure. On top of
CIoU, we introduced Inner-IoU Loss to accelerate model convergence and enhance the
model’s generalization capability. By training and testing the model on the corn leaf spot
disease dataset, we obtained satisfactory results, as shown in Table 2. The check accuracy
and recall were 95.18% and 89.11%, while the mAP50 and mAP50-95 were 94.65% and
71.62%, respectively. Compared with the original YOLOv8 model, they are improved by
3.79%, 4.65%, 3.56%, and 7.3%, respectively. Compared with existing methods, this model
has made significant improvements in both accuracy and computational efficiency. By
introducing new enhancement strategies, we have successfully reduced detection time,
achieving almost real-time detection. Additionally, our model has demonstrated an out-
standing performance in complex field environments, reliably completing the task of maize
leaf spot disease detection. Therefore, these enhancement strategies not only simplify the
model structure, but also effectively improve the model’s recognition accuracy. Overall,



Agriculture 2024, 14, 666 13 of 14

our research meets the urgent demand for the rapid localization and identification of maize
leaf spot disease in practical applications.
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