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Abstract: This paper addresses challenges in the application of existing colters in Chinese ecological
tea plantations due to abundant straw roots and insufficient tillage depth. Aligned with the agronomic
requirements of hilly eco-tea plantations, our study optimizes the structural advantages of the joint
use of rotary tillage blades and double-disc colters to design an efficient trenching device. Our
investigation explores the motion characteristics of a double-disc colter during deep trenching
operations, in conjunction with rotary tillage blades. Employing discrete element method (DEM)
simulations, this paper aims to minimize the working resistance and enhance the tillage depth stability.
Single-factor experiments are conducted to determine the impact of key structural parameters on the
tillage depth stability and working resistance. The optimal parameters are determined as a relative
height of 80 mm to 120 mm, a 280 mm to 320 mm diameter for the double-disc colter, and a 10◦

to 14◦ angle between the two discs. The central composite design method is used to optimize the
structural parameters of the double-disc colter. The results indicate that when the relative height
is 82 mm, the diameter of the double-disc colter is 297 mm, and the angle between the two discs
is 14◦, the tillage depth stability performance reaches 91.64%. With a working resistance of merely
93.93 N, the trenching device achieves optimal operational performance under these conditions.
Field validation testing shows a tillage depth stability coefficient of 92.37% and a working resistance
of 104.2 N. These values deviate by 0.73% and 10.93%, respectively, from the simulation results,
confirming the reliability of the simulation model. A field validation test further confirms that
the operational performance of the colter aligns with the agronomic requirements of ecological tea
plantations, offering valuable insights for research on trenching devices in such environments.

Keywords: ecological tea plantation; medium tillage; double-disc colter; working resistance; tillage
depth stability

1. Introduction

Tea, with its origins in China, holds a prominent place among the world’s top three
beverages [1]. As the leading producer and consumer of tea, China has seen a growing
inclination towards intercropping green manure in eco-tea plantations. This shift is fueled
by the increasing popularity of green and sustainable development concepts, alongside a
heightened demand for tea quality. Integral to cultivation practices in eco-tea plantations
are trenching, fertilization, and soil coverage. Given that eco-tea plantations are primarily
located in hilly regions with narrow ridge spacing and dense soil root systems, the design of
colters is critically important. Consequently, numerous scholars have conducted extensive
research on colter design.
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In the realm of rotary tillage colter research, several scholars employ the discrete ele-
ment method to analyze the operational processes of rotary tillage blades [2–4]. To capture
dynamic variations in and motion patterns during their operation, researchers employ
high-speed camera technology to observe and analyze the motion trajectory of rotary tillage
colters [5,6]. Additionally, Ahmadi et al. [7] developed a comprehensive kinematic and
dynamic model for rotary tillage blades using classical mechanics principles, effectively
predicting the torque and power required for rotary tillage operations. Ma C et al. [8]
have established an optimization model for trenching performance quality, successfully
identifying the optimal parameter combination for influencing trenching factors. Zhang
et al. [9], utilizing response surface methodology, optimize the key structural parameters of
rotary tillage colters. However, despite these efforts, rotary tillage colters continue to face
challenges such as a high level of resistance and suboptimal performance during practical
operations. In response, certain scholars have delved into advanced techniques, such as
reverse engineering technology and biomimicry, to enhance the design of rotary tillage
colters [10,11]. Additionally, optimizing double-disc colters as field trenching tools has been
a central focus of research, with scholars conducting thorough investigations into reducing
the working resistance of these tools and optimizing key structural parameters [12–17].
However, double-disc colters are susceptible to blockages during field operations. Hu H
et al. [18] proposed a cooperative operation method using ultra-high-pressure water jets
with double-disc colters, enhancing their straw-cutting efficiency while avoiding blockage
issues. To improve the straw cutting efficiency of double-disc colters, scholars have made
significant progress by modifying their structure [19–21]. The stability of tillage depth is a
crucial indicator for assessing trenching effectiveness. Ye R et al. [22] improved tillage depth
stability through the discrete element method optimization of the corrugated double-disc
colters’ structural parameters. Sugirbay A et al. [23] designed a straight-diagonal double-
disc colter, enhancing tillage depth stability through an improved design. Additionally,
scholars have compared the performance of double-disc colters with that of other types.
Francetto T R et al. [24] compared the soil disturbance, trench depth, and width variations
at different forward speeds of a hoe-type colter and a double-disc colter. Karayel D.’s [25]
research further confirmed the advantages of double-disc colters in terms of their uniform
trenching depth, demonstrating more stability compared to hoe-type colters. Wang W
et al. [26] designed a double-disc colter with a compaction device, effectively reducing
issues such as soil protrusion and soil recompaction during the operation process. Employ-
ing the analytic hierarchy process (AHP) enables an objective evaluation of the performance
of the mechanism, also serving as one of the crucial research directions for designing the
structure of trenching devices [27].

Currently, international research and applications regarding colters primarily focus
on flat farmland or orchard backgrounds. In such environments, there is ample space
available for machinery operations and sufficient matching power allow for simultaneous
multi-row operations. However, in hilly areas with eco-tea plantations, the narrow row
spacing, high requirements for the overall dimensions of the machinery, and difficulties
in equipping power units have led to a relative scarcity of trenchers suitable for such
operations. Therefore, this paper proposes a trenching scheme specifically tailored for eco-
tea plantations. This approach involves the initial trenching using a rotary tiller, followed
by a secondary trenching operation with a double-disc colter. This methodology aims to
enhance the stability of tillage depth and effectively sever residual root systems. Through
a theoretical analysis, the key structural parameters that influence the trenching device’s
performance are identified, and a DEM simulation is established. With the objectives of
improving tillage depth stability and reducing working resistance, single-factor and central
composite experiments are designed. The optimal parameter combination is determined
through a response surface analysis, and the effectiveness of the optimized structural
parameters is validated through field experiments.
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2. Materials and Methods
2.1. Structure and Operational Principles of the Colter

The colter is mounted on the eco-tea plantation trenching and fertilizing integrated
machine. This machine comprises the following essential components: engine, trans-
mission system, control mechanism, fertilizing device, trenching device, depth-limiting
wheel, and driving wheel. With overall dimensions of 1800 mm × 600 mm × 900 mm
(length × width × height) and equipped with a 177F model engine, the complete machine
structure is depicted in Figure 1a.
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Figure 1. Schematic of trenching and fertilizing integrated machine and its components for eco-tea
plantation. (a) Overall machine structure diagram; (b) Rotary tillage blade diagram; (c) Double-disc
colter diagram. 1. Engine; 2. Transmission system; 3. Control mechanism; 4. Fertilizing device;
5. Double-disc colter; 6. Soil covering mechanism; 7. Depth-limiting wheel; 8. Fertilizer discharge box;
9. Soil deflector plate; 10. Driving wheel; I. Blade holder; II. Trenching blade; 1⃝ Fertilizer discharge
tube; 2⃝ Double-disc colter frame; 3⃝ Disc blade; 4⃝ Soil scraper; 5⃝ Compression spring.

Trenching operations involve two key phases: initial clearing with the rotary tillage
blade and subsequent trenching and shaping with the double-disc colter. In Figure 1b,
the rotary tillage blade comprises components like the blade holder, trenching blade, and
fixed nut, which are installed on the equipment’s gearbox output shaft. The trenching
blade is a trenching and soil-throwing blade developed earlier by the research team for
eco-tea plantations, features a rotating radius of 245 mm, a 230 mm endpoint radius of
the side-cutting edge, a 110◦ tangential deflection angle, a soil-throwing area of 3500 mm²,
and a 130◦ angle between soil-throwing plate and lateral cutting face. Figure 1c shows
the double-disc colter mounted on the equipment’s end beam, consisting of components
like disc blades, frame assembly, fertilizer discharge tube, compression spring, and soil
scraper. Following the rotary tillage blade’s preliminary trenching, the double-disc colter
deepens the trench along the groove. Figure 2 illustrates the operational process of the
eco-tea plantation trenching device.
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Figure 2. Schematic of the operational process of the colter. 1. Untilled soil area; 2. Weeds and straw;
3. Rotary tillage blade; 4. Double-disc colter; 5. Tilled soil area; Vm is forward speed of the machine; ω

is angular velocity of rotary tillage blade; h0 is vertical distance from the mass point of rotary tillage
blade to the ground; h1 is trenching depth of rotary tillage blade; h2 is trenching depth of double-disc
colter; L1 is horizontal distance between rotary tillage blade and the double-disc colter’s mass point;
L2 is vertical distance between rotary tillage blade and the double-disc colter’s mass point.

2.2. Motion Characteristics and Force Analysis

During forward motion, the machine encounters soil resistance from cutting at the
circular blade edges and compression forces on the disc surfaces. We used the Cartesian
coordinate system in Figure 3, where the x-axis aligns with the forward direction, the y-axis
represents horizontal direction, and the z-axis signifies vertical direction. Let Vm be the
machine’s forward velocity and point E denote a specific mass point on the two discs. The
angle between two discs is ϕ, and the angle at position m on the convergence point of the
two discs is β.
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In this coordinate system, the normal vectors of the double-disc plane are as follows:
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The resistance Q of cutting soil at the disc blade is given as follows:

Q =
∫

L
qdl (3)
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L = Rθ = Rarccos
R − h2

R
(4)

Solving for Q:

Q = qRarccos
R − h2

R
− h2

R
√

2Rh2 − h2
2

(5)

where Q represents the cutting force; L is the arc length of contact between the disc blade
edge and the soil; q is the force exerted by the soil on the disc blade edge; R is the radius of
the double discs; and h2 is the trenching depth of the double-disc colter.

During the forward motion, overcoming soil compression force necessitates a reaction
force FN which is exerted on the plane of the double discs. Therefore, the reaction force
formed on the plane of the double discs is denoted as F:

F = FN ·sin
(

ϕ

2

)
·cos(β)·A + FN · f ·cos

(
ϕ

2

)
+ Q (6)

In the equation, FN represents the force exerted by the double discs on the soil; A
denotes the contact area between the double discs and the soil; and f is the friction coefficient
between the soil and the double discs.

The contact area A between the plane of the double discs and the soil can be determined
by subtracting the area of the triangle from the area of the sector.

A = R2·arccos
(

R − h2

R

)
− (R − h2)

√
2Rh2 − h2

2 (7)

where A denotes the contact area between the double discs and the soil; R is the radius of
the double discs; and h2 is the trenching depth of the double-disc colter.

Assuming no soil recompaction after the operation of the rotary tillage blade and
double-disc colter, the trenching depth h2 of double-disc colter is determined as follows:

h2 = R − (h0 + h1 − L2) (8)

where h0 is the vertical distance from the mass point of the rotary tillage blade to the ground;
h1 is the depth of the trenching and soil-throwing blade; and L2 denotes the vertical distance
between rotary tillage blade and the double-disc colter mass point.

Based on the practical demands of the assignment, it is stipulated that h1 should be
greater than or equal to 0, and h2 should also be greater than or equal to 0. In the joint
operation of the entire machine, the total trenching depth (H) of the trenching device is
as follows:

H = R − h0 + L2 (9)

Tillage depth stability coefficient Uj is as follows:

H = ∑n
i=1 Hi

n

Sj =

√
∑n

i=1(Hi−H)
2

n−1

Vj =
Sj

H
× 100%

Uj = 1 − Vj

(10)

In the equation, H represents the average tillage depth for the jth pass; Hi is the tillage
depth at the ith point within the jth pass; n signifies the fixed number of measurement
points in the jth pass; Sj denotes the standard deviation of tillage depth for the jth pass;
Vj is the coefficient of variation for tillage depth in the jth pass; and Uj is the tillage depth
stability coefficient for the jth pass.

Through both theoretical analysis and practical operational experience, factors influ-
encing the effectiveness of the double-disc colter primarily encompass the vertical distance
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(L2) between rotary tillage blade and the double-disc colter’s mass point, the radius (R) of
the double-disc colter, the angle (ϕ) between the two discs, the angle (β) of convergence
point of two discs, and the vertical distance (h0) from the mass point of rotary tillage blade
to the ground. With careful consideration of the agronomic requirements of ecological tea
plantations, the vertical distance (h0) between the rotary tillage blade’s mass point and the
ground is set to 150 mm. Additionally, the angle (β) of convergence point of two discs is
determined to be 70◦ to prevent blockages in the double-disc colter.

2.3. Discrete Element Method Simulation Experiments
2.3.1. Discrete Element Simulation Modeling

This study employed EDEM 2022 software to construct DEM simulation models,
mimicking actual operational scenarios in ecological tea plantations. To enhance simulation
efficiency, simplifications were applied to the colter model. Using SolidWorks 2021 software,
models of rotary tillage blade, soil deflector plate, double-disc colter, and soil troughs
were drafted and saved in IGS format before being imported into the EDEM software for
investigating the dynamic interactions between colter and soil. Considering ecological tea
garden agronomic requirements and practical production experience, the colter’s forward
speed was set to 0.5 m/s, the rotary tillage blade’s rotational speed was set to 300 r/min, and
the distance between the blade’s mass point and the ground was set to 150 mm (Figure 4).
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Figure 4. The trenching process simulated in EDEM. (a) Colter model; (b) Furrow model;
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(1) Trenching Device Model

In the DEM simulation process, the precision of geometric model parameters can
significantly impact experimental outcomes. Therefore, based on real production processes,
the colter’s material properties were set to 1566 steel. Contact relationships were established
using EDEM software’s preprocessing module (Table 1). This study adopted the Hertz–
Mindlin (no slip) contact model to simulate the interaction between colter and soil.

Table 1. Trenching material model.

Key Component Material Density (kg·m−3) Poisson’s Ratio Shear Modulus (Pa)

Soil deflector plate
1566 steel 7850 0.35 7.8 × 1010Rotary tiller

Double-disc trencher

(2) Soil Discrete Element Model

To better approximate real field conditions, parameters of ecological tea garden soil
and straw were selected to establish the discrete element model. The dimensions of the
soil trough were 1200 mm in length, 500 mm in width, and 400 mm in height, generating
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a total of 300,000 soil particles. The soil particles had a diameter of 4 mm and a bonding
radius of 4.35 mm. Upon reaching stable soil generation, 200 straw particles were randomly
distributed on the soil surface, each with a length of 50 mm. Other simulation parameters
are listed in Table 2.

Table 2. Contact parameters of the discrete element model.

Parameter Value

Soil density/kg·m−3 2600
Soil Poisson’s ratio 0.42

Soil shear modulus/Pa 1 × 106

Straw density/kg·m−3 494
Straw Poisson’s ratio 0.4

Straw shear modulus/Pa 1 × 106

Soil–soil restitution coefficient 0.35
Soil–soil static friction coefficient 0.55

Soil–soil rolling friction coefficient 0.37
Soil–steel restitution coefficient 0.6

Soil–steel static friction coefficient 0.5
Soil–steel rolling friction coefficient 0.3
Straw–steel restitution coefficient 0.5

Straw–steel static friction coefficient 0.25
Straw–steel rolling friction coefficient 0.06

2.3.2. Single-Factor Experiments

Based on motion analysis during the operation process of the double-disc colter, the
following key factors affecting trenching performance were identified through theoretical
analysis: the vertical distance (referred to as “relative height”) between the rotary tillage
blade and double-disc colter mass point, the diameter of double-disc colter (referred
to as “double-disc diameter”), and the angle between two discs (referred to as “angle
between two discs”). These factors were chosen as our experimental variables, with tillage
depth stability coefficient and working resistance chosen as our evaluation criteria. Single-
factor dynamic simulations of the trenching process were performed using EDEM discrete
element simulation software, with the experiments being repeated five times each and
their averages calculated. The influence of different installation positions and double-
disc structural parameters on tillage depth stability and working resistance was analyzed.
Experimental factor levels are summarized in Table 3.

Table 3. Single-factor simulation experiment factor level table.

Experimental Factors

Level Code Relative Height
x1/(mm)

Double-Disc
Diameter x2/(mm)

Angle between Two
Discs x3/(◦)

1 60 260 10
2 80 280 12
3 100 300 14
4 120 320 16
5 140 340 18

2.3.3. Multi-Factor Experiments

In order to further optimize the structural parameters of double-disc colter for joint
operations, building upon the foundation of single-factor experiments, comprehensive
consideration was given to factors such as ecological tea garden agronomy, operational
environment, and trenching performance indicators. After analysis, ideal ranges for each
factor were determined. To achieve the best performance, a three-factor, five-level central
composite design experiment was conducted to identify the optimal parameter combination.
A factor level coding table (Table 4) was established, with tillage depth stability and working
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resistance as evaluation criteria. Each experiment was repeated five times, and the averages
were calculated to obtain the final experimental results.

Table 4. Multi-factor simulation experiment factor level table.

Experimental Factors

Level Code Relative Height
X1/(mm)

Double-Disc
Diameter X2/(mm)

Angle between Two
Disks X3/(◦)

1.682 134 334 15
1 120 320 14
0 100 300 12
−1 80 280 10

−1.682 66 266 9

2.4. Field Verification

To confirm the simulation model’s reliability, the double-disc colter with optimized
structural parameters was fabricated. Due to the inconvenience of directly measuring the
double-disc colter’s working resistance on machinery, an adjustable test stand cart was
assembled along with a tension testing instrument (HP-1K) (Yueqing Aibao Instrument Co.,
Ltd., Yueqing City, Wenzhou City, China) for evaluation. Field experiments were conducted
in the ecological tea garden area of Wuyishan City, Nanping, Fujian Province, with a
moisture content of 18.6%. Key equipment included the test stand cart, double-disc colter,
tension testing instrument, rotary tillage blade, counterweights, and steel ruler. To simplify
testing, the rotary tillage blade was mounted on the machinery prior to the experiment
and the distance between the blade’s mass point and the ground was set to 150 mm, with a
forward speed of 0.5 m/s and a rotation speed of 300 rad/min. Subsequently, the initial
trenching operation was initiated. The double-disc colter, set to a relative height of 80 mm
to rotary tillage blade, was installed on the test stand cart. Throughout the experiment, the
test stand cart advanced at 0.5 m/s, and double-disc colter performed secondary trenching
along the furrow, as depicted in Figure 5. Five replicate experiments were conducted. The
trenching depth was measured with a steel ruler, and the working resistance was measured
using the tension testing instrument. The average values were then calculated to determine
the final tillage depth stability coefficient and working resistance.
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4. Tension sensor; 5. Tension sensor detector; 6. Test cart accessory device.

3. Results and Discussion
3.1. Simulation Analysis

During the DEM simulation, soil particles were generated and allowed to settle
naturally from 0 to 6 s, while straw particles were randomly distributed on the soil surface.
At 6.2 s, the rotary tillage blade entered the soil trough, rotating around its own center
and moving in the X-axis direction. As it rotated, it ejected the soil and straw particles
outward, forming initial furrows. The double-disc colter began to deepen the furrow



Agriculture 2024, 14, 704 9 of 17

trajectory that was created by the rotary tillage blade at 6.5 s. At 7.3 s, both the rotary tillage
blade and double-disc colter exited the soil trough, marking the end of the simulation. For
post-processing, we exported the working resistance data of the double-disc colter and the
cross-sectional profile of the furrow.

As shown by the post-processing interface of the EDEM software and Figure 6a, after
the trenching operation, most of the surface straw within the working area was effectively
cleared, while some soil accumulated on the soil-throwing side, causing soil recompaction.
Following the operation of the double-disc colter, Figure 6b indicates that the furrows
became more even. Within the furrow after the operation, trench depth measurements
were taken at intervals of 200 mm along a sampled plane, as depicted in Figure 6b. The
average of these measurements was calculated to determine the final trench depth, from
which the tillage depth stability coefficient was derived.
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Figure 6. EDEM simulation trenching results. (a) Schematic of the working area. (b) Measurement
of trench depth. 1. Soil deflector plate; 2. Rotary tillage blade; 3. Double-disc colter; 4. Straw;
5. Working area.

3.2. Analysis of Single-Factor Experimental Results

(1) The Influence of Relative Height on Performance Indicators

Under the condition in which the distance between the rotary tillage blade’s mass
point and the ground is 150 mm, the double-disc’s diameter is 300 mm, and the angle
between the two discs is 14◦, single-factor experiments were conducted with the following
relative heights: 60 mm, 80 mm, 100 mm, 120 mm, and 140 mm. Each experiment was
repeated five times, and the average results were analyzed to assess the impact of the
relative height on the tillage depth stability and the working resistance of the double-disc
colter (refer to Figure 7).
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The tillage depth stability increases between relative heights of 60 mm and 100 mm but
gradually decreases from 100 mm to 140 mm, reaching its peak at 100 mm. Simultaneously,
there is an overall increase in the working resistance of the double-disc colter. This is
attributed to reduced contact between the double-disc colter and the soil at lower relative
heights, resulting in a decreased level of trenching resistance. Based on the single-factor
results and considering the agronomic requirements of the ecological tea garden, the
optimal relative height range is determined to be 80–120 mm.

(2) The Influence of Double-Disc Diameter on Performance Indicators

Under the condition in which the distance between the rotary tillage blade’s mass
point and the ground is 150 mm, the angle between the two discs is 14◦, and the relative
height is 100 mm, single-factor experiments were conducted with the double-disc diameters
set to 260 mm, 280 mm, 300 mm, 320 mm, and 340 mm. Each experiment was repeated five
times under constant parameters, and the average results were obtained. The trends of
different double-disc diameters on the tillage depth stability and the working resistance of
the double-disc colter were analyzed (refer to Figure 8).
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The tillage depth stability increased from double-disc diameters of 260 mm to
300 mm but decreased from 300 mm to 340 mm, peaking at a diameter of 300 mm. Larger
double-disc diameters corresponded to higher levels of the overall working resistance of
the colter, with the lowest resistance recorded at a diameter of 260 mm. As the diameter in-
creased, the discs made greater contact with the soil, resulting in increased soil disturbance
and decreased tillage depth stability, alongside heightened levels of working resistance.
Considering the single-factor results and the agronomic requirements of the ecological tea
garden, a double-disc diameter range of 280 mm to 320 mm is optimal.

(3) The Influence of Angle between Two Discs on Performance Indicators

Under the condition in which the distance between rotary tillage blade’s mass point
and the ground is 150 mm, the relative height is 100 mm, and the double-disc diameter is
300 mm, single-factor experiments were conducted with the following angles between the
two discs: 10◦, 12◦, 14◦, 16◦, and 18◦. Each experiment was repeated five times, and the
average values of performance indicators were analyzed to examine the impact of different
angles between the two discs on the tillage depth stability and the working resistance of
the colter (refer to Figure 9).
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Within the range of 10◦ to 14◦, tillage depth stability gradually increased, while the
working resistance of the colter rose slowly. Conversely, angles between 14◦ and 18◦

resulted in a decrease in the tillage depth stability and a rapid increase in the levels of
working resistance. This is attributed to the larger contact area of the colter with the
soil as the angle increases, leading to soil recompaction and compression at the bottom
of the furrow, forming a “W” shape. As a result, actual trench depth measurements
become shallower, and the level of working resistance increases. The optimal angle for
achieving the maximum tillage depth stability was found to be 14◦, while the angle yielding
the minimum working resistance was 10◦. Considering the single-factor results and the
agronomic requirements of the ecological tea garden, an ideal angle range of 10◦ to 14◦

is recommended.

3.3. Analysis of Multi-Factor Experiment Results

This study utilized a three-factor, five-level central composite design experiment to
explore the optimal operational parameters of the trenching device. Regression models were
established to correlate each factor with experimental performance indicators, providing a
comprehensive evaluation of the tillage depth stability and working resistance. Throughout
the experimental process, the central composite experimental design scheme aligned with
the table of experimental factor levels. The colter’s forward speed was set to 0.5 m/s, the
rotary tillage blade’s rotational speed was set to 300 r/min, and the distance between the
blade’s mass point and the ground was set to 150 mm. With all the other parameters held
constant, each experiment was repeated five times, and the average values were analyzed
as the experimental results, as shown in Table 5.

Table 5. Multi-Factor Simulation Experiment Design and Results.

Run

Experimental Factors Performance Indicators

Relative Height
X1/(mm)

Double-Disc
Diameter
X2/(mm)

Angle between
Two Disks

X3/(◦)

Tillage Depth
Stability
Y1/(%)

Working
Resistance

Y2/(N)

1 −1.682 0 0 87.06 73.5
2 0 −1.682 0 84.29 92.1
3 0 0 0 91.01 98.8
4 1 −1 −1 86.43 127.6
5 0 0 0 90.85 105.7
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Table 5. Cont.

Run

Experimental Factors Performance Indicators

Relative Height
X1/(mm)

Double-Disc
Diameter
X2/(mm)

Angle between
Two Disks

X3/(◦)

Tillage Depth
Stability
Y1/(%)

Working
Resistance

Y2/(N)

6 −1 −1 1 90.06 85.7
7 1.682 0 0 86.32 179.2
8 0 0 0 89.63 110.5
9 0 0 0 90.36 104.6

10 0 0 0 88.97 108.9
11 −1 1 −1 87.56 107
12 0 0 −1.682 86.93 94.4
13 0 0 1.682 92.6 136.6
14 1 1 −1 86.14 168.2
15 0 1.682 0 86.16 165.6
16 −1 −1 −1 85.26 81.5
17 0 0 0 90.21 105.9
18 1 1 1 89.36 221.6
19 1 −1 1 88.74 140.9
20 −1 1 1 91.28 129.2

(1) The Impact of Experimental Factors on Tillage Depth Stability Coefficient

Based on the data in Table 6, the tillage depth stability coefficient model for the
double-disc colter demonstrates a significant effect (p < 0.01), with a non-significant lack-
of-fit term (p > 0.05), indicating the significance of the model and the insignificance of the
lack-of-fit term. Thus, the model is meaningful. The p-value associated with the angle
between two discs is less than 0.01, signifying a highly significant impact on the tillage
depth stability coefficient model. The p-value for the double-disc diameter is less than
0.05, indicating a significant effect on the tillage depth stability coefficient. However, the
p-value for the relative height is greater than 0.05, suggesting a non-significant impact on
the model. Regarding interaction effects, the squared terms for the relative height and
double-disc diameter both have p-values less than 0.01, indicating their extreme significance.
Additionally, all other interaction factors show a non-significant impact on the tillage depth
stability coefficient. The influence of the factors on the tillage depth stability model, in
descending order, is as follows: the angle between the two discs, double-disc diameter,
and relative height. The impact of the interaction terms on the tillage depth stability
has the following sequence: the squared double-disc diameter, squared relative height,
interaction between the relative height and double-disc diameter, interaction between the
relative height and angle between the two discs, squared angle between the two discs,
and interaction between the double-disc diameter and the angle between the two discs.
Upon removing non-significant terms, the regression model for the tillage depth stability is
as follows:

Y1 = −334.94398 + 2.42086X2+1.48323X3 − 0.00252X1
2 − 0.00382X2

2 (11)

Figure 10a illustrates the response surface of the interaction between the relative
height and double-disc diameter when the angle between the two discs is at the central
level. With the double-disc diameter held constant, the tillage depth stability initially
increases with increasing relative height and then gradually decreases. Similarly, when the
relative height remains constant, the tillage depth stability generally increases with larger
double-disc diameters. The highest tillage depth stability is observed when the relative
height is between 95 mm and 105 mm and the double-disc diameter is between 300 mm and
310 mm. Figure 10b depicts the interaction between the relative height and angle between
the two discs when the double-disc diameter is at the central level. Here, with a constant
angle between the two discs, an increase in the relative height leads to a decrease in the
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tillage depth stability. Conversely, keeping the relative height constant while increasing the
angle between the two discs results in an increase in the tillage depth stability. Figure 10c
demonstrates the interaction between the double-disc diameter and angle between the
two discs when the relative height is at the central level. With a constant angle between
the two discs, there is a slight increase followed by a decrease in the tillage depth stability,
with the highest stability observed when the double-disc diameter ranges from 290 mm to
310 mm. Meanwhile, keeping the double-disc diameter constant and increasing the angle
between the two discs leads to a gradual increase in the tillage depth stability, peaking at
an angle between the two discs of 14◦.

Table 6. Analysis of Variance for Tillage Depth Stability by Factors.

Source Square
Sum

Degree
of

Freedom

Mean
Square F-Value p-Value Significance

Regression
Model 93.99 9 10.44 14.54 0.0001 **

X1 1.64 1 1.64 2.29 0.1615
X2 3.58 1 3.58 4.99 0.0495 *
X3 40.73 1 40.73 56.72 <0.0001 **

X1X2 1.27 1 1.27 1.77 0.2128
X1X3 1.12 1 1.12 1.56 0.2407
X2X3 0.0036 1 0.0036 0.005 0.9449
X1

2 14.65 1 14.56 20.4 0.0011 **
X2

2 33.56 1 33.56 46.74 <0.0001 **
X3

2 0.09 1 0.09 0.1253 0.7308
Residual 7.18 10 0.7182

Lack of Fit 4.24 5 0.8489 1.45 0.348
Error 2.94 5 0.5875
Sum 101.17 19

Note: “**” indicates significance at p < 0.01, “*” indicates significance at p < 0.05.
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Figure 10. The impact of interaction effects on tillage depth stability. (a) The impact of double-disc
diameter and relative height on tillage depth stability. (b) The impact of angle between two discs and
relative height on tillage depth stability. (c) The impact of double-disc diameter and angle between
two discs on tillage depth stability.

(2) The Impact of Factors on Working Resistance

According to Table 7, the p-value of the regression model for the working resistance of
the double-disc colter is less than 0.01, indicating the model’s high level of significance. The
lack-of-fit p-value exceeds 0.05, suggesting non-significance. Thus, the quadratic fit of the
working resistance model is satisfactory and meaningful. The p-values corresponding to the
three factors of the relative height, double-disc diameter, and angle between the two discs
are all less than 0.01, signifying their highly significant impact on the working resistance.
Moreover, the interaction effects of each factor on the model are substantial. The p-values
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corresponding to the interaction term between the double-disc diameter and angle between
the two discs, the square term of the relative height, the square term of the double-disc
diameter, and the square term of the angle between the two discs are all less than 0.01,
indicating their highly significant influence on the model. The interaction terms of the
relative height and double-disc diameter as well as the interaction terms of the relative
height and angle between the two discs are less than 0.05, indicating their significant impact
on the model. Among the factors, their influence on the working resistance model is shown
in decreasing order as follows: the relative height, double-disc diameter, and angle between
the two discs. The impact of the interaction terms on the working resistance is as follows:
the square term of the double-disc diameter, the square term of the relative height, the
interaction term between the double-disc diameter and angle between the two discs, the
square term of the angle between the two discs, the interaction term between the relative
height and double-disc diameter, and the interaction term between the relative height and
angle between the two discs. The obtained regression model for the working resistance is
as follows:

Y2 = 3457.40692 − 9.32572X1 − 17.47587X2 − 91.9841X3+0.01634X1X2
+0.12594X1X3+0.18156X2X3+0.02248X1

2+0.02469X2
2+1.28869X3

2 (12)

Table 7. Analysis of variance for factors on working resistance experimental indicators.

Source Square
Sum

Degree
of

Freedom

Mean
Square F-Value p-Value Significance

Regression
Model 26374.72 9 2930.52 79.93 <0.0001 **

X1 13707.36 1 13707.36 373.85 <0.0001 **
X2 7215.47 1 7215.47 196.79 <0.0001 **
X3 1971.14 1 1971.14 53.76 <0.0001 **

X1X2 341.91 1 341.91 9.33 0.0122 *
X1X3 203.01 1 203.01 5.54 0.0404 *
X2X3 421.95 1 421.95 11.51 0.0069 **
X1

2 1164.93 1 1164.93 31.77 0.0002 **
X2

2 1405.24 1 1405.24 38.33 0.0001 **
X3

2 382.93 1 382.93 10.44 0.009 **
Residual 366.66 10 36.67

Lack of Fit 284.53 5 56.91 3.46 0.0994
Error 82.13 5 16.43
Sum 26741.38 19

Note: “**” indicates that p < 0.01, and “*” indicates that p < 0.05.

Figure 11a illustrates the interaction between the relative height and double-disc
diameter when the angle between the two discs is at the central level. With the double-disc
diameter held constant, an increase in the relative height leads to an overall increase in
the level of working resistance. The effect of the relative height on the working resistance
is most pronounced when the double-disc diameter is set to 320 mm. When the relative
height remains constant, an increase in the double-disc diameter also results in an overall
increase in the level of working resistance, with a significant impact observed at a relative
height of 120 mm. This phenomenon is primarily attributed to the increase in both the
double-disc diameter and relative height, which leads to a greater furrow depth and
consequently increases the level of resistance during trenching. Figure 11b indicates the
interaction between the relative height and angle between the two discs when the double-
disc diameter is at the central level. When the angle between the two discs remains constant,
an increase in the relative height leads to an overall increase in the working resistance.
Similarly, when the relative height remains constant, an increase in the angle between
the two discs results in a slight overall increase in the working resistance. Figure 11c
demonstrates the interaction between the double-disc diameter and angle between the
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two discs when the relative height is at the central level. When the angle between the
two discs remains constant, an increase in the double-disc diameter leads to a corresponding
increase in the working resistance. Likewise, when the double-disc diameter remains
constant, an increase in the angle between the two discs results in a slight overall increase
in the working resistance.
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3.4. Bench Validation Experiment Analysis

With the aim of improving the trenching stability and reducing the working resistance
of the joint trenching device, the optimal structural parameters for the double-disc colter
were determined. By optimizing the combinations of the relative height, double-disc
diameter, and angle between the two discs parameters and establishing objective and
constraint functions as shown in Equation (13), the optimal parameters were determined.
The optimization algorithm in Design-Expert 13 software was utilized for our analysis.
After optimization, the optimal parameters were found to be a relative height of 82 mm, a
double-disc diameter of 297 mm, and an angle between the two discs of 14◦, resulting in a
trenching stability of 91.64% and a working resistance of 93.93 N. Considering the precision
of actual production processes, the final machining parameters for the double-disc colter
were determined to be a relative height of 80 mm, a diameter of the double-disc of the
colter of 300 mm, and an angle between the two discs of 14◦.

maxY1(X1 , X2 , X3)
minY2 (X1 , X2 , X3)

s.t.


80 mm ≤ X1 ≤ 120 mm

280 mm ≤ X2 ≤ 320 mm
10◦ ≤ X3 ≤ 14◦

(13)

The field validation experiments demonstrate that the tillage depth stability achieved
92.37%, with a deviation of only 0.73% between the simulated and experimental values.
The working resistance was measured to be 104.2 N, reflecting a relative error of 10.93%
compared to the simulated values. The primary reason for this discrepancy lies in the
soil’s firmness during field testing, significantly impacting the working resistance of the
double-disc colter, while soil recompaction remained minimal, ensuring its tillage depth
stability. Both evaluation metrics exhibit a relative error of less than 15%, falling within
an acceptable range for agricultural machinery, affirming the reliability of the simulation
model (Table 8).
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Table 8. Comparison between simulation and field trenching test results.

Parameter Tillage Depth Stability (%) Working Resistance (N)

Simulation Testing Value 91.64 93.93
Field Testing Value 92.37 104.2

4. Conclusions

In response to the operational environment of ecological tea gardens, this study in-
troduces a trenching device designed to work together with a rotary tillage blade and
double-disc colter. Through the execution of single-factor and multi-factor experiments,
a discrete element simulation was employed, allowing for the optimization of the key
structural parameters of the double-disc colter. Subsequently, the reliability of the simu-
lation model was validated through field experiments, resulting in the derivation of the
following conclusions:

(1) Using EDEM software for the field operation simulation, the motion characteristics of
the double-disc colter during trenching were analyzed. The tillage depth stability and
working resistance were the key experimental indicators. Single-factor experiments,
conducted with a forward speed of 0.5 m/s and a rotary tillage blade speed of
300 r/min, revealed significant impacts of the relative height, double-disc diameter,
and angle between the two discs of the double-disc colter on both the tillage depth
stability and working resistance. Optimal parameter ranges were determined to be
relative heights of 80 mm to 120 mm, double-disc diameters of 280 mm to 320 mm,
and angles between the two discs of 10◦ to 14◦.

(2) A quadratic polynomial model was established through multifactor experiments
to correlate the tillage depth stability coefficient and working resistance with the
three experimental factors. The optimization of the double-disc colter’s structural
parameters yielded optimal operating performance, with a relative height of 82 mm,
double-disc diameter of 297 mm, and angle between the two discs of 14◦. This resulted
in the tillage depth stability reaching 91.64%, with the working resistance reduced to
93.93 N.

(3) The optimized double-disc colter underwent field validation tests, showing a mere
0.73% deviation between the simulated and field-tested tillage depth stability. The
relative error between the simulated and field-tested working resistance was 10.93%,
affirming the simulation model’s reliability. Additionally, the device meets the agro-
nomic requirements of hilly eco-tea gardens, and our study offers valuable guidance
for the design of trenching equipment for such environments.
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