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Abstract: The accurate and rapid identification of rice diseases is crucial for enhancing rice yields.
However, this task encounters several challenges: (1) Complex background problem: The rice
background in a natural environment is complex, which interferes with rice disease recognition;
(2) Disease region irregularity problem: Some rice diseases exhibit irregular shapes, and their target
regions are small, making them difficult to detect; (3) Classification and localization problem: Rice
disease recognition employs identical features for both classification and localization tasks, thereby
affecting the training effect. To address the aforementioned problems, an enhanced rice disease
recognition model leveraging the improved YOLOv7-Tiny is proposed. Specifically, in order to
reduce the interference of complex background, the YOLOv7-Tiny model’s backbone network has
been enhanced by incorporating the Convolutional Block Attention Module (CBAM); subsequently,
to address the irregularity issue in the disease region, the RepGhost bottleneck module, which
is based on structural reparameterization techniques, has been introduced; Finally, to resolve the
classification and localization issue, a lightweight YOLOX decoupled head has been proposed. The
experimental results have demonstrated that: (1) The enhanced YOLOv7-Tiny model demonstrated
elevated F1 scores and mAP@.5, achieving 0.894 and 0.922, respectively, on the rice pest and disease
dataset. These scores exceeded the original YOLOv7-Tiny model’s performance by margins of 3.1 and
2.2 percentage points, respectively. (2) In comparison to the YOLOv3-Tiny, YOLOv4-Tiny, YOLOv5-S,
YOLOX-S, and YOLOv7-Tiny models, the enhanced YOLOv7-Tiny model achieved higher F1 scores
and mAP@.5. The improved YOLOv7-Tiny model boasts a single image inference time of 26.4 ms,
satisfying the requirement for real-time identification of rice diseases and facilitating deployment in
embedded devices.

Keywords: rice diseases; image identification; YOLOv7-Tiny; object detection

1. Introduction

Rice is one of the most widely grown food crops in the world. However, the frequent
occurrence of rice diseases has had a serious impact on the yield and quality of rice, posing a
great threat to food security [1]. Despite the continuous development of agricultural science
and technology, the diagnosis of crop diseases in most areas still relies on the traditional
method of manual identification, which is not only inefficient but also fails to meet the
needs of modernized agricultural production [2]. Therefore, it is particularly important
to study efficient and accurate artificial intelligence rice disease recognition algorithms.
Currently, crop disease detection primarily relies on two types of data: RGB images and
hyperspectral images. Hyperspectral imaging-based techniques for crop disease severity
detection capture detailed spectral data by recording the spectral reflectance of crops at
various wavelengths. The quality of this data is then enhanced through preprocessing
steps such as denoising, correction, and normalization. Subsequently, key features are
extracted from the optimized data, and machine learning models are developed and trained
to analyze these features, ultimately facilitating the detection of crop diseases. For instance,
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Zhang [3] employed hyperspectral imaging and SVM to classify the severity of rice leaf
blasts at different growth stages, achieving a classification accuracy of 94.75%. Similarly,
Cao [4] and colleagues utilized hyperspectral imaging and SDC-3DCNN to detect bacterial
blight in rice, reaching an accuracy of 95.4427%. Although hyperspectral imaging offers
high precision in crop disease recognition, it typically focuses on identifying a single
disease and the high costs of equipment and maintenance limit its widespread adoption,
particularly for resource-constrained small-scale farms and research institutions. In contrast,
RGB image-based techniques for crop disease severity detection are relatively cost-effective
and do not involve complex data processing, making them a suitable choice for detecting
rice diseases in this study.

In recent years, target detection algorithms have been extensively applied in agricul-
tural production. These algorithms are typically classified into two groups: the two-stage
method and the single-stage method for detecting targets [5]. The two-stage target detection
algorithm initially generates a series of anchor boxes by utilizing common region selection
methods, including Selective Search and the Region Proposal Network. Subsequently, it
inputs the generated anchor boxes into a convolutional neural network for feature extrac-
tion and classification regression. Typical detection algorithms comprise R-CNN [6]. Fast
R-CNN [7], Faster R-CNN [8], and Mask R-CNN [9]. Yuanqin Zhang et al. [10] developed
an improved Faster R-CNN rice ear detection network aimed at addressing the problem of
identifying small target rice ears, achieving an average accuracy of 80.3%. Zhenguo Zhang
et al. [11] implemented safflower filament detection utilizing Faster R-CNN combined with
an attention mechanism, resulting in an average recognition accuracy of 91.49%. Gaoliang
Zhang et al. [12] proposed a rice stalk cross-section parameter detection network based
on Mask R-CNN, yielding an average accuracy of 94.37%. Although the aforementioned
two-stage target detection algorithm, which is based on generating candidate frames, ex-
hibits high detection accuracy, its deployment on mobile devices is challenging due to the
large number of network model parameters and its slow detection speed. The single-stage
algorithm for object detection bypasses the creation of candidate frames, directly comput-
ing both the object’s class probability and its positional coordinates. Notable algorithms
encompass SSD (Single Shot MultiBox Detector) [13] and YOLO (You Only Look Once) [14].
Regarding the SSD algorithm, Lin et al. [15] developed a rice planthopper recognition algo-
rithm employing SSD and dictionary learning, achieving a recognition accuracy of 89.3%.
With respect to the YOLO algorithm, Xiong et al. [16] designed a multi-scale convolutional
neural network named Des-YOLOv3, tailored for identifying citrus at night, attaining an
average accuracy rate of 90.75%. Wang et al. [17] developed a rice disease recognition
algorithm utilizing YOLOv4-Tiny, achieving an average recognition accuracy of 81.79%.
Sun et al. [18] incorporated phantom convolution and attention modules into YOLOv5s
for the recognition of apple fruit diseases. Aziz et al. [19] proposed an improved YOLO to
classify diseased rice leaves with 94% accuracy. Sangaiah et al. [20] proposed a T-yolo-Rice
rice disease detection model, and the mAP reached 86%. In contrast to the two-stage
algorithm for object detection, the single-stage variant, which depends on regression, not
only diminishes the parameter count of the model but also improves its performance in
real-time scenarios. However, these algorithms struggle with detecting small targets and
are susceptible to the issue of missing detection.

Currently, rice disease detection has yielded good results but continues to face the
following challenges: (1) Complex background problem: rice grows in a natural environ-
ment, and the complex background can interfere with rice disease identification; (2) Disease
region irregularity problem: In rice disease detection, diseases like bacterial blight, rice
blast, and brown spot are characterized by irregular shapes and varying target region sizes,
complicating their detection process; (3) Classification and localization problem: rice dis-
ease recognition utilizes the same features for classification and localization tasks; however,
the features for classification and localization are spatially misaligned, which affects the
training results. To address these challenges, the study focused on five diseases as research
subjects and enhanced the YOLOv7-Tiny model. For the complex background issue, the
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Convolutional Block Attention Module (CBAM) has been integrated into the YOLOv7-Tiny
model, enhancing focus on the disease regions and minimizing the impact of complex
backgrounds on rice disease recognition. To tackle the issue of irregular disease regions, the
RepGhost bottleneck module (RG-bneck) has been introduced to the YOLOv7-Tiny model,
thereby enhancing its capability to extract features from irregular disease regions through
structural reparameterization technology. Subsequently, a lightweight YOLOX decoupled
head has been proposed to enhance the model’s classification and localization accuracy.
Finally, to accelerate convergence, the model has adopted a transfer learning approach.

In the remainder of this paper, the methods for rice disease image acquisition and
identification are detailed in Section 2, the experimental results are presented in Section 3,
the discussion is provided in Section 4, and the conclusions are outlined in Section 5.

2. Materials and Methods
2.1. Dataset

Utilizing the self-built dataset and two public datasets, this article has constructed
a dataset containing 5 types of diseases. The self-built dataset was sourced from the
Shuangmajiatun paddy field, Acheng District, Harbin City, Heilongjiang Province. Data
collection was conducted using a OnePlus smartphone (The phone was made by Shenzhen
OnePlus Science and Technology Co., Ltd, and purchased in Harbin, China.), spanning
from 1 August to 10 September. The dataset included a total of 887 images, including
bacterial blight, rice blast, brown spot, rice tungro, and rice false smut. In order to enrich
the dataset, 613 rice disease images from the public rice disease dataset [21] were also
used in this study. The images obtained through the above methods underwent further
screening to remove duplicates and misclassified images from the original public dataset,
resulting in the construction of a rice pest and disease dataset containing 1500 images.
Figure 1 showcases a range of rice disease images.

(a) (b) (c) (d) (e)

Figure 1. Image samples of rice diseases dataset. (a) Bacterial blight; (b) Rice blast; (c) Brown spot;
(d) Rice tungro; (e) Rice false smut.

2.2. Data Preprocessing

In this research, prior to training the model, images were annotated using LabelImg
v1.8.6 [22] according to the Pascal VOC dataset’s annotation format. In order to enhance
the generalization ability of the model and avoid overfitting, the data are augmented by
offline and online data enhancement [18]. To improve the model’s generalization ability
and ensure sample space consistency, offline data augmentation operations—including
noise addition, panning, cropping, flipping, and random luminosity adjustment—were
conducted on the images, increasing the image count to 10,500. The offline data enhance-
ment diagram is shown in Figure 2. The data were partitioned into training, validation,
and test sets in a 6:2:2 ratio. To enrich the image background and enhance model training
efficiency, an online data augmentation strategy was employed to conduct Mixup and
Mosaic enhancement operations on the input image data during the training process. This
online data augmentation strategy eliminates the need for additional storage space for
the enhanced image data, thus conserving storage resources and offering high flexibility.
Table 1 enumerates the number and labeling specifics of the images related to rice pests
and diseases subsequent to their preprocessing.



Agriculture 2024, 14, 709 4 of 15

(a) (b) (c) (d) (e) (f)

Figure 2. Data enhancement diagram. (a) Original image; (b) noise addition; (c) panning;
(d) cropping; (e) flipping; (f) random luminosity adjustment.

Table 1. Overview of rice pests and diseases dataset.

Category Number of Original
Samples

Number of
Enhancement

Samples
Label

Bacterial blight 198 1386 0
Rice blast 290 2030 1

Brown spot 469 3283 2
Rice tungro 293 2051 3

Rice false smut 250 1750 4
Total 1500 10,500

2.3. YOLOv7 Network Architecture

In this study, a recognition model for rice diseases was developed, utilizing the
YOLOv7-Tiny [23] framework as its basis. YOLOv7-Tiny is characterized by a streamlined
model structure and fast inference and is suitable for scenarios with limited resources.
However, the recognition accuracy of the model for rice diseases in complex backgrounds
is still to be improved and needs to be further optimized and improved.

Figure 3 illustrates the architecture of the YOLOv7-Tiny model, primarily composed
of Input, Backbone, Neck, and Prediction layers. The input side initially preprocesses the
image, which primarily entails data augmentation and adaptive anchor frame calculation
to ensure uniform scaling of the RGB image in order to fulfill the input size requirement of
the backbone network. The backbone network is primarily composed of three modules:
CBL, T-ELAN, and MP. The CBL module comprises convolution, batch normalization,
and LeakyReLU activation functions. The E-ELAN (Extended efficient layer aggregation
networks) module is an extension proposed on the basis of the ELAN [24] module. The
E-ELAN maintains the network’s initial gradient trajectory while improving its capacity to
learn. This enhancement is achieved by integrating various computational blocks designed
for distinct feature groups, thereby enabling the network to acquire a wider array of
features. The T-ELAN module is a streamlined version of the ELAN module, with two
fewer convolution operations relative to the ELAN module. MP denotes the Maximum
Pooling Layer, primarily employed to reduce the image’s dimensions by half in both length
and width and to extract the maximal value information from the local region. The neck
network of YOLOv7-Tiny employs Feature Pyramid Networks and Path Aggregation
Network architectures. It comprises the CBL module, T-ELAN module, MP module, and
SPPCSP module. The prediction layer possesses three detection branches responsible for
detecting targets of different sizes and generating the predicted class probabilities and
location information.
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Figure 3. YOLOv7-Tiny Structure of the target detection network.

2.4. Convolutional Block Attention Module

To address the problem that the rice disease dataset constructed in this study has
a complex background that interferes with rice disease identification, the Convolutional
Block Attention Module (CBAM) [25] and the T-ELAN module in the YOLOv7-Tiny model
backbone network were combined to form the improved C-T-ELAN module, the structure
of which is shown in Figure 4. By assigning weights to the spatial dimension and channel
dimension of input features, CBAM improves the network’s attention to rice disease
feature information, thereby reducing the influence of complex background on rice disease
recognition to a certain extent.

CBL Concat CBLCBAM CBL

CBL

CBL

Input

Output

Figure 4. C-T-ELAN Model structure.

CBAM, a proficient and compact attention module, comprises both a channel attention
module and a spatial attention module. Its architecture is depicted in Figure 5. The channel
attention module receives the input feature map F ∈ RC×H×W , performs global maximum
pooling and global average pooling to generate two one-dimensional feature vectors, which
are fed into the multilayer perceptron, and then performs element-by-element summing
and sigmoid function activation of the feature vectors output by the perceptron to obtain
the normalized channel attention weights matrix Mc ∈ RC×1×1 , and finally multiplies the
channel attention weights matrix with the input feature map F ∈ RC×H×W to obtain the
adjusted feature map Fa ∈ RC×H×W . The spatial attention module takes the feature map
Fa ∈ RC×H×W as input and performs global maximum pooling and global average pooling
to obtain two feature vectors, performs convolution operation on the spliced features
of these two vectors and activates them by a sigmoid function to obtain the normalized
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spatial attention weight matrix Ms ∈ R1×H×W , and finally multiplies the spatial attention
weight matrix with the input feature map Fa ∈ RC×H×W to obtain the adjusted feature
map Fb ∈ RC×H×W . The CBAM is calculated as shown in Equations (1) and (2). ⊗ denotes
dot product.

Fa = Mc(F)⊗ F (1)

Fb = Ms(Fa)⊗ Fa (2)

Channel 

Attention 

Module

Channel 

Attention 

Module
Spatial 

Attention 

Module

Spatial 

Attention 

Module
F Fb

Fa

Mc(F) Ms(Fa)

Figure 5. Convolutional Block Attention Module structure.

2.5. RepGhost Bottleneck Module

Aiming at the problem of irregular rice disease regions, this paper introduces the
RepGhost bottleneck (RG-bneck) module [26] so that it replaces one of the convolution
operations in the C-T-ELAN module in the model backbone network and thus constructs
the improved R-C-T-ELAN module, which in turn improves the model feature extraction
capability. Its structure is shown in Figure 6.

CBL Concat CBLCBAM RG-bneck

CBL

CBL

Input

Output

CBL

Figure 6. R-C-T-ELAN Model structure.

The RepGhost bottleneck Module represents a hardware-efficient architecture devel-
oped through advanced structure-heavy parameterization techniques aimed at enhanc-
ing model training accuracy while preserving fast inference speed. The structure of the
RepGhost bottleneck Module is depicted in Figure 7. dconv is the Depthwise convolutional
layer, SBlock is the Shortcut block, DS is the Downsample layer, and SE is the Squeeze-
and-Excitation block [27]. During the training phase, the input feature map undergoes
processing via two branches. One branch comprises the jump-connection layer, SBlock;
meanwhile, in the other branch, the input feature map initially traverses the RepGhost
module, which includes convolution, depth-separable convolution, a Batch Normalization
layer, and a ReLU activation function. Subsequently, it moves through an intermediate
layer, follows through the RepGhost module without the ReLU activation function, and
ultimately, this branch combines with the jump connection layer. During the inference
phase, the module converts the depth-separable convolution and the batch normalization
layer into equivalent depth-separable convolutions via parameter fusion. The RepGhost
bottleneck Module utilizes structural reparametrization to synthesize and amalgamate
different feature maps, thereby reducing the loss of feature information and consequently
enhancing the model’s accuracy during the training phase. Furthermore, the module
adopts the add operation over the inefficient ConCat operation to enhance the model’s
inference speed.
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(a) RepGhost bottleneck Module training
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ReLU
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conv
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ReLU
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ReLU

SBlock

(b) RepGhost bottleneck Module inference

Figure 7. RepGhost bottleneck Module structure.

2.6. Improved Decoupled Head

The detection head of Yolov7-Tiny employs identical features for both classification
and localization tasks. However, the features for classification and localization exhibit
spatial misalignment, which may influence the training results [28]. To enhance the accu-
racy of classification and localization further, the detection head of Yolov7-Tiny has been
substituted with the Decoupled Head of the YOLOX [29] model.

The layout of the YOLOX decoupled detection head is showcased in Figure 8. Here,
‘anchor’ indicates the number of anchor frames, and initially, the input feature map passes
through a 1× 1 convolutional layer, resulting in the creation of two divergent branches.
In the first branch, to execute the classification task, the feature map undergoes two
3× 3 convolutions followed by one 1× 1 convolution. In the second branch, aimed at
localization and confidence tasks, the feature map is subjected to two 3× 3 convolutions,
subsequently followed by two parallel 1× 1 convolutions. Executing the above steps effec-
tively decouples distinct feature channels for the classification, localization, and confidence
tasks, thereby diminishing the prediction error stemming from the task differences. The
YOLOX decoupled detection head considerably increases the model’s parameters while
enhancing the accuracy of classification and localization. To achieve equilibrium between
precision and rapidity, this paper implements a lightweight Depthwise over-parameterized
depthwise convolutional layer (Do-DConv) [30] to substitute for the 3× 3 convolution in
the YOLOX decoupled detection head, and consequently develops a lightweight decoupled
head, DD-Head.

Cls

H W anchor C  

Reg

4H W anchor  

IoU

1H W anchor  

1 1 Conv 3 3 Conv Feature1 1 Conv 3 3 Conv Feature

Figure 8. Decoupled head structure.
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Do-DConv is composed of a pair of profound convolution operations. Its operational
mechanics are depicted in Figure 9. In this context, Cin symbolizes the quantity of channels
present in the input feature map. At the same time, Dmul and DW

mul represent the depth
multiplier. Additionally, M× N signifies the dimensions of the sensory field associated
with the deep convolution kernel. The whole computation process is shown in Equations
(3) and (4). DT ∈ RCin×(M×N)×Dmul represents the transpose of the deep convolution kernel
D, WT denotes the transpose of the deep convolution kernel W, W∗ ∈ RCin×(M×N)×DW

mul

denotes the deep convolution kernel, W∗T ∈ RDW
mul×(M×N)×Cin denotes the transpose of

the deep convolution kernel W∗,P ∈ RCin×(M×N) denotes the patch on the inout feature
map, O ∈ RCin×DW

mul denotes the patch on the output feature map, ◦ denotes the deep
convolution operator.

W∗ = DT ◦WT (3)

O = W∗T ◦ P (4)

W
Dmul

M N

Cin

M N

Cin

W
Dmul

M N

Cin

M N

Cin

M N

Cin

W
Dmul

Cin

Dmul

Cin

Dmul

W
Dmul

Cin

Dmul

CinCin

W
Dmul

Cin

W
Dmul

TW

P

O

M N

Cin

Dmul

TD

M N

Cin

Dmul

TD

*W

Figure 9. Calculation flow chart of Do-DConv.

2.7. Transfer Learning

Transfer learning efficiently alleviates the problems of protracted convergence and
excessive fitting that arise in training for rice diseases. It accomplishes this by channeling
knowledge from the original domain to the newly established target domain [31]. In this
research, a transfer learning strategy was employed, designating the VOC2007 dataset as
the source domain while utilizing the rice diseases dataset as the destination domain. A
base network was initially pre-trained on the VOC2007 dataset; subsequently, the learned
feature parameters were transferred to the target network to train the rice diseases dataset
within the target domain. Given the low similarity between the VOC2007 dataset and the
rice diseases dataset, the transfer learning method involving retraining all layer parameters
in the target domain after loading the source domain weights was selected, and the transfer
learning process is depicted in Figure 10.
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VOC2007 

Dataset

Source domain model

YOLOv7-Tiny Model

YOLOv7-Tiny Model

Rice pests 

and diseases 

Dataset

Identification model of rice 

pests and diseases

Figure 10. Flow chart of transfer learning.

3. Results
3.1. Experimental Settings

This study utilizes the open-source PyTorch deep learning framework for the devel-
opment and enhancement of models. Furthermore, the training and evaluation of these
models are performed on a system running Windows 11. The hardware configuration is
built around an AMD Ryzen 7 5800H processor (The processor’s manufacturer is Advanced
Micro Devices, Inc., purchased in Harbin, China). It is complemented by an NVIDIA
GeForce RTX 3060 laptop (The manufacturer of the GPU is NVIDIA Corporation, pur-
chased in Harbin, China). GPU equipped with 6 GB of video memory. To accelerate
network training, a GPU was used for acceleration, utilizing CUDA version 11.3. During
training, the input image size was consistently resized to 640× 640 pixels, and the batch
size was configured at 16. Stochastic Gradient Descent (SGD) was utilized as the optimizer,
streamlining the training procedure of the neural network. The SGD momentum parameter
was configured at 0.937, and the weight decay parameter was established at 0.0005. The
initial learning rate was established at 0.01, and a warm-up strategy was employed: training
commenced with a learning rate of 0.0001 for the initial three epochs. Subsequently, the
learning rate was reset to its original value of 0.01.

3.2. Test Evaluation Indicators

In the context of recognizing rice disease targets in complex environments, both
the precision and real-time performance of the detection network must be taken into
consideration. To accurately assess the model’s performance in rice disease recognition, this
study employs six widely recognized performance evaluation metrics for target detection
algorithms: Precision, Recall, F1 Score, Mean Average Precision, Single-Image Inference
Time, and Model Parameter Size. Among these metrics, Mean Average Precision correlates
with both accuracy and recall, with its specific formula being as follows:

• P stands for Precision, which represents the proportion of accurately identified positive
results among all classified as positive.

P =
TP

(TP + FP)
(5)

• R denotes Recall, which reflects the proportion of true positive outcomes relative to
the overall number of genuine positive instances.

R =
TP

(TP + FN)
(6)
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• AP indicates average precision.

AP = ∫ 1
0 P(R)dR (7)

• mAP denotes the average precision mean.

mAP =
1
N

N

∑
i=1

APi (8)

• F1 denotes the harmonic mean of precision and recall.

F1 =
2PR

P + R
(9)

TP represents the number of accurately classified positive samples by the model, while
FP indicates the number of instances erroneously tagged as positive, and FN refers to the
number of samples incorrectly identified as negative. AP@0.5 signifies the AP calculated at
an IoU threshold of 0.5, and mAP@0.5 indicates the mAP computed at an IoU threshold
of 0.5. AP@0.5 and mAP@0.5 served as evaluation metrics.

3.3. Ablation Test and Analysis of Results

To validate the effectiveness of various improvements to the YOLOv7-Tiny model
in augmenting its overall performance, ablation experiments were carried out. In these
experiments, Precision, Recall, F1 Score, Average Precision Mean, Model Parameter Count,
and Single Image Inference Time were primarily employed as evaluation metrics.

In the model shown in Table 2, “C” indicates the inclusion of the C-T-ELAN module,
“R” indicates the inclusion of the R-C-T-ELAN module, and “D” signifies the introduction
of the improved DD-Head. The C-YOLOv7-Tiny model emerges from the integration of
CBAM into the T-ELAN module within the backbone network of YOLOv7-Tiny. When
compared with the baseline YOLOv7-Tiny model, its number of parameters increases by
only 0.1 MB, and its mAP@.5 is enhanced by 1.0 percentage points. To enhance the model’s
recognition accuracy while maintaining inference speed, the R-C-YOLOv7-Tiny model was
developed by optimizing the baseline YOLOv7-Tiny model with CBAM and the RepGhost
bottleneck module. Upon comparison with the baseline YOLOv7-Tiny model, its number of
parameters decreases by 1.1 MB, and its F1 score and mAP@.5 experience improvements of
1.9 and 1.6 percentage points, respectively. To enhance the accuracy of model classification
and localization, the improved D-R-C-YOLOv7-Tiny model is introduced, incorporating the
enhanced DD-Head along with the CBAM and RepGhost bottleneck module. Compared to
the baseline YOLOv7-Tiny model, mAP@.5 improved by 2.2 percentage points. At the same
time as the inference time of the enhanced model sees a marginal increase, it continues to
meet the demands of real-time image processing.

Table 2. The results of Ablation experiments.

Model F1 Score mAP@.5 Parameters/MB Inference Time/ms

YOLOv7-Tiny 0.863 0.90 11.7 16.3
C-YOLOv7-Tiny 0.878 0.910 11.8 20.1

R-C-YOLOv7-Tiny 0.882 0.916 10.6 20.0
D-R-C-YOLOv7-Tiny 0.894 0.922 12.2 26.4

To visually demonstrate the C-YOLOv7-Tiny model’s effectiveness proposed in this
research, a class activation map for rice diseases was produced, with the findings depicted
in Figure 11. The red circles indicate the response areas. As illustrated by the figure,
for rice blast, brown spot, and rice false smut, the YOLOv7-Tiny model focuses more
on the background information, whereas the C-YOLOv7-Tiny model focuses more on
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the disease subjects, thus mitigating background interference and enhancing the model’s
feature extraction capability.

Bacterial blight

Rice blast

Brown spot

Rice tungro

Rice false smut

(a) (b) (c)

Figure 11. Class activation diagram of the model on rice diseases. (a) origin image; (b) Class activation
map for YOLOv7-Tiny; (c) Class activation map for C-YOLOv7-Tiny.

The mAP@.5 evaluation results of training 200 epochs for each model are shown in
Figure 12. The figure illustrates that there is no marked steep rise or fall in the mAP@.5 of
each model, indicating a consistent performance. Compared to the baseline model YOLOv7-
Tiny, the improved model demonstrates enhanced performance; the mAP@.5 increases
more rapidly during the first 150 epochs of training and remains close to the optimal value
throughout the last 50 epochs. The mAP@.5 of the improved models has significantly
improved relative to the baseline model, suggesting that the modifications applied to the
YOLOv7-Tiny model in this paper have been effective. In order to further analyze the
performance of the models on specific rice disease categories, AP@.5 performance tables of
each model under different rice disease categories were made, and the specific results were
shown in Table 3.

Table 3. AP@.5 performance of each model under different disease categories.

Category YOLOv7-Tiny C-YOLOv7-
Tiny

R-C-YOLOv7-
Tiny

D-R-C-
YOLOv7-Tiny

Bacterial blight 0.802 0.840 0.880 0.919
Rice blast 0.892 0.897 0.895 0.890

Brown spot 0.877 0.893 0.892 0.861
Rice tungro 0.986 0.990 0.987 0.982

Rice false smut 0.942 0.932 0.926 0.959
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Figure 12. Comparison of model mAP@.5 under different strategies.

From Table 3, it can be seen that the YOLOv7-Tiny model showed high recognition
ability on rice tungro and rice false smut, with AP@.5 of 0.986 and 0.942, respectively.
However, it had low recognition rates of 0.802, 0.892, and 0.877 for bacterial blight, rice blast,
and brown spot, respectively. Compared to the baseline model YOLOv7-Tiny, model C-
YOLOv7-Tiny showed a more significant improvement in the recognition of bacterial blight
and brown spots. Model R-C-YOLOv7-Tiny showed improved recognition performance
for bacterial blight compared to model C-YOLOv7-Tiny. Compared with the baseline
model YOLOv7-Tiny, the improved model D-R-C-YOLOv7-Tiny proposed in this paper
improves 11.7 and 1.7 percentage points on bacterial blight and rice false smut, respectively,
and the accuracy distribution of its model is more balanced, which can more accurately
fulfill the tasks of classifying and locating disease targets.

3.4. Evaluation of Various Target Detection Algorithms

To further evaluate the performance of the D-R-C-YOLOv7-Tiny model proposed in
this study, precision, recall, mAP@.5, and single-image inference time were used as mea-
sures for comparative tests with the YOLOv3-Tiny [32], YOLOv4-Tiny [33], YOLOv5-S [34],
YOLOX-S, and YOLOv7-Tiny models. The horizontal and vertical axes of the P-R curve
are the recall and precision, respectively, which can reflect the comprehensive performance
of the target detection network. Figure 13 illustrates the P-R curves of each comparative
model on the rice pest validation and test sets. On both the test and validation sets, the
curve of the D-R-C-YOLOv7-Tiny model approaches the coordinate (1,1) at the equilibrium
point (where precision rate equals recall rate), demonstrating that its detection accuracy
surpasses that of the other five target detection models.
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Figure 13. The P-R curves of each comparison model. (a) P-R curves for each comparison model on
the validation set; (b) P-R curves for each comparison model on the test set.
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Table 4 presents the precision, recall, and single-image inference time metrics for
various target detection models. Regarding model detection accuracy, the D-R-C-YOLOv7-
Tiny model outlined in this study significantly outperforms the YOLOv7-Tiny model. It
achieves mAP scores that are 2.4, 1.8, 7.4, and 5.0 percentage points higher than those
of the YOLOX-S, YOLOv5-S, YOLOv4-Tiny, and YOLOv3-Tiny models, respectively. In
the context of model detection speed, the D-R-C-YOLOv7-Tiny model exhibits an infer-
ence time of 26.4 ms. Although this represents an increase compared to YOLOv7-Tiny,
YOLOv5-S, YOLOv4-Tiny, and YOLOv3-Tiny, it nonetheless meets the criteria for rapid
identification of pests and diseases. Moreover, the D-R-C-YOLOv7-Tiny model adeptly
maintains a balance between detection precision and inference velocity, resulting in optimal
overall performance.

Table 4. Comparative analysis of the performance of various target detection models.

Model Precision Recall F1 Score mAP@.5 Inference
Time/ms

YOLOv3-Tiny 0.911 0.810 0.857 0.872 10.1
YOLOv4-Tiny 0.874 0.775 0.821 0.848 11.9

YOLOv5-S 0.929 0.851 0.888 0.904 23.7
YOLOX-S 0.887 0.840 0.862 0.898 27.8

YOLOv7-Tiny 0.925 0.828 0.873 0.90 16.3
D-R-C-YOLOv7-Tiny 0.928 0.862 0.893 0.922 26.4

4. Discussion
4.1. Model Performance

In order to reduce the interference of complex background on rice disease recogni-
tion, this research integrates the Convolutional Block Attention Module with the T-ELAN
module in the YOLOv7-Tiny model’s backbone network, resulting in the advanced C-T-
ELAN module. The experimental results showed that the C-T-ELAN module enhanced the
model’s attention to rice disease subjects and improved the model’s recognition ability. To
enhance the model’s capability to recognize irregular diseases, the RG-bneck module was
used to replace a convolution operation in the C-T-ELAN module, and an improved R-C-T-
ELAN module was proposed. The analysis of test outcomes reveals that the R-C-T-ELAN
module is effective in decreasing the model’s parameter count while enhancing its detection
accuracy. In order to reduce the impact of spatial misalignment of the classification and
positioning features of the Yolov7-Tiny detection head on the training results, a lightweight
DD-Head is proposed. The test results show that DD-Head can effectively improve the
classification and positioning accuracy of network models.

The improved D-R-C-YOLOv7-Tiny model was compared with the classical target
detection model. The results showed that the scores of mAP@.5 and F1 of the improved
D-R-C-YOLOv7-Tiny model were 0.922 and 0.894, respectively, which showed higher
detection performance and could identify rice diseases more effectively.

4.2. Future Work

This study amassed a moderately sized dataset of rice disease images. Future plans
involve expanding both the variety and quantity of rice disease images in the dataset,
aiming to encompass a comprehensive range of categories. This is intended to enhance the
model’s adaptability to complex field environments. Additionally, while the operational
speed of the proposed model meets real-time detection standards, there remains potential
for further improvement. Going forward, the model will undergo further optimization to
develop a lightweight version with enhanced detection accuracy.

5. Conclusions

In this study, the D-R-C-YOLOv7-Tiny model is proposed, which is an advanced rice
disease recognition model that strikes a balance between accuracy and reasoning speed. The
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Convolutional Block Attention Module, RepGhost bottleneck module, and T-ELAN module
are integrated into the backbone network of the YOLOv7-Tiny model, which improves
the recognition accuracy of the model. In addition, the proposed DD-Head significantly
alleviates the spatial misalignment problem in the classification and localization tasks
performed by the YOLOv7-Tiny detection head during training. The experimental results
show that our improved model is superior to the benchmark model in terms of the validity
of the rice disease dataset.
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