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Abstract: The extraction of shale gas from onshore and offshore shale gas reservoirs will play
an important role in meeting China’s future energy needs, which will not only help alleviate the
energy crisis but also contribute to climate change mitigation. As for the target shale formation
enriched by thin sandstone layers in typical basins, an analytical calculation method is proposed to
perform pressure analysis for multi-layer shale gas reservoirs considering the adsorption–desorption
characteristics of shale layer and the interlayer cross-flow. Firstly, the changes in storage capacity and
flow resistance are obtained by using the distance of investigation equation. According to the electrical
analogy, the equivalent total storage capacity and flow resistance can be calculated considering the
sandstone-shale crossflow. Because production from one time step to the other causes depletion of
the storage capacity, the reservoir pressure in different time steps can be calculated based on the
material balance equation. Numerical models have been constructed based on three typical reservoir
lithology combinations (sandstone-shale, shale-sandstone-shale and sandstone-shale-sandstone) to
validate the accuracy of the proposed analytical calculation method. Furthermore, three important
factors (porosity, the ratio of horizontal/vertical permeability (kh/kv) and the layer thickness) have
been selected for the sensitivity analysis to verify the stability. The comparative results indicate that
the proposed analytical calculation method is suitable for pressure analysis in shale gas reservoirs
containing thin sandstone layers. It will provide theoretical support for the further enhancement of
the production of this type of gas reservoirs.

Keywords: shale gas; thin sandstone layer; interlayer crossflow; analytical method; pressure analysis

1. Introduction

The global demand for hydrocarbon resources has risen rapidly in recent decades.
However, conventional oil/gas resources are decreasing worldwide, it is essential to de-
velop unconventional resources in onshore and offshore reservoirs in order to cover our
shortages in energy [1].

The Energy Information Administration (EIA) has reported that the contributions
from offshore oilfields has reached nearly 30% of global oil/gas production [2]. In the
development of onshore and offshore unconventional resources, especially for some shale
gas reservoirs that are rich in thin sandstone layers, the existed thin sandstone layers and
interlayer crossflow have a significant impact on gas production [3,4].

As one of the representatives of China’s terrestrial sedimentary basins, the Ordos Basin
is rich in shale gas resources and is therefore promising for commercial development [5]. By
analyzing the logging data from over 300 shale gas wells in the Ordos Basin, the target shale
layers of these shale gas wells are generally interbedded with multilayered sandstones,
coal seams and so on. Many layers around the target formation will be penetrated during
drilling the horizontal well and hydraulic fracturing, while fluid flow exists between
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layers. Production characteristics of shale gas wells containing thin sandstone interbeds are
different compared to conventional shale gas reservoirs [5,6]. Therefore, pressure analysis
and performance prediction of shale gas reservoirs with thin interbedded sandstones is
challenging and crucial, and have attracted the attention of many scholars at home and
abroad [7–12].

Scholars around the world have conducted a lot of research on performance prediction
as well as pressure analysis of multi-layer oil/gas reservoirs. Bruce [13] made use of the
theory of capacitance and resistance and built a “power grid” to simulate the fluid flow
in multi-layer oil reservoirs. Civan [14] proposed a cylindrical tank model to describe
the flow within the reservoir drainage area of wells considering the non-darcy flow and
derived some simplified analytical solutions to determine reservoir permeability and
thickness. Villanueva-Triana and Civan [15] presented a commingled well production
model in multilayer reservoir considering formation cross-flow and external boundary
effects. Yousef et al. [16] presented a new procedure to quantify communication between
vertical wells in a reservoir on the basis of fluctuations in production and injection rates. A
more complicated model that includes capacitance, as well as resistive effects, were adopted
in their model. Sayarpour et al. [17] introduced analytical solutions for fundamental
differential equation of the capacitance model, which applied for rapid assessment at
different levels of a field study, from a single well, to a group of wells, and to an entire
field. Shahamat et al. [18] deployed a capacitance–resistance model to perform production
analysis in single and two-layer sandstone reservoirs under constant-rate and constant-
pressure conditions, considering the case of interlayer with and without crossflow. The
above methods are more suitable for describing high permeability oil/gas reservoirs, but
have limited application in unconventional reservoirs with low permeability and significant
unsteady flow. Particularly, the sandstone-shale combination is not considered.

In this paper, we propose the analytical method to perform pressure analysis in
multilayer shale gas reservoirs, contained three typical lithological combinations, the
adsorption–desorption characteristics of shale gas, and the interlayer crossflow. The fluid
flow, gas adsorption/desorption and interlayer crossflow presented in sandstone-shale
combination are firstly described mathematically and the analytical calculation flowchart is
made up. Furthermore, numerical models have been constructed based on three typical
lithological combinations to validate the accuracy and stability of the proposed analytical
calculation method. This will help to quickly and accurately assess pressure variations
during shale gas production, so as to optimize the production scheme and enhance the
total production of the shale gas reservoirs.

2. Model Development

As for the production and pressure analysis of multi-layered oil reservoirs, Shahamat
et al. [18] proposed the “tank” model for a two-layered oil reservoir. In his model, many
“tanks” with different reservoir characteristics are used to represent different layers based
on the model assumption that each layer is homogeneous, so that the flow of fluid in
each layer is separate, and thus, can be used to consider the presence or absence of inter-
layer cross-flow. In this paper, we improve his model and apply the new method to a
multilayered shale gas reservoir with interlayer crossflow, which is shown in Figure 1. The
analytical calculation process is constructed under the following assumptions:

(1) The shale layer and sandstone layer are both homogeneous, isopachous and isothermal.
(2) Flow is single gas phase.
(3) The gas rate is constant.
(4) The impact of gravity and capillary force is neglected.
(5) Gas desorption meets the Langmuir isotherm adsorption equation.
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Figure 1. Schematic diagram of the “tank” model considering cross-flow in multi-layer shale gas reservoir.

When there is interlayer cross-flow, pressure is transferred between layers. The total
production of the gas reservoir cannot be calculated simply by adding up the production
from each layer. Based on the similarity between electrical resistance and flow resistance,
the flow resistance of each layer of the reservoir can be simplified to be similar to electrical
resistance as shown in Figure 1. Hence, for the case of inter-layer cross-flow, the flow
resistance within a single layer is comparable to resistance of parallel resistors in the theory
of electricity, subsequently, we can calculate the equivalent flow resistance Re of the entire
reservoir. Due to the different physical parameters of each layer, the flow resistance varies
from layer to layer. Using the analogy of parallel resistors, the expression of Re is as follows:
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where α2 = π/6 which is a constant depends on the criterion used for defining the distance
of investigation and β1 = 2π × 141.2 which represents international unit conversion [19]. ki
is the permeability of i-th layer. ye,i is the distance of investigation. µ is the viscosity. hi is the
thickness of i-th layer. φ is porosity. c is the compressibility. B is formation volume factor.

Similarly, the total storage capacity of a multi-layered gas reservoir with inter-layer
cross-flow can be likened to the superposition of the currents in each branch of a parallel
circuit, and the expression for the equivalent total storage capacity Ce is as follows:
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where ye,i is the distance of investigation. µ is the viscosity. hi is the thickness of i-th
layer. φ is porosity. c is the compressibility. B is formation volume factor. xf is the fracture
half-length.

As for the constant-rate condition, the capacity/resistance ratio (CRR) is defined
to analyze the constant-rate linear flow, which can be represented by combinations of
parameters for determining the pressure change with production time [20,21].
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where β1 = 2π× 141.2 which represents international unit conversion. ki is the permeability
of i-th layer. µ is the viscosity. hi is the thickness of i-th layer. B is formation volume factor.
φ is porosity. xf is the fracture half-length.

In order to analyze the pressure propagation in formations, the distance of investi-
gation (ye) should be calculated to determine the distance affected by the pressure wave.
Then the duration of fluid flow can also represented by the time of arrival at the boundary
(tBDF). The two parameters can be written as [18,19],

ye = α1

√
β2kt
ϕµc

(6)

tBDF =

(
ye

α1

)2 ϕµ

β2

N
∑

i=1
cihi

N
∑

i=1
kihi

(N = 1, 2, 3, . . .) (7)

where α1 = 2.55 and β2 = 0.00633. ki is the permeability of i-th layer. µ is the viscosity. Hi is
the thickness of i-th layer. Φ is porosity. C is the compressibility.

As the important feature in shale gas reservoir, gas adsorption in the shale layer must
be considered, which can be calculated by the Langmuir isotherm adsorption equation [22]
and its mathematical expression can be written as:

V = VL
P

PL + P
(8)

where VL and PL represent Langmuir volume and pressure, respectively, and V and P is the
volume and pressure of the adsorbed gas. When the gas adsorption is taken into account,
the compressibility equation should be modified as [23]:

Ct
∗ = C f + CwSw + Cg(1 − Sw) + Cgd (9)

Cgd =
0.031214ρmVLBgPL

ϕ(p + PL)
2 (10)

where Cf, Cw, Cg and Cgd is rock compressibility, water compressibility, free gas compress-
ibility and adsorbed gas compressibility, respectively. Sw is water saturation, ρm is matrix
density, Bg is gas reservoir volume factor, and ϕ is the porosity.

Similarly, the compressibility factor should also be modified by King [24]:

z∗ =
z

(1 − Sw) + 0.031214ρm
zT
ϕ

(
psc
Tsc

)
VL

1
p+pL

(11)

where Psc and Tsc is the standard condition pressure and temperature, respectively. z is
compressibility factor and T is the reservoir temperature.

Considering that many physical parameters of gas are pressure-dependent and the
gas adsorption is essential [25], a general modified pseudo-pressure transformation is
defined as:

m(p) =
1
ki

p∫
pb

k(p)
p

µ(p)z∗(p)
dp (12)

where m(p) is the pseudo-pressure, ki is the intrinsic permeability, z∗(p) is the pressure-
dependent compressibility factor.

Based on the above definitions and equations, a new analytical calculation method
can be obtained to perform pressure analysis of onshore and offshore shale gas reservoirs
under constant-rate condition considering interlayer cross-flow and thin sandstone layer.
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Firstly, the capacity/resistance ratio (CRR) and the time of arrival at the boundary (tBDF)
can be calculated by Equations (5) and (7). Meanwhile, the given constant rate is qc to
be this value. The initial pseudo-pressure m(pwf)1 of the reservoir is also calculated by
Equation (12). Secondly, we can obtain the equivalent storage capacity Ce and equivalent
resistance Re of the multi-layered gas reservoir. Then, the average pseudo-pressure of
the gas reservoir corresponding to each time step can be calculated. Finally, using the
definition of pseudo-pressure, we infer the real reservoir pressure in the gas reservoir,
which is suitable for analyzing pressure variations during production. The specific flow
chart is shown in Figure 2.
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Figure 2. The analytical calculation flowchart for reservoir pressure in shale gas reservoir under
constant-rate condition considering inter-layer cross-flow (“j” represents the time step, day).

3. Comparison and Validation

For the three typical lithological combinations of onshore and offshore shale gas
reservoirs considering the thin sandstone layer (sandstone-shale, shale-sandstone-shale,
and sandstone-shale-sandstone), a total of three numerical models built by Eclipse with
inter-layer crossflow are built to compare and validate against the analytical method for
pressure analysis. The main input parameters are summarized in Table 1.

Table 1. Input parameters for three numerical models.

Parameters Value Parameters Value

Number of model grids 21 × 51 × 2 Initial Pressure (Psi) 2500
Model dimension (ft × ft × ft) 300 × 500 × 60 Porosity 0.1

Temperature (K) 318.15 Fracture permeability (mD) 500
Langmuir pressure (Psi) 650 Langmuir volume (Mscf/ton) 0.096
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Table 1. Cont.

Parameters Value Parameters Value

Case 1
Parameters Shale Layer Sandstone Layer

Horizontal permeability (mD) 0.0005 0.2
Vertical permeability (mD) 1 1

Thickness (ft) 50 10
Compressibility (Psi−1) 7.5 × 10−6 1.1 × 10−5

Case 2
Parameters Shale Layer 1 Sandstone Layer Shale Layer 2

Permeability (mD) 0.2 0.2 0.0002
Vertical permeability (mD) 1 1 1

Thickness (ft) 30 10 50
Compressibility (Psi−1) 7.5 × 10−6 1.1 × 10−5 7 × 10−6

Case 3
Parameters Sandstone layer 1 Shale layer Sandstone layer 2

Permeability (mD) 0.1 0.0005 0.05
Vertical permeability (mD) 1 1 1

Thickness (ft) 10 50 15
Compressibility (Psi−1) 1.1 × 10−5 7.1 × 10−6 1.5 × 10−5

3.1. Sandstone-Shale Combination

A two-layered numerical model was set up to represent the sandstone layer (the gray
region) and shale layer (the yellow region), which is shown in Figure 3. The first row of the
model represents the horizontal wellbore, which is directly connected to the sandstone and
shale layers. The parameters of Case 1 are summarized in Table 1.
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Figure 3. Schematic diagram of the numerical model of sandstone-shale combination.

According to the statistical results from actual production history, the production
time of some wells has reached or has even exceeded 6 years. Therefore, the numerical
model is set to produce for 2000 days under constant rate of 20 Mscf/d, under a fixed-
yield condition, where inter-layer cross-flow is also considered. Based on the analytical
calculation flowchart shown in Figure 2, the input values in this case are 15.68 for CRR,
90.92 for tBDF, and 20 for qc. The initial pseudo-pressure m(pwf)1 is 9.53 accordingly. Then,
the pseudo-pressures of the gas reservoirs corresponding to different time steps can be
calculated step by step. From Figure 4, it can be seen that the pressure change with time
calculated by the analytical method is in perfect agreement with the result calculated by the
numerical model. Meanwhile, the results between pressure and production time presented
in the log–log plot also demonstrates that the proposed analytical calculation method
is suitable for analyzing the production pattern of transient linear flow and boundary-
dominated flow in multi-layered gas reservoirs.
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3.2. Shale-Sandstone-Shale Combination

A three-layered numerical model was set up to represent shale layer 1 (the yellow
region), the sandstone layer (the gray region) and shale layer 2 (the yellow region), as
shown in Figure 5. The basic input parameters of Case 2 are also summarized in Table 1.
Similarly, each layer is connected to the wellbore through the first row of the grids.
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Figure 5. Schematic diagram of the numerical model of shale-sandstone-shale combination.

In order to study the production in most cases where a thin sandstone layer exists in
the target shale formation, we set up a sandstone layer with a thickness of 10 ft between
two shale layers and ensured that the fluid could flow among the layers. According to
the vast majority of historical production data, the numerical model is also set to produce
for 2000 days under a constant rate of 20 Mscf/d. Based on Equations (4) and (5), we can
calculate the values of CRR and tBDF, respectively, as 23.6 and 142.93. The input values of
qc and m(pwf)1 can also obtained as 20 and 9.56. Subsequently, the pseudo-pressure of the
gas reservoir at different time steps can be calculated step by step based on the flowchart
in Figure 6. The results in Figure 6a show that the reservoir pressure calculated by the
analytical method is in perfect agreement with the pressure calculated by the numerical
model, which indicates that the pressure change of a multi-layered shale gas reservoir
containing thin sandstone interbed can be accurately calculated by the proposed analytical
calculation method. The log–log plot of pressure difference versus production time exhibits
in Figure 6b. The transient flow can last for 300 days and while the pressure difference
throughout the process is approximately 100 Psi. It further suggests the existence of two
flow regimes (transient flow and boundary flow) in the production process of gas reservoir.
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Figure 6. Comparison of reservoir pressure variation with time under constant-rate condition con-
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3.3. Sandstone-Shale-Sandstone Combination

As for the case where sandstone layers are enriched around the shale layer, we also
set up a three-layer numerical model to compare with the analytical calculation method.
From top to bottom, each layer represents sandstone layer 1 (the gray region), shale layer
(the yellow region) and sandstone layer 2 (the gray region), as shown in Figure 7. The main
input parameters of Case 3 are listed in Table 1.
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Figure 7. Schematic diagram of the numerical model of the sandstone-shale-sandstone combination.

Similarly, we set this sandstone-shale-sandstone model as constant-rate condition
where inter-layer cross-flow is present. The production rate and time are set to be equal
to the previous two models, i.e., the numerical model produces 2000 days at a constant
rate of 20 Mscf/d. The input parameters can also be obtained as 16.99 for CRR, 133.97 for
tBDF and 9.56 for m(pwf)1. Based on the flowchart in Figure 2, the reservoir pressure can be
calculated for different time steps within the production time. The comparison results from
numerical model as well as analytical method is presented in Figure 8a, which is in perfect
agreement. It indicates that the pressure change of a multi-layered shale gas reservoir
containing thin sandstone interbeds can be accurately calculated by the proposed analytical
method. As is shown in Figure 8b, the transient flow can last for 200 days and while the
pressure difference throughout the process is approximately 80 Psi. By comparing with
Figure 6b, the shale gas reservoir enriched with sandstone layers have shorter transient
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flow times, suggesting that such target formations are easier to develop and can achieve
higher gas production in the early stage. It also shows that the thin sandstone layer in the
shale formation has a significant impact on production.
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3.4. Multi-Stage Fractured Horizontal Well in Multi-Layer Shale Gas Reservoir

In order to further evaluate the proposed analytical method against numerical simu-
lation in more complex problems, the numerical case of multi-stage fractured horizontal
well in multi-layer shale gas reservoir is designed, as shown in Figure 9. There is a 10 ft
sandstone layer contained in a shale formation with a total thickness of 60 ft. The length
of the horizontal well is 300 ft with four hydraulic fractures equally spaced along the
x-direction. The relevant parameters of sandstone layer and shale layer are also listed
in Table 1. According to the vast majority of actual production situations, the numeri-
cal model is set to produce for 100 days under a constant rate of 217 m3/d. Based on
Equations (4) and (5), we can calculate the values of CRR and tBDF, respectively, as 31.4 and
64.58. The input values of qc and m(pwf)1 can also obtained as 217 and 14.25. Subsequently,
the pseudo-pressure of the gas reservoir at different time steps can be calculated step by
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step based on the flowchart in Figure 6. From the results in Figure 10, it can be clearly
seen that the reservoir pressure calculated by the proposed analytical method matches very
well with the pressure calculated by the numerical model, which further indicates that the
proposed analytical method has a good application in real reservoir conditions.
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4. Sensitivity Analysis

By comparing the numerical models and analytical method for three typical lithologi-
cal combinations, it is demonstrated that the analytical calculation method is suitable for
production prediction of shale gas reservoirs considering interlayer cross-flow and thin
sandstone layers. Considering that interlayer cross-flow exists in both shale layer(sh) and
sandstone layer(sa) in actual production, we must further verify the stability of the analyti-
cal calculation method. In this section, we optimize three important factors (porosity, the
ratio of horizontal/vertical permeability (kh/kv) and the layer thickness) for the sensitivity
analysis while keeping the other input parameters constant.

4.1. Analysis of the Porosity

We set the porosity of each layer based on the three typical lithological combinations
(sandstone-shale, shale-sandstone-shale and sandstone-shale-sandstone combination), and
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the parameter values are mainly taken from the core analysis data of shale gas wells in the
Ordos Basin. The comparative results of the analytical method and the numerical models
are shown in Figure 11. It can be seen that the results are almost fully consistent with each
other, which further demonstrated the stability of the analytical method. From the results
in Figure 11a, we conclude that pressure difference decreases with increasing porosity and
while the transient linear flow time is prolonged. Namely, the gas reservoirs with greater
porosity will have longer production times and therefore higher total gas production. The
porosity of sandstone and shale layers in Figure 11b are set to different values, we can find
that the greater the porosity of a sandstone layer in the multilayer shale gas reservoir, the
smaller the pressure difference will be. The reason may be that sandstones of a greater
porosity contribute more free gas during the early stage of production. Similarly, the greater
the porosity of a shale layer in the multilayer shale gas reservoir, the smaller the pressure
difference will be, which is shown in Figure 11c. The reason is also because shale formations
with larger porosity can produce more free gas at lower pressure difference. Through
comparative analysis, the analytical method is applicable to the production prediction
analysis of three typical lithology combinations considering different porosities.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 15 of 21 
 

 

 

 

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 15 of 21 
 

 

 

 

Figure 11. Cont.



J. Mar. Sci. Eng. 2024, 12, 457 13 of 17J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 16 of 21 
 

 

 
Figure 11. Comparison results for three typical lithological combination with different porosities 
considering inter-layer cross-flow. (a) sandstone-shale combination; (b) shale-sandstone-shale com-
bination; (c) sandstone-shale-sandstone combination. 

4.2. Analysis of the Ratio of Horizontal/Vertical Permeability 
Combined with actual core data, we set different horizontal/vertical permeability ra-

tios (kh/kv) for each layer of numerical models based on the three typical lithology combi-
nations. As shown in Figure 12, the results calculated by analytical method and numerical 
models present a great match. For the sandstone-shale combination, the greater the hori-
zontal/vertical permeability ratio in the sandstone, the smaller the pressure difference as 
shown in Figure 12a. Namely, the greater the vertical permeability of the sandstone, the 
better the connectivity between the shale and the sandstone is proved, and when the pres-
sure is lowered to a certain degree, the free gas inside the sandstone can flow to the shale 
layer, so that the pressure difference of the whole reservoir is smaller under the constant-
rate condition. As for the shale-sandstone-shale combination, the pressure drop in the res-
ervoir is almost the same even though the horizontal/vertical permeability ratio is not the 
same in each layer in Figure 12b. The reason may be that the permeability of the shale 
layer is too low, while the sandstone in the two thick shale layers, although playing a good 
role in connectivity, has a small impact on the production, and the reservoir production 
almost originates from the shale layer, so even if different horizontal/vertical permeability 
ratios are given, the trend of the pressure difference under constant production condition 
is almost the same. For the results shown in Figure 12c, the thick shale formation with low 
permeability plays a greater role in production, whereas sandstones mainly play a con-
necting role and have less influence on pressure change. Certainly, the accurate fit be-
tween the results obtained from the analytical method and the numerical models further 
illustrates that the analytical method is also suitable for the production prediction analysis 
of three typical lithology combinations considering different horizontal/vertical permea-
bility ratios. 

Figure 11. Comparison results for three typical lithological combination with different porosities
considering inter-layer cross-flow. (a) sandstone-shale combination; (b) shale-sandstone-shale combi-
nation; (c) sandstone-shale-sandstone combination.

4.2. Analysis of the Ratio of Horizontal/Vertical Permeability

Combined with actual core data, we set different horizontal/vertical permeability
ratios (kh/kv) for each layer of numerical models based on the three typical lithology combi-
nations. As shown in Figure 12, the results calculated by analytical method and numerical
models present a great match. For the sandstone-shale combination, the greater the hori-
zontal/vertical permeability ratio in the sandstone, the smaller the pressure difference as
shown in Figure 12a. Namely, the greater the vertical permeability of the sandstone, the bet-
ter the connectivity between the shale and the sandstone is proved, and when the pressure
is lowered to a certain degree, the free gas inside the sandstone can flow to the shale layer,
so that the pressure difference of the whole reservoir is smaller under the constant-rate
condition. As for the shale-sandstone-shale combination, the pressure drop in the reservoir
is almost the same even though the horizontal/vertical permeability ratio is not the same
in each layer in Figure 12b. The reason may be that the permeability of the shale layer
is too low, while the sandstone in the two thick shale layers, although playing a good
role in connectivity, has a small impact on the production, and the reservoir production
almost originates from the shale layer, so even if different horizontal/vertical permeability
ratios are given, the trend of the pressure difference under constant production condition
is almost the same. For the results shown in Figure 12c, the thick shale formation with
low permeability plays a greater role in production, whereas sandstones mainly play a
connecting role and have less influence on pressure change. Certainly, the accurate fit
between the results obtained from the analytical method and the numerical models fur-
ther illustrates that the analytical method is also suitable for the production prediction
analysis of three typical lithology combinations considering different horizontal/vertical
permeability ratios.
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4.3. Analysis of the Thickness

In this case, we first set the different thickness in each layer for the three numerical
models. Then, the results of the analytical method and numerical models were compared
considering inter-layer crossflow under constant-rate condition, as demonstrated in Fig-
ure 13. The results of the three numerical models, corresponding to different thickness
combinations of thin sandstone layers, are all in good agreement with the results of the
analytical method. According to the results presented in Figure 13, it can be seen that
the thickness of the sandstone layer has a relatively large effect on the reservoir pressure
difference, due to the permeability and porosity of the sandstone is greater compared
to the shale. The greater the thickness of the sandstone, the greater the gas that can be
extracted from the reservoir with a smaller pressure drop. Meanwhile, we can find that the
thicker the sandstone layer, the longer the duration of transient linear flow in the reservoir,
which further suggests that the reservoir is producing for a longer period of time and the
cumulative gas production is higher under constant production conditions. Furthermore,
the perfect fit of the calculation results of the two methods under different thicknesses
further indicates that the analytical calculation method has good stability.
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5. Conclusions

In this study, we proposed an analytical calculation method to perform pressure anal-
ysis of onshore and offshore shale gas reservoirs under constant-rate condition considering
interlayer cross-flow and thin sandstone layer. Numerical models have been constructed
based on three typical lithological combinations to validate the accuracy of the analytical
method. The stability of the analytical method is also verified by conducting sensitivity
analysis. The main conclusions can be drawn as follows:

(1) By comparing with the numerical models, the analytical calculation method proposed
in this paper is accurate and stable. The analytical calculation method takes into
account the desorption/adsorption properties of shale gas as well as the modified
pseudo-pressure transformation function, which ensures more accurate reservoir
pressure analysis.

(2) For three typical lithological combinations (sandstone-shale, shale-sandstone-shale
and sandstone-shale-sandstone) at the actual site, sensitivity analysis show that for
thick shale formation with porosity in the range of 0.05~0.1 and the thickness reaching
50 ft or above, the existence of thin sandstone layers can effectively increase gas
reservoir production.

(3) When there is interlayer crossflow, the thin sandstone layers enriched by the shale
formation plays a good role in promoting interlayer flow and the pressure wave
propagates more widely in the reservoirs. As a result, the gas wells have longer stable
production time and higher cumulative production under constant rate condition.
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