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Abstract: Deep semi-supervised learning (DSSL) is a machine learning paradigm that blends su-
pervised and unsupervised learning techniques to improve the performance of various models in
computer vision tasks. Medical image classification plays a crucial role in disease diagnosis, treatment
planning, and patient care. However, obtaining labeled medical image data is often expensive and
time-consuming for medical practitioners, leading to limited labeled datasets. DSSL techniques aim to
address this challenge, particularly in various medical image tasks, to improve model generalization
and performance. DSSL models leverage both the labeled information, which provides explicit super-
vision, and the unlabeled data, which can provide additional information about the underlying data
distribution. That offers a practical solution to resource-intensive demands of data annotation, and
enhances the model’s ability to generalize across diverse and previously unseen data landscapes. The
present study provides a critical review of various DSSL approaches and their effectiveness and chal-
lenges in enhancing medical image classification tasks. The study categorized DSSL techniques into
six classes: consistency regularization method, deep adversarial method, pseudo-learning method,
graph-based method, multi-label method, and hybrid method. Further, a comparative analysis of
performance for six considered methods is conducted using existing studies. The referenced studies
have employed metrics such as accuracy, sensitivity, specificity, AUC-ROC, and F1 score to evaluate
the performance of DSSL methods on different medical image datasets. Additionally, challenges of
the datasets, such as heterogeneity, limited labeled data, and model interpretability, were discussed
and highlighted in the context of DSSL for medical image classification. The current review provides
future directions and considerations to researchers to further address the challenges and take full
advantage of these methods in clinical practices.

Keywords: deep semi-supervised learning; deep learning; medical image analysis; classification; survey

1. Introduction

In recent times, the accessibility and usability of medical image equipment has gener-
ated a colossal amount of medical images data. Earlier, these images had limited utility and
were prone to subjectivity. However, with recent progress in deep learning-based artificial
intelligence (AI) tools, computer-based diagnosis has become immensely important in the
field of image diagnosis [1,2]. Medical image analysis using computer-aided diagnosis
involves segmentation (identifying pixels from background), detection (finding position
and numbers), denoising (removing unwanted pixels), reconstruction (create 2D and 3D
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images from 1D) and classification (labelling of images), which are important and chal-
lenging task in automatic image guided diagnostics [2–5]. This review study focused on
significant development in deep learning techniques for medical image classification task.

Accurate image classification can effectively assign labels to images based on features
extracted from it and help doctors and clinicians to make better clinical decisions which
will reduce dependency on clinical expert’s knowledge and experience. Image classification
involves several steps, consisting of preprocessing, feature extraction, feature selection and
classification. The extracted features encompass fundamental attributes, including color,
shape, intensity, texture, boundary, and positional information, alongside sophisticated
characteristics such as bag-of-words, scale-invariant feature transform (SIFT), and fisher
vector [5–7]. The deep learning techniques are excellent at image classification especially
Convolutional Neural Network (CNN) and its variants are widely used for assigning labels.
The traditional machine learning approach requires scare data to perform and feature
extraction and classification are performed separately, however deep learning techniques
suffers from problem of overfitting due to training on small data [8–12].

In contrast, deep learning algorithms offer a consolidated approach by integrating
feature extraction and classification within a unified network [6]. Notably, these deep
learning models adhere to an end-to-end learning paradigm, wherein the feeding of a
labeled dataset of images facilitates the autonomous extraction of descriptive, hierarchical,
and highly representative features specific to each label and subsequently, these acquired
features are employed in the classification task [6,8]. The deep learning techniques are
effective at integrating complex and low-level features and reducing human error [7]. The
research studies have demonstrated that deep learning models frequently surpass tradi-
tional machine learning algorithms in tasks related to image classification. Nonetheless, it is
crucial to acknowledge that deep learning methods come with their own set of limitations,
including the requirement for more time and higher computing power and a huge volume
of labeled data.

The deep learning techniques which require a large volume of labeled data are not
suitable for medical image analysis tasks. Indeed, the acquisition of an adequate volume of
labeled data for training deep models in the context of medical images encounters several
challenges. Firstly, the rarity of certain diseases or the motive to safeguard patient privacy
makes it challenging to assemble a substantial pool of unlabeled data. Secondly, the annota-
tion of medical images (manual labelling) mandates the involvement of senior radiologists,
incurring considerable labor and time costs. To mitigate the aforementioned challenges,
current strategies primarily involve model complexity reduction, regularization techniques
and data augmentation-based enhancement strategies [13–16]. Nevertheless, such methods
exhibit constrained efficacy in alleviating overfitting and are unable to compete with the
performance of models trained on large, and high-quality annotation datasets.

Therefore, to reduce dependency on annotated medical image dataset, semi-supervised
learning (SSL) techniques are appropriate for medical image analysis tasks. The semi-
supervised approach is broadly branched into traditional semi-supervised techniques and
deep semi-supervised techniques [17–24]. The traditional semi-supervised methods are
a blend of both labeled and unlabeled data for the classification process. The primary
objective of the traditional method is to enhance the performance of supervised models,
constructed from labeled data, by incorporating the insights gained through unsupervised
learning on unlabeled data. The traditional SSL techniques are performed using methods
like self-training, co-training, graph-based approach etc. In contrast to conventional semi-
supervised methods, deep semi-supervised learning (DSSL) holds a distinct advantage. It
not only harnesses the robust feature extraction capabilities inherent in deep models but
also exploits unlabeled data to enhance the generalization of the model.

Authors have undertaken a systematic examination of literature pertaining to deep
semi-supervised medical image classification and outcomes of the various reviews are
compiled in Table 1. The scarcity of labeled data serves as a catalyst for methodologies
extending beyond traditional Supervised Learning (SL), integrating additional data and/or
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labels when available. A survey conducted by Cheplygina, de Bruijne, and Pluim encom-
passes semi-supervised learning (SSL), multiple-instance learning, and transfer learning
in medical image analysis, Notably, the segment pertaining to semi-supervised methods
predominantly comprises traditional methodologies [25]. Another research study empha-
sized on imperfect dataset dealing with scarce annotation (availability of limited annotated
data) and weak annotation (sparse, noisy annotation). In addressing scarce annotations,
the authors delineated SSL as an effective approach. Notably, the authors categorized
SSL based on the presence or absence of pseudo-label generation, emphasizing a task-
oriented analysis, treating non-pseudo-label generation as distinct unsupervised auxiliary
tasks [26]. Aska et al. categorized semi-supervised methods based on four dimensions:
the self-training method, co-training and expectation maximization (EM), transudative
SVMs, and graph-based methods. Furthermore, they provided a concise overview of the
applications of diverse semi-supervised classification methods, along with the compilation
of experimental results sourced from pertinent literature [27]. Chen, Wang et al.’s provided
an extensive review of various medical image analysis applications like segmentation,
detection, registration and classification their primary emphasis lay predominantly in the
realm of theoretical research pertaining to self-supervised learning methods [28]. Zahra
and Imran conducted a comprehensive review on latest semi-supervised learning method
for medical image classification tasks. The author categorized semi-supervised methods
into the following categories: consistency-based, adversarial, graph-based, and hybrid [5].
A recent review on SSL for medical image classification analyzed existing consistency
regularization technique for imbalanced dataset based on loss function, model design and
experimentation under the integrated database setting [29].

Table 1. Summary of deep semi-supervised learning (DSSL) methods review.

Related Articles Classification Application
Estimation

Integrated
Database

Integrated
Database Setting

Cheplygina, Bruijne et al.,
2019 [25]

Regularization and graph-based,
Self-training and co-training Analysis - -

Aska et al., 2021 [27]

Self-Training, co-training and
expectation maximization (EM),
transudative SVMs, and
graph-based methods

Classification - -

Chen, Wang et al., 2022 [28] Pseudo-labeling,
consistency regularization Analysis - -

Zahra and Imran, 2022 [5] Consistency-Based, adversarial,
graph-based and hybrid method Classification ✓ ×

Our

Consistency regularization, deep
adversarial (GANs and VAEs),
pseudo-labeling, graph-based,
multi-label, and hybrid methods

Classification ✓ ✓

Based on the existing literature review and recent research articles, we conducted a
thorough categorization of deep semi-supervised medical image classification methods,
particularly focusing on the aspects of loss functions and model design, as illustrated
in Figure 1. In contrast to prior research, our major contributions to the review can be
summarized as follows:

• We propose a comprehensive categorization for primary DSSL methods applied to
medical image classification, categorizing these methods into six main groups. Each
category is examined for variations, accompanied by standardized descriptions and
unified schematic representations.
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• We extensively explain each approach, frequently including important equations,
elucidate the developmental context underlying the methods, and provide essential
performance comparisons.

• A compilation of resources for DSSL is assembled, comprising open-source codes
for several reviewed methods, well-known benchmark datasets, and performance
evaluations across various label rates on these benchmark datasets.

• We pinpoint three undetermined issues and explore potential research directions for
future studies, drawing insights from recent notable research in this area.
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Additionally, we strive for a fairer comparison and analysis of various methods
and studies showcasing datasets with accuracy for different considered semi-supervised
categories. Overall, review aims to provide an extensive comparative analysis of semi-
supervised methods for medical image classification task based on loss function and model
design and suggesting the gaps and future recommendation for further improvement in
semi-supervised techniques.

2. Background

In this section, we begin by providing an introduction to the fundamentals of DSSL.
That will be followed by a through overview of state-of-the-art DSSL techniques. The
Problem Formulation aspect focuses on efficiently illustrating the DSSL framework, with a
specific emphasis on single-label classification tasks due to their simplicity in description
and implementation. For the readers interested in multi-label classification tasks, we
recommend referring to Cevikalp’s articles [30,31]. Let D = {DC, DW} represent the
complete dataset, comprising a small labeled subset DC = {ai, bi}C

i=1 and a larger unlabeled
subset DW = {(ai)}W

i=1, with the general assumption that C ≪ W. The dataset is assumed

to contain K classes, with {bi}C
i=1 ∈

(
b1

i , b2
i , . . . , bk

i

)
, where bk

i = 1 indicates labeling by

the kth class, and otherwise bk
i = 0. Formally, SSL aims to address the optimization problem

outlined below,

min
Θ

∑
(a,b) ∈ Dc

𝓁s(a, b, Θ) + α ∑
a ∈ DW

𝓁u(a, Θ) + β ∑
a ∈ D
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cation), unsupervised loss, and regularization (consistency loss or a custom regularization
term). It is worth noting that unsupervised loss terms are often not strictly distinguished
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from regularization terms, as the latter are typically not guided by label information. Fi-
nally, Θ represents the model parameters, while α and β, both belonging to
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2.1. Classification Overview

Distinct selections of architectures and variations in unsupervised loss functions or
regularization terms result in diverse semi-supervised approaches. As depicted in Figure 1,
we will examine these methodologies from various perspectives and frameworks. The
approaches within the domain of DSSL can be categorized into five distinct research groups.

2.1.1. Consistency Regularization Methods

Consistency regularization techniques impose constraints into the loss functions based
on the manifold or smoothness assumption [32,33]. These constraints are formulated
using three approaches: input perturbation, weights perturbation, and layer perturbations
within the network. In SSL methods, the Teacher-Student model is commonly used as the
prevalent structure for consistency regularization. Section 4.1 discusses various learning
models that emerge as a result of using different perturbation strategies.

2.1.2. Deep Adversarial Methods

Adversarial models like Generative Adversarial Networks (GANs) [34,35], Variational
Auto-Encoders (VAEs) [36], and their derivatives have been developed to investigate the
distribution of the training dataset and subsequently create novel instances [37]. While the
standard GAN utilizes the Jensen-Shannon (JS) divergence to grasp the data distribution,
it may encounter instability and weak signals, especially as the discriminator nears a
local optimum, a situation referred to as gradient vanishing [36,37]. Larsen et al. [36]
introduced a novel GAN architecture that merges a variational autoencoder (VAE) with a
GAN, resulting in a VAE-GAN. This adaptation involves replacing the VAE’s decoder with
a GAN generator and adjusting the loss function to be evaluated by a discriminator [37,38].
Various semi-supervised generative strategies have been explored within these frameworks.
Section 4.2 will delve into a comprehensive review of these models.

2.1.3. Pseudo-Labeling Methods

The predominant strategy employed by pseudo-labeling methods involves generating
labels for unlabeled instances based on high-confidence predictions of the model [39,40].
These pseudo-labels are then utilized to regulate the model training and classify these
methods as bootstrapping algorithms [41,42]. However, traditional pseudo-labeling faces
several challenges, including bias towards the majority class and limited adaptability to
multi-label and multi-class scenarios. This is because confidence-driven pseudo-labeling
tends to favor majority-class samples, leading to a biased model [43,44]. In Section 4.3 of
the study, two variations of pseudo-labeling methods are explored, which are distinguished
by the number of learners involved.

2.1.4. Graph-Based Methods

Graph-based SSL typically involves creating a similarity graph from the original
dataset. In this graph, each node corresponds to a training example, and the weighted edges
signify the similarity between pairs of nodes. By leveraging the manifold assumption, label
information for unlabeled examples can be deduced from the constructed graph [45,46]. In
Section 4.4, our emphasis is on examining methods for label inference in graph embedding
SSL. For details on graph construction, readers are directed to Z Song’s article [47].

2.1.5. Multi-Label Methods

In a multi-label SSL system, specific labels or sets of labels are used to extract use-
ful information from both labeled and unlabeled instances simultaneously. The system
involves several steps to reduce and enrich the features to evaluate the SSL method and
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enhance the system’s overall performance [48,49]. Section 4.5 will explain these steps in
detail, including how the labels propagate within the system.

2.1.6. Hybrid Methods

Hybrid approaches involve integrating diverse methodologies, including consistency
regularization [50–53], pseudo-labeling [39,54], data augmentation [55–59], entropy esti-
mation [60,61], and other elements [62–64], to enhance performance. In the upcoming
Section 4.6, we will examine different categories of hybrid methods.

Distinguishing between generative methods and graph-based methods depends on
whether new instances are created and if the construction of a graph is based on training
instances and labels. The differentiation becomes challenging when considering consistency
regularization and pseudo-labeling methods. Pseudo-labeling involves assigning pseudo-
labels to unlabeled examples, and using them for supervised learning, while consistency
regularization methods prioritize consistency constraints over pseudo-labels. Hybrid
approaches often combine these concepts, with consistency regularization and pseudo-
labeling being a common combination. Table 2 summarizes the key components of these
methods. In terms of the availability of test data during training, SSL can be categorized
into two settings: transductive and inductive learning. Transductive learning assumes
that unlabeled samples in training are the exact data to be predicted, aiming to generalize
over these unlabeled samples. On the other hand, inductive learning assumes that the
semi-supervised classifier learned during training remains applicable to new, unseen data.

Table 2. Overview of DSSL techniques.

Methods Description Key Points

Consistency
Regularization Methods Formulating constraints on consistency

Assumptions are evident and rational; relying
on the utilization of data augmentation and
perturbation techniques.

Deep Adversarial Methods Involving generative models like GAN, VAE,
and their derivatives

Induce new training instances; challenging to
attain optimal outcomes for both the
generative and downstream task.

Pseudo-Labeling Methods Pseudo-labeling unlabeled examples using
labeled examples

Generating pseudo-labels; these labels
produced artificially may contain inaccuracies.

Graph-Based Methods
Constructing graphs from training datasets
and employing graph-based approaches to
address subsequent tasks

Acquiring additional knowledge through
graphs; dependent on effectively representing
the relationships among training samples.

Multi-Label Methods
Labels or sets of labels are used to extract
useful information from both labeled and
unlabeled instances

Controls complexity and make smooth
predictions; optimize combine methods.

Hybrid Methods
Combining different learning approaches, such
as incorporating consistency regularization
and employing pseudo-labeling techniques

Enhanced efficiency and resilience; increased
size of the model.

2.2. Estimations

Test evaluations often serve as a benchmark for assessing the effectiveness of DSSL
methods. However, the outcomes of these evaluations are influenced by several factors.
According to A. Oliver (2018), the sensitivity of DSSL methods to the quantity of labelled
and unlabeled samples varies, and the choice of implementations and training strategies
significantly impacts the results [65]. Q. Xie’s (2020) article demonstrates that models with
identical architecture but different parameters yield diverse test performance outcomes [66].
Additionally, permutation-invariant settings and data augmentation techniques introduce
considerable variation in the experimental results, even under similar conditions. Various
approaches, such as adversarial dropout, dual students, and mean teachers, exhibit distinct
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average runtimes, contributing to divergent results [67–69]. These disparities hinder direct
comparisons between different methodologies.

3. Methodology

The review methodology employed in this study is grounded in referencing existing
literature, facilitating the exploration of cutting-edge techniques, analyses, interpretations,
and implications of DSSL in the context of image classification tasks. Following the guide-
lines outlined in [70–72], the literature review progressed through the following phases:

1. Review: The primary inquiry driving the literature review was focused on conducting
a comparative analysis of various DSSL techniques for medical image classification,
with an emphasis on loss function and model design;

2. Search: This search encompassed journal articles, conference articles, published
reports, and official websites (Figure 2).
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Document selection criteria included consideration of citation frequency and relevance.
Scientific databases such as Science Direct, Springer, and IEEE were utilized. The primary
search keywords were “medical”, “image”, and “semi-supervised”, with additional terms
like “analysis” and “classification”. Specific category-related keywords, such as adversar-
ial, consistency, GANs, multi-label, and graphs were included in the searches. Articles
published between 2019 and 2024 were included, and sorting was based on relevance and
citation count whenever feasible.

The selection of research articles involved an initial analysis of abstracts, followed by
a comprehensive review of the articles. Research papers exclusively addressing medical
image segmentation without a dedicated section on classification were omitted. Our
research’s inclusion criteria were as follows:

• The primary focus of the study should be on SSL.
• Inclusion of a thorough description of the model architecture and a clear presentation

of the classification algorithm’s results.
• For instance, we consider originality, significance of findings, and high number of

citation factors.

On the contrary, the following were the exclusion requirements for our review article:

• There is no peer review or trustworthy records indexing for the research.
• The research has not introduced relevant augmentation or alteration to the established

deep learning algorithm.
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• The research provides an ambiguous explanation of the experimentation and classifica-
tion results. The literature review process is delineated in the PRISMA representation
depicted in Figure 3.
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In contrast to the survey examining papers up to 2018, this study centers on research
published between 2019 and 2024 [25]. Unlike Cheplygina et al. [25], who provided a broad
survey of unsupervised and semi-supervised techniques for the analysis of medical images,
this study concentrated specifically on SSL for classification tasks, offering more in-depth
descriptions of the models discussed [25]. In addition, while this work distinctively focuses
on application of medical image classification using deep semi-supervised learning (DSSL),
diverging from the segmentation-centric analysis [73] presented in existing literature.
Specifically, while the referenced study delves into DSSL applications in segmentation,
highlighting strategies like pseudo labeling and noise handling, our analysis critically
examines the application of DSSL techniques to classification tasks, highlighting their
relevance in the early identification and treatment of patients, alongside discussing the
unique challenges and future directions in this area.

4. Methods

This section presents the categorization of deep semi-supervised image classifica-
tion methods, involving the integration of critical features from the two realms of semi-
supervised loss function and model construction. The methods being discussed are clas-
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sified into specific types, such as deep adversarial, consistency regularization, pseudo-
labeling, graph-based, multi-label and hybrid methods. Each method is introduced with
a description of its fundamental principles and the overall structure of its loss function.
Subsequently, the improvements made to each method are presented. Finally, a summary
of the outcomes reported in the original papers is provided, with a focus on their notable
achievements, limitations, and potential avenues for further development.

4.1. Consistency Regularization

Consistency-based methods prompt models to generate coherent outputs even when
presented with modified versions of the specific noisy Gaussian inputs [23]. More specifi-
cally, if an input 𝓍i belongs to class c, then the altered input 𝓍′i should also be classified as
belonging to class c. Consistency regularization stems from the smoothness hypothesis,
which posits that legitimate changes to data points should not cause significant shifts in
the model’s predictions [65,74,75]. The Teacher-Student configuration is the most widely
used structure for consistency regularization in SSL methods. The model functions as a
student by learning conventionally and simultaneously acts as a teacher to generate targets.
Let Θ′ represent the target weight, and Θ symbolize fundamental student weights. The
consistency prerequisite is expressed as

Ea∈D
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f (Θ, a), f

(
Θ′, a

)
, τa

)
(2)

where f (Θ, a) predicts the output for input a and f (Θ′, a) represents the teacher’s pre-
dictions, which serve as the consistency targets τa for the student.
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(−,−) scales the
vector distance and is typically set as the Mean Squared Error also known as MSE or
KL-divergence. The procedural methods in which diverse consistency regularization tech-
niques formulate targets are distinctive. Enhancing the quality of τa involves strategies
such as meticulous perturbation selection over additive or multiplicative noises. An alter-
nate approach is to meticulously examine the teacher model instead of simply mimicking
the student model [76]. Under consistency regularization we further discussed two main
approaches: Temporal Ensemble and Mean Teacher in Sections 4.1.1 and 4.1.2, respectively,
as illustrated in Figure 4.
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Figure 4. Temporal Ensemble and Mean Teacher frameworks are utilized for consistency regulariza-
tion in deep semi-supervised classification methodologies. Alongside the labels in the diagram, xi

signifies the input instance, zi and z̃i indicates predictions, and yi denotes the actual ground truth.
The zi output ensures that the model learns from both the original and augmented data, leading to
better performance.

4.1.1. Temporal Ensemble

Temporal ensemble, as detailed in [51], is a stochastic perturbation method designed
to boost
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network multiple times [77]. This technique combines a prediction derived Yt from past
iterations with a real-time perturbed prediction Ỹt to penalize minor variations in the
outputs, requiring only a single propagation for each epoch. The temporal ensemble
method differs from other methods in that it focuses on aggregating previously weighted
average predictions compared to relying on a single randomly augmented value, thereby
enhancing the robustness of the learning process. The ensemble output’s Yt is updated
using Yt ← αYt + (1− α)Ỹt momentum term called α which determines the extent of the
ensemble’s influence throughout the training history. Intriguingly, hyperparameters can be
transformed in accordance with uncertainty in data, such as by assigning greater weights
to high-confidence predictions.

To address the complexities of disentangled learning and self-ensembling within
CheXpert [78] binary classification, Gyawali et al. [79] integrated a temporal ensemble
alongside an unsupervised variational auto-encoder (VAE). Previous studies [80,81] em-
ployed the disentangled representation M1 obtained from an unsupervised VAE as an
outline for a subsequently developed VAE-based semi-supervised framework, often termed
the M1 + M2 model. The authors [79] sought to refine the M1 + M2 model by substituting
M2 for a self-ensembling SSL network and incorporating a temporal ensemble on unsuper-
vised targets to promote agreement among ensemble predictions. This strategy utilizes a
VAE within the unsupervised learning domain to capture a dataset’s intrinsic generative
characteristics. This entailed assuming that the data D is generated by a likelihood function,
denoted as
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here, the initial term corresponds to the standard cross-entropy loss and is assessed for 
labeled data, while the subsequent term, evaluated across all data, encouraged consensus 
among ensemble predictions through mean squared loss. The ramp-up weighted function 
for 𝜁 initiated from zero, following the description in [51,79]. 

Underlying Knowledge-based Semi-Supervised Learning (UKSSL) [83] is a method 
for lung/colon cancer and blood cells classification, combining contrastive learning of 
medical visual representations (MedCLR) with an underlying knowledge-based multi-
layer perceptron classifier (UKMLP) [83]. MedCLR, inspired by SimCLR [84], extracts se-
mantic information from medical images by maximizing agreement [85] between aug-
mented views of the same image while minimizing agreement between different images. 

Θ(l|m), with a latent variable m possessing a prior distribution represented
as
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network multiple times [77]. This technique combines a prediction derived 𝒀௧ from past 
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can be transformed in accordance with uncertainty in data, such as by assigning greater 
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alongside an unsupervised variational auto-encoder (VAE). Previous studies [80,81] em-
ployed the disentangled representation 𝑀1 obtained from an unsupervised VAE as an 
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termed the 𝑀1 + 𝑀2  model. The authors [79] sought to refine the 𝑀1 + 𝑀2  model by 
substituting 𝑀2 for a self-ensembling SSL network and incorporating a temporal ensem-
ble on unsupervised targets to promote agreement among ensemble predictions. This 
strategy utilizes a VAE within the unsupervised learning domain to capture a dataset’s 
intrinsic generative characteristics. This entailed assuming that the data 𝐷 is generated 
by a likelihood function, denoted as Ƥ𝛩(𝑙|𝑚), with a latent variable 𝑚 possessing a prior 
distribution represented as Ƥ(𝑚). To address the computational challenge of exact poste-
rior inference, an introduced distribution, denoted as Ƣ∅(𝑚|𝑙), was put to approximate 
the true posterior, Ƥ  through variational inference [79,82]. With regard to parame-ters 𝛩 and ∅, the training of the VAE was centered on optimizing the variational evidence 
lower bound of the marginal probability around the training data. log Ƥ(𝑙) ≥  ℒ = 𝔼Ƣ∅൫𝑚ห𝑙൯[log Ƥ𝛩(𝑙|𝑚)] −  𝐾𝐿 (Ƣ∅(𝑚|𝑙)|| Ƥ(𝑚)) (3) 
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second term uses the Kullback-Leibler (KL) divergence measure to adjust the learned pos-
terior density Ƣ∅(𝑚|𝑙)  in incorporating a prior Ƥ(𝑚) . We have chosen Ƥ(𝑚)  to be an 
isotropic Gaussian, which promotes disentangled latent representations in Ƣ∅(𝑚|𝑙) by 
encouraging independence between the latent dimensions [79,82]. 

For each training instance, denoted as 𝑙(௜), ensemble predictions were derived from 
the VAE-learned posterior density, Ƣ൫𝑚(௜)|𝑙(௜)൯, thereby replacing manually crafted aug-
mentation functions with a distribution learned from unlabeled data to perturb 𝑙(௜) 
[51,79]. The network incorporated dropout and temporal ensemble, accumulating pre-
dicted labels, 𝒀௧ and 𝒀௧ ෪ , after each training epoch into an ensemble output [51,79]. In each 
batch 𝐵, the network was learned to minimize the ensemble loss (ℒ௘): 

ℒ௘ =  1|𝐵| ෍ ෍ ቂ−𝑦௡,௟  log 𝑓 ቀ𝑦௡,௣|Ƣ(𝑚|𝑙)ቁቃ௅
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here, the initial term corresponds to the standard cross-entropy loss and is assessed for 
labeled data, while the subsequent term, evaluated across all data, encouraged consensus 
among ensemble predictions through mean squared loss. The ramp-up weighted function 
for 𝜁 initiated from zero, following the description in [51,79]. 

Underlying Knowledge-based Semi-Supervised Learning (UKSSL) [83] is a method 
for lung/colon cancer and blood cells classification, combining contrastive learning of 
medical visual representations (MedCLR) with an underlying knowledge-based multi-
layer perceptron classifier (UKMLP) [83]. MedCLR, inspired by SimCLR [84], extracts se-
mantic information from medical images by maximizing agreement [85] between aug-
mented views of the same image while minimizing agreement between different images. 

(m). To address the computational challenge of exact posterior inference, an intro-
duced distribution, denoted as
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The following equation’s first term seeks to minimize reconstruction error, and its 
second term uses the Kullback-Leibler (KL) divergence measure to adjust the learned pos-
terior density Ƣ∅(𝑚|𝑙)  in incorporating a prior Ƥ(𝑚) . We have chosen Ƥ(𝑚)  to be an 
isotropic Gaussian, which promotes disentangled latent representations in Ƣ∅(𝑚|𝑙) by 
encouraging independence between the latent dimensions [79,82]. 

For each training instance, denoted as 𝑙(௜), ensemble predictions were derived from 
the VAE-learned posterior density, Ƣ , thereby replacing manually crafted aug-
mentation functions with a distribution learned from unlabeled data to perturb 𝑙(௜) 
[51,79]. The network incorporated dropout and temporal ensemble, accumulating pre-
dicted labels, 𝒀௧ and 𝒀෪௧ , after each training epoch into an ensemble output [51,79]. In each 
batch 𝐵, the network was learned to minimize the ensemble loss (ℒ௘): 

ℒ௘ =  1|𝐵| ෍ ෍ ቂ−𝑦௡,௟  log 𝑓 ቀ𝑦௡,௣|Ƣ(𝑚|𝑙)ቁቃ௅
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here, the initial term corresponds to the standard cross-entropy loss and is assessed for 
labeled data, while the subsequent term, evaluated across all data, encouraged consensus 
among ensemble predictions through mean squared loss. The ramp-up weighted function 
for 𝜁 initiated from zero, following the description in [51,79]. 

Underlying Knowledge-based Semi-Supervised Learning (UKSSL) [83] is a method 
for lung/colon cancer and blood cells classification, combining contrastive learning of 
medical visual representations (MedCLR) with an underlying knowledge-based multi-
layer perceptron classifier (UKMLP) [83]. MedCLR, inspired by SimCLR [84], extracts se-
mantic information from medical images by maximizing agreement [85] between aug-
mented views of the same image while minimizing agreement between different images. 

∅(m|l), was put to approximate the true posterior,
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the VAE-learned posterior density, Ƣ൫𝑚(௜)|𝑙(௜)൯, thereby replacing manually crafted aug-
mentation functions with a distribution learned from unlabeled data to perturb 𝑙(௜) 
[51,79]. The network incorporated dropout and temporal ensemble, accumulating pre-
dicted labels, 𝒀௧ and 𝒀௧ ෪ , after each training epoch into an ensemble output [51,79]. In each 
batch 𝐵, the network was learned to minimize the ensemble loss (ℒ௘): 

ℒ௘ =  1|𝐵| ෍ ෍ ቂ−𝑦௡,௟  log 𝑓 ቀ𝑦௡,௣|Ƣ(𝑚|𝑙)ቁቃ௅
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here, the initial term corresponds to the standard cross-entropy loss and is assessed for 
labeled data, while the subsequent term, evaluated across all data, encouraged consensus 
among ensemble predictions through mean squared loss. The ramp-up weighted function 
for 𝜁 initiated from zero, following the description in [51,79]. 

Underlying Knowledge-based Semi-Supervised Learning (UKSSL) [83] is a method 
for lung/colon cancer and blood cells classification, combining contrastive learning of 
medical visual representations (MedCLR) with an underlying knowledge-based multi-
layer perceptron classifier (UKMLP) [83]. MedCLR, inspired by SimCLR [84], extracts se-
mantic information from medical images by maximizing agreement [85] between aug-
mented views of the same image while minimizing agreement between different images. 

(m|l)
through variational inference [79,82]. With regard to parameters Θ and ∅, the training of
the VAE was centered on optimizing the variational evidence lower bound of the marginal
probability around the training data.

log

Information 2024, 15, x FOR PEER REVIEW 10 of 53 
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For each training instance, denoted as 𝑙(௜), ensemble predictions were derived from 
the VAE-learned posterior density, Ƣ൫𝑚(௜)|𝑙(௜)൯, thereby replacing manually crafted aug-
mentation functions with a distribution learned from unlabeled data to perturb 𝑙(௜) 
[51,79]. The network incorporated dropout and temporal ensemble, accumulating pre-
dicted labels, 𝒀௧ and 𝒀௧ ෪ , after each training epoch into an ensemble output [51,79]. In each 
batch 𝐵, the network was learned to minimize the ensemble loss (ℒ௘): 

ℒ௘ =  1|𝐵| ෍ ෍ ቂ−𝑦௡,௟  log 𝑓 ቀ𝑦௡,௣|Ƣ(𝑚|𝑙)ቁቃ௅
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here, the initial term corresponds to the standard cross-entropy loss and is assessed for 
labeled data, while the subsequent term, evaluated across all data, encouraged consensus 
among ensemble predictions through mean squared loss. The ramp-up weighted function 
for 𝜁 initiated from zero, following the description in [51,79]. 

Underlying Knowledge-based Semi-Supervised Learning (UKSSL) [83] is a method 
for lung/colon cancer and blood cells classification, combining contrastive learning of 
medical visual representations (MedCLR) with an underlying knowledge-based multi-
layer perceptron classifier (UKMLP) [83]. MedCLR, inspired by SimCLR [84], extracts se-
mantic information from medical images by maximizing agreement [85] between aug-
mented views of the same image while minimizing agreement between different images. 
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network multiple times [77]. This technique combines a prediction derived 𝒀௧ from past 
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dicted labels, 𝒀௧ and 𝒀෪௧ , after each training epoch into an ensemble output [51,79]. In each 
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+ 𝜁 × 1|𝐵| ෍ ฮ𝒀௧ − 𝒀௧ ෪ ฮଶ௡ ~ ஻ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ௙௢௥ ௟௔௕௘௟௘ௗ ௔௡ௗ ௨௡௟௔௕௘௟௘ௗ (4) 

here, the initial term corresponds to the standard cross-entropy loss and is assessed for 
labeled data, while the subsequent term, evaluated across all data, encouraged consensus 
among ensemble predictions through mean squared loss. The ramp-up weighted function 
for 𝜁 initiated from zero, following the description in [51,79]. 

Underlying Knowledge-based Semi-Supervised Learning (UKSSL) [83] is a method 
for lung/colon cancer and blood cells classification, combining contrastive learning of 
medical visual representations (MedCLR) with an underlying knowledge-based multi-
layer perceptron classifier (UKMLP) [83]. MedCLR, inspired by SimCLR [84], extracts se-
mantic information from medical images by maximizing agreement [85] between aug-
mented views of the same image while minimizing agreement between different images. 
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network multiple times [77]. This technique combines a prediction derived 𝒀௧ from past 
iterations with a real-time perturbed prediction 𝒀෪௧  to penalize minor variations in the 
outputs, requiring only a single propagation for each epoch. The temporal ensemble 
method differs from other methods in that it focuses on aggregating previously weighted 
average predictions compared to relying on a single randomly augmented value, thereby 
enhancing the robustness of the learning process. The ensemble output’s 𝒀௧ is updated 
using 𝒀௧ ⃪ 𝛼𝒀௧ + (1 −  𝛼)  𝒀෪௧  momentum term called 𝛼 which determines the extent of 
the ensemble’s influence throughout the training history. Intriguingly, hyperparameters 
can be transformed in accordance with uncertainty in data, such as by assigning greater 
weights to high-confidence predictions. 

To address the complexities of disentangled learning and self-ensembling within 
CheXpert [78] binary classification, Gyawali et al. [79] integrated a temporal ensemble 
alongside an unsupervised variational auto-encoder (VAE). Previous studies [80,81] em-
ployed the disentangled representation 𝑀1 obtained from an unsupervised VAE as an 
outline for a subsequently developed VAE-based semi-supervised framework, often 
termed the 𝑀1 + 𝑀2  model. The authors [79] sought to refine the 𝑀1 + 𝑀2  model by 
substituting 𝑀2 for a self-ensembling SSL network and incorporating a temporal ensem-
ble on unsupervised targets to promote agreement among ensemble predictions. This 
strategy utilizes a VAE within the unsupervised learning domain to capture a dataset’s 
intrinsic generative characteristics. This entailed assuming that the data 𝐷 is generated 
by a likelihood function, denoted as Ƥ𝛩(𝑙|𝑚), with a latent variable 𝑚 possessing a prior 
distribution represented as Ƥ(𝑚). To address the computational challenge of exact poste-
rior inference, an introduced distribution, denoted as Ƣ∅(𝑚|𝑙), was put to approximate 
the true posterior, Ƥ  through variational inference [79,82]. With regard to parame-ters 𝛩 and ∅, the training of the VAE was centered on optimizing the variational evidence 
lower bound of the marginal probability around the training data. log Ƥ(𝑙) ≥  ℒ = 𝔼Ƣ∅൫𝑚ห𝑙൯[log Ƥ𝛩(𝑙|𝑚)] −  𝐾𝐿 (Ƣ∅(𝑚|𝑙)|| Ƥ(𝑚)) (3) 

The following equation’s first term seeks to minimize reconstruction error, and its 
second term uses the Kullback-Leibler (KL) divergence measure to adjust the learned pos-
terior density Ƣ∅(𝑚|𝑙)  in incorporating a prior Ƥ(𝑚) . We have chosen Ƥ(𝑚)  to be an 
isotropic Gaussian, which promotes disentangled latent representations in Ƣ∅(𝑚|𝑙) by 
encouraging independence between the latent dimensions [79,82]. 

For each training instance, denoted as 𝑙(௜), ensemble predictions were derived from 
the VAE-learned posterior density, Ƣ൫𝑚(௜)|𝑙(௜)൯, thereby replacing manually crafted aug-
mentation functions with a distribution learned from unlabeled data to perturb 𝑙(௜) 
[51,79]. The network incorporated dropout and temporal ensemble, accumulating pre-
dicted labels, 𝒀௧ and 𝒀௧ ෪ , after each training epoch into an ensemble output [51,79]. In each 
batch 𝐵, the network was learned to minimize the ensemble loss (ℒ௘): 

ℒ௘ =  1|𝐵| ෍ ෍ ቂ−𝑦௡,௟  log 𝑓 ቀ𝑦௡,௣|Ƣ(𝑚|𝑙)ቁቃ௅
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+ 𝜁 × 1|𝐵| ෍ ฮ𝒀௧ − 𝒀௧ ෪ ฮଶ௡ ~ ஻ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ௙௢௥ ௟௔௕௘௟௘ௗ ௔௡ௗ ௨௡௟௔௕௘௟௘ௗ (4) 

here, the initial term corresponds to the standard cross-entropy loss and is assessed for 
labeled data, while the subsequent term, evaluated across all data, encouraged consensus 
among ensemble predictions through mean squared loss. The ramp-up weighted function 
for 𝜁 initiated from zero, following the description in [51,79]. 

Underlying Knowledge-based Semi-Supervised Learning (UKSSL) [83] is a method 
for lung/colon cancer and blood cells classification, combining contrastive learning of 
medical visual representations (MedCLR) with an underlying knowledge-based multi-
layer perceptron classifier (UKMLP) [83]. MedCLR, inspired by SimCLR [84], extracts se-
mantic information from medical images by maximizing agreement [85] between aug-
mented views of the same image while minimizing agreement between different images. 
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network multiple times [77]. This technique combines a prediction derived 𝒀௧ from past 
iterations with a real-time perturbed prediction 𝒀௧ ෪  to penalize minor variations in the 
outputs, requiring only a single propagation for each epoch. The temporal ensemble 
method differs from other methods in that it focuses on aggregating previously weighted 
average predictions compared to relying on a single randomly augmented value, thereby 
enhancing the robustness of the learning process. The ensemble output’s 𝒀௧ is updated 
using 𝒀௧ ⃪ 𝛼𝒀௧ + (1 −  𝛼) 𝒀௧ ෪  momentum term called 𝛼 which determines the extent of 
the ensemble’s influence throughout the training history. Intriguingly, hyperparameters 
can be transformed in accordance with uncertainty in data, such as by assigning greater 
weights to high-confidence predictions. 

To address the complexities of disentangled learning and self-ensembling within 
CheXpert [78] binary classification, Gyawali et al. [79] integrated a temporal ensemble 
alongside an unsupervised variational auto-encoder (VAE). Previous studies [80,81] em-
ployed the disentangled representation 𝑀1 obtained from an unsupervised VAE as an 
outline for a subsequently developed VAE-based semi-supervised framework, often 
termed the 𝑀1 + 𝑀2  model. The authors [79] sought to refine the 𝑀1 + 𝑀2  model by 
substituting 𝑀2 for a self-ensembling SSL network and incorporating a temporal ensem-
ble on unsupervised targets to promote agreement among ensemble predictions. This 
strategy utilizes a VAE within the unsupervised learning domain to capture a dataset’s 
intrinsic generative characteristics. This entailed assuming that the data 𝐷 is generated 
by a likelihood function, denoted as Ƥ𝛩(𝑙|𝑚), with a latent variable 𝑚 possessing a prior 
distribution represented as Ƥ(𝑚). To address the computational challenge of exact poste-
rior inference, an introduced distribution, denoted as Ƣ∅(𝑚|𝑙), was put to approximate 
the true posterior, Ƥ(𝑚|𝑙) through variational inference [79,82]. With regard to parame-
ters 𝛩 and ∅, the training of the VAE was centered on optimizing the variational evidence 
lower bound of the marginal probability around the training data. log Ƥ(𝑙) ≥  ℒ = 𝔼Ƣ∅൫𝑚ห𝑙൯[log Ƥ𝛩(𝑙|𝑚)] −  𝐾𝐿 (Ƣ∅(𝑚|𝑙)|| Ƥ(𝑚)) (3) 

The following equation’s first term seeks to minimize reconstruction error, and its 
second term uses the Kullback-Leibler (KL) divergence measure to adjust the learned pos-
terior density Ƣ∅(𝑚|𝑙)  in incorporating a prior Ƥ(𝑚) . We have chosen Ƥ(𝑚)  to be an 
isotropic Gaussian, which promotes disentangled latent representations in Ƣ∅(𝑚|𝑙) by 
encouraging independence between the latent dimensions [79,82]. 

For each training instance, denoted as 𝑙(௜), ensemble predictions were derived from 
the VAE-learned posterior density, Ƣ , thereby replacing manually crafted aug-
mentation functions with a distribution learned from unlabeled data to perturb 𝑙(௜) 
[51,79]. The network incorporated dropout and temporal ensemble, accumulating pre-
dicted labels, 𝒀௧ and 𝒀෪௧ , after each training epoch into an ensemble output [51,79]. In each 
batch 𝐵, the network was learned to minimize the ensemble loss (ℒ௘): 

ℒ௘ =  1|𝐵| ෍ ෍ ቂ−𝑦௡,௟  log 𝑓 ቀ𝑦௡,௣|Ƣ(𝑚|𝑙)ቁቃ௅
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+ 𝜁 × 1|𝐵| ෍ ฮ𝒀௧ − 𝒀௧ ෪ ฮଶ௡ ~ ஻ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ௙௢௥ ௟௔௕௘௟௘ௗ ௔௡ௗ ௨௡௟௔௕௘௟௘ௗ (4) 

here, the initial term corresponds to the standard cross-entropy loss and is assessed for 
labeled data, while the subsequent term, evaluated across all data, encouraged consensus 
among ensemble predictions through mean squared loss. The ramp-up weighted function 
for 𝜁 initiated from zero, following the description in [51,79]. 

Underlying Knowledge-based Semi-Supervised Learning (UKSSL) [83] is a method 
for lung/colon cancer and blood cells classification, combining contrastive learning of 
medical visual representations (MedCLR) with an underlying knowledge-based multi-
layer perceptron classifier (UKMLP) [83]. MedCLR, inspired by SimCLR [84], extracts se-
mantic information from medical images by maximizing agreement [85] between aug-
mented views of the same image while minimizing agreement between different images. 
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network multiple times [77]. This technique combines a prediction derived 𝒀௧ from past 
iterations with a real-time perturbed prediction 𝒀෪௧  to penalize minor variations in the 
outputs, requiring only a single propagation for each epoch. The temporal ensemble 
method differs from other methods in that it focuses on aggregating previously weighted 
average predictions compared to relying on a single randomly augmented value, thereby 
enhancing the robustness of the learning process. The ensemble output’s 𝒀௧ is updated 
using 𝒀௧ ⃪ 𝛼𝒀௧ + (1 −  𝛼)  𝒀෪௧  momentum term called 𝛼 which determines the extent of 
the ensemble’s influence throughout the training history. Intriguingly, hyperparameters 
can be transformed in accordance with uncertainty in data, such as by assigning greater 
weights to high-confidence predictions. 

To address the complexities of disentangled learning and self-ensembling within 
CheXpert [78] binary classification, Gyawali et al. [79] integrated a temporal ensemble 
alongside an unsupervised variational auto-encoder (VAE). Previous studies [80,81] em-
ployed the disentangled representation 𝑀1 obtained from an unsupervised VAE as an 
outline for a subsequently developed VAE-based semi-supervised framework, often 
termed the 𝑀1 + 𝑀2  model. The authors [79] sought to refine the 𝑀1 + 𝑀2  model by 
substituting 𝑀2 for a self-ensembling SSL network and incorporating a temporal ensem-
ble on unsupervised targets to promote agreement among ensemble predictions. This 
strategy utilizes a VAE within the unsupervised learning domain to capture a dataset’s 
intrinsic generative characteristics. This entailed assuming that the data 𝐷 is generated 
by a likelihood function, denoted as Ƥ𝛩(𝑙|𝑚), with a latent variable 𝑚 possessing a prior 
distribution represented as Ƥ(𝑚). To address the computational challenge of exact poste-
rior inference, an introduced distribution, denoted as Ƣ∅(𝑚|𝑙), was put to approximate 
the true posterior, Ƥ  through variational inference [79,82]. With regard to parame-ters 𝛩 and ∅, the training of the VAE was centered on optimizing the variational evidence 
lower bound of the marginal probability around the training data. log Ƥ(𝑙) ≥  ℒ = 𝔼Ƣ∅൫𝑚ห𝑙൯[log Ƥ𝛩(𝑙|𝑚)] −  𝐾𝐿 (Ƣ∅(𝑚|𝑙)|| Ƥ(𝑚)) (3) 

The following equation’s first term seeks to minimize reconstruction error, and its 
second term uses the Kullback-Leibler (KL) divergence measure to adjust the learned pos-
terior density Ƣ∅(𝑚|𝑙)  in incorporating a prior Ƥ(𝑚) . We have chosen Ƥ(𝑚)  to be an 
isotropic Gaussian, which promotes disentangled latent representations in Ƣ∅(𝑚|𝑙) by 
encouraging independence between the latent dimensions [79,82]. 

For each training instance, denoted as 𝑙(௜), ensemble predictions were derived from 
the VAE-learned posterior density, Ƣ൫𝑚(௜)|𝑙(௜)൯, thereby replacing manually crafted aug-
mentation functions with a distribution learned from unlabeled data to perturb 𝑙(௜) 
[51,79]. The network incorporated dropout and temporal ensemble, accumulating pre-
dicted labels, 𝒀௧ and 𝒀௧ ෪ , after each training epoch into an ensemble output [51,79]. In each 
batch 𝐵, the network was learned to minimize the ensemble loss (ℒ௘): 

ℒ௘ =  1|𝐵| ෍ ෍ ቂ−𝑦௡,௟  log 𝑓 ቀ𝑦௡,௣|Ƣ(𝑚|𝑙)ቁቃ௅
௟ୀଵ௡ ~ (஻∩஽೎)ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ௙௢௥ ௟௔௕௘௟௘ௗ ௢௡௟௬
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here, the initial term corresponds to the standard cross-entropy loss and is assessed for 
labeled data, while the subsequent term, evaluated across all data, encouraged consensus 
among ensemble predictions through mean squared loss. The ramp-up weighted function 
for 𝜁 initiated from zero, following the description in [51,79]. 

Underlying Knowledge-based Semi-Supervised Learning (UKSSL) [83] is a method 
for lung/colon cancer and blood cells classification, combining contrastive learning of 
medical visual representations (MedCLR) with an underlying knowledge-based multi-
layer perceptron classifier (UKMLP) [83]. MedCLR, inspired by SimCLR [84], extracts se-
mantic information from medical images by maximizing agreement [85] between aug-
mented views of the same image while minimizing agreement between different images. 

(m)) (3)

The following equation’s first term seeks to minimize reconstruction error, and its
second term uses the Kullback-Leibler (KL) divergence measure to adjust the learned
posterior density
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network multiple times [77]. This technique combines a prediction derived 𝒀௧ from past 
iterations with a real-time perturbed prediction 𝒀௧ ෪  to penalize minor variations in the 
outputs, requiring only a single propagation for each epoch. The temporal ensemble 
method differs from other methods in that it focuses on aggregating previously weighted 
average predictions compared to relying on a single randomly augmented value, thereby 
enhancing the robustness of the learning process. The ensemble output’s 𝒀௧ is updated 
using 𝒀௧ ⃪ 𝛼𝒀௧ + (1 −  𝛼) 𝒀௧ ෪  momentum term called 𝛼 which determines the extent of 
the ensemble’s influence throughout the training history. Intriguingly, hyperparameters 
can be transformed in accordance with uncertainty in data, such as by assigning greater 
weights to high-confidence predictions. 

To address the complexities of disentangled learning and self-ensembling within 
CheXpert [78] binary classification, Gyawali et al. [79] integrated a temporal ensemble 
alongside an unsupervised variational auto-encoder (VAE). Previous studies [80,81] em-
ployed the disentangled representation 𝑀1 obtained from an unsupervised VAE as an 
outline for a subsequently developed VAE-based semi-supervised framework, often 
termed the 𝑀1 + 𝑀2  model. The authors [79] sought to refine the 𝑀1 + 𝑀2  model by 
substituting 𝑀2 for a self-ensembling SSL network and incorporating a temporal ensem-
ble on unsupervised targets to promote agreement among ensemble predictions. This 
strategy utilizes a VAE within the unsupervised learning domain to capture a dataset’s 
intrinsic generative characteristics. This entailed assuming that the data 𝐷 is generated 
by a likelihood function, denoted as Ƥ𝛩(𝑙|𝑚), with a latent variable 𝑚 possessing a prior 
distribution represented as Ƥ(𝑚). To address the computational challenge of exact poste-
rior inference, an introduced distribution, denoted as Ƣ∅(𝑚|𝑙), was put to approximate 
the true posterior, Ƥ(𝑚|𝑙) through variational inference [79,82]. With regard to parame-
ters 𝛩 and ∅, the training of the VAE was centered on optimizing the variational evidence 
lower bound of the marginal probability around the training data. log Ƥ(𝑙) ≥  ℒ = 𝔼Ƣ∅൫𝑚ห𝑙൯[log Ƥ𝛩(𝑙|𝑚)] −  𝐾𝐿 (Ƣ∅(𝑚|𝑙)|| Ƥ(𝑚)) (3) 

The following equation’s first term seeks to minimize reconstruction error, and its 
second term uses the Kullback-Leibler (KL) divergence measure to adjust the learned pos-
terior density Ƣ∅(𝑚|𝑙)  in incorporating a prior Ƥ(𝑚) . We have chosen Ƥ(𝑚)  to be an 
isotropic Gaussian, which promotes disentangled latent representations in Ƣ∅(𝑚|𝑙) by 
encouraging independence between the latent dimensions [79,82]. 

For each training instance, denoted as 𝑙(௜), ensemble predictions were derived from 
the VAE-learned posterior density, Ƣ , thereby replacing manually crafted aug-
mentation functions with a distribution learned from unlabeled data to perturb 𝑙(௜) 
[51,79]. The network incorporated dropout and temporal ensemble, accumulating pre-
dicted labels, 𝒀௧ and 𝒀෪௧ , after each training epoch into an ensemble output [51,79]. In each 
batch 𝐵, the network was learned to minimize the ensemble loss (ℒ௘): 

ℒ௘ =  1|𝐵| ෍ ෍ ቂ−𝑦௡,௟  log 𝑓 ቀ𝑦௡,௣|Ƣ(𝑚|𝑙)ቁቃ௅
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here, the initial term corresponds to the standard cross-entropy loss and is assessed for 
labeled data, while the subsequent term, evaluated across all data, encouraged consensus 
among ensemble predictions through mean squared loss. The ramp-up weighted function 
for 𝜁 initiated from zero, following the description in [51,79]. 

Underlying Knowledge-based Semi-Supervised Learning (UKSSL) [83] is a method 
for lung/colon cancer and blood cells classification, combining contrastive learning of 
medical visual representations (MedCLR) with an underlying knowledge-based multi-
layer perceptron classifier (UKMLP) [83]. MedCLR, inspired by SimCLR [84], extracts se-
mantic information from medical images by maximizing agreement [85] between aug-
mented views of the same image while minimizing agreement between different images. 
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network multiple times [77]. This technique combines a prediction derived 𝒀௧ from past 
iterations with a real-time perturbed prediction 𝒀෪௧  to penalize minor variations in the 
outputs, requiring only a single propagation for each epoch. The temporal ensemble 
method differs from other methods in that it focuses on aggregating previously weighted 
average predictions compared to relying on a single randomly augmented value, thereby 
enhancing the robustness of the learning process. The ensemble output’s 𝒀௧ is updated 
using 𝒀௧ ⃪ 𝛼𝒀௧ + (1 −  𝛼)  𝒀෪௧  momentum term called 𝛼 which determines the extent of 
the ensemble’s influence throughout the training history. Intriguingly, hyperparameters 
can be transformed in accordance with uncertainty in data, such as by assigning greater 
weights to high-confidence predictions. 

To address the complexities of disentangled learning and self-ensembling within 
CheXpert [78] binary classification, Gyawali et al. [79] integrated a temporal ensemble 
alongside an unsupervised variational auto-encoder (VAE). Previous studies [80,81] em-
ployed the disentangled representation 𝑀1 obtained from an unsupervised VAE as an 
outline for a subsequently developed VAE-based semi-supervised framework, often 
termed the 𝑀1 + 𝑀2  model. The authors [79] sought to refine the 𝑀1 + 𝑀2  model by 
substituting 𝑀2 for a self-ensembling SSL network and incorporating a temporal ensem-
ble on unsupervised targets to promote agreement among ensemble predictions. This 
strategy utilizes a VAE within the unsupervised learning domain to capture a dataset’s 
intrinsic generative characteristics. This entailed assuming that the data 𝐷 is generated 
by a likelihood function, denoted as Ƥ𝛩(𝑙|𝑚), with a latent variable 𝑚 possessing a prior 
distribution represented as Ƥ(𝑚). To address the computational challenge of exact poste-
rior inference, an introduced distribution, denoted as Ƣ∅(𝑚|𝑙), was put to approximate 
the true posterior, Ƥ  through variational inference [79,82]. With regard to parame-ters 𝛩 and ∅, the training of the VAE was centered on optimizing the variational evidence 
lower bound of the marginal probability around the training data. log Ƥ(𝑙) ≥  ℒ = 𝔼Ƣ∅൫𝑚ห𝑙൯[log Ƥ𝛩(𝑙|𝑚)] −  𝐾𝐿 (Ƣ∅(𝑚|𝑙)|| Ƥ(𝑚)) (3) 

The following equation’s first term seeks to minimize reconstruction error, and its 
second term uses the Kullback-Leibler (KL) divergence measure to adjust the learned pos-
terior density Ƣ∅(𝑚|𝑙)  in incorporating a prior Ƥ(𝑚) . We have chosen Ƥ(𝑚)  to be an 
isotropic Gaussian, which promotes disentangled latent representations in Ƣ∅(𝑚|𝑙) by 
encouraging independence between the latent dimensions [79,82]. 

For each training instance, denoted as 𝑙(௜), ensemble predictions were derived from 
the VAE-learned posterior density, Ƣ൫𝑚(௜)|𝑙(௜)൯, thereby replacing manually crafted aug-
mentation functions with a distribution learned from unlabeled data to perturb 𝑙(௜) 
[51,79]. The network incorporated dropout and temporal ensemble, accumulating pre-
dicted labels, 𝒀௧ and 𝒀௧ ෪ , after each training epoch into an ensemble output [51,79]. In each 
batch 𝐵, the network was learned to minimize the ensemble loss (ℒ௘): 
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here, the initial term corresponds to the standard cross-entropy loss and is assessed for 
labeled data, while the subsequent term, evaluated across all data, encouraged consensus 
among ensemble predictions through mean squared loss. The ramp-up weighted function 
for 𝜁 initiated from zero, following the description in [51,79]. 

Underlying Knowledge-based Semi-Supervised Learning (UKSSL) [83] is a method 
for lung/colon cancer and blood cells classification, combining contrastive learning of 
medical visual representations (MedCLR) with an underlying knowledge-based multi-
layer perceptron classifier (UKMLP) [83]. MedCLR, inspired by SimCLR [84], extracts se-
mantic information from medical images by maximizing agreement [85] between aug-
mented views of the same image while minimizing agreement between different images. 
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here, the initial term corresponds to the standard cross-entropy loss and is assessed for 
labeled data, while the subsequent term, evaluated across all data, encouraged consensus 
among ensemble predictions through mean squared loss. The ramp-up weighted function 
for 𝜁 initiated from zero, following the description in [51,79]. 

Underlying Knowledge-based Semi-Supervised Learning (UKSSL) [83] is a method 
for lung/colon cancer and blood cells classification, combining contrastive learning of 
medical visual representations (MedCLR) with an underlying knowledge-based multi-
layer perceptron classifier (UKMLP) [83]. MedCLR, inspired by SimCLR [84], extracts se-
mantic information from medical images by maximizing agreement [85] between aug-
mented views of the same image while minimizing agreement between different images. 
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Underlying Knowledge-based Semi-Supervised Learning (UKSSL) [83] is a method 
for lung/colon cancer and blood cells classification, combining contrastive learning of 
medical visual representations (MedCLR) with an underlying knowledge-based multi-
layer perceptron classifier (UKMLP) [83]. MedCLR, inspired by SimCLR [84], extracts se-
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For each training instance, denoted as l(i), ensemble predictions were derived from
the VAE-learned posterior density,
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here, the initial term corresponds to the standard cross-entropy loss and is assessed for
labeled data, while the subsequent term, evaluated across all data, encouraged consensus
among ensemble predictions through mean squared loss. The ramp-up weighted function
for ζ initiated from zero, following the description in [51,79].

Underlying Knowledge-based Semi-Supervised Learning (UKSSL) [83] is a method
for lung/colon cancer and blood cells classification, combining contrastive learning of
medical visual representations (MedCLR) with an underlying knowledge-based multi-layer
perceptron classifier (UKMLP) [83]. MedCLR, inspired by SimCLR [84], extracts semantic
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information from medical images by maximizing agreement [85] between augmented
views of the same image while minimizing agreement between different images. This is
facilitated by an image augmentation module A and an encoder e(·), which employs a light
transformer LTrans architecture to extract semantic knowledge and produce representations
r′ and r′′.

r′ = e
(
i′
)
= Encoder

(
i′
)

(5)

where data transformation technique transforms the original image i into two augmented
images i′ and i′′. The encoder employs a LTrans architecture, reshaping images into
flattened 2D patches and applying linear projections and position embeddings. Multi-
head self-attention (MSA) [86] and multi-layer perceptron (MLP) [87] blocks within LTrans
facilitate this process,

x′l = MSA(Norm(xl − 1)) + xi−1 (6)

xl = MLP
(

Norm
(
x′l
))

+ x′l (7)

followed by a projection head p(·) which projects the representations r to another feature
space z using a non-linear MLP neural network.

z = p(r) = W(2)σ
(

W(1)r
)

(8)

The contrastive loss function NT − Xent [84] optimizes the prediction task by com-
puting the normalized temperature-scaled cross-entropy loss between positive pairs of
augmented images [88–90]. In training, random N mini-batches are sampled, augmenta-
tions i′ and i′′ applied, and images passed through the encoder e(·) and projection head
p(·) to calculate similarity and update parameters.

LNT−Xent
(
i′, i′′

)
= − log

exp(sim(z′, z′′)/t)

∑2N
k=1 [k ̸= i]exp(sim(zi, zk)/t)

(9)

The UKMLP refines feature representations learned by MedCLR using limited labeled
data, with a deeper architecture comprising 12 hidden layers. Input from MedCLR is passed
through these layers, with each following a rectified linear activation function ReLU [83].

f (x) = max(0, x) (10)

L(ŷ, y) = −∑ C
i=1yilog(ŷi) (11)

The loss function of the UKMLP is multi-class entropy, where ŷ is a vector of predicted
class probabilities and y is a one-hot encoded vector of true class labels, computed using
the natural logarithm.

4.1.2. Mean Teacher

The Temporal Ensemble method employs an exponential moving average of label
predictions for individual training case and deals with deviations from this target. Nev-
ertheless, this technique can be cumbersome when applied to large datasets because the
targets are updated only once per epoch. To tackle this issue, Tarvainen and Valpola [69]
introduced the Mean Teacher approach, which involves dividing the teacher model sim-
ilarly to a Temporal Ensemble, with the teacher network adjusted based on the student
network’s outputs. They computed the consistency cost between the teacher’s predic-
tions and the stochastic augmentation, as well as the dropout predictions of the student.
The authors referred to the ensembled prediction technique utilized in the temporal en-
semble as the Exponential Moving Average (EMA). The following method evaluated the
same example using an amalgam of the current and earlier iterations of the model. The
teacher model weights were updated using an adaptation of the EMA method, expressed
as Θ′i = αΘ′i−1 + (1− α)Θi [91].
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The Mean Teacher framework incorporates the Relation-driven Self-Ensembling Model
(SRC-MT) [92] with a consistency-enforcing strategy. Additionally, SRC-MT investigates
the intrinsic relationship among images, a factor often neglected in consistency-based
methods like Mean Teacher. In Unsupervised analyses, the relationship between images
makes it easier to extract important information from unlabeled data [93,94]. Sample
Relation Consistency (SRC) is a novel paradigm introduced by SRC-MT that guarantees
the consistent pattern of the relationship between the images after perturbation. In other
words, if two images are similar before being disturbed, then this relationship ought to
continue after the disturbance. Put more simply, there should be an identical relationship
between input samples s1 and s2 and perturbed samples s′1 and s′2. As a result, this approach
guarantees uniformity in relationships and labeling after disturbance. The framework’s
general objective functions are outlined as

L = Ls + λLu, where Lu = Lc + βLsrc (12)

The supervised objective in this case is represented by Ls, and the unsupervised
objective, which consists of the relational consistency loss Lsrc and the standard consistency
loss Lc, is represented by Lu. The trade-off weight between supervised and unsupervised
loss is represented by the parameter λ, and the hyperparameter corresponding to β is used
to balance Lc and Lsrc.

Mean Teacher for Self-supervised and Semi-supervised Learning (S2MTS2), a method
for consistently classifying chest X-rays, is presented in [95]. It involves two stages of
learning using the Mean Teacher framework. Using JCL, the student-teacher model is pre-
trained on labelled and unlabeled data in the preliminary stage [96]. In order to establish
correlations between different pairs that share a common query, this entails learning a
large set of key-query pairs obtained from unlabeled data. Such a process guarantees
more uniform representations for each class specific to each instance [96]. Consequently,
each query
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here, the initial term corresponds to the standard cross-entropy loss and is assessed for 
labeled data, while the subsequent term, evaluated across all data, encouraged consensus 
among ensemble predictions through mean squared loss. The ramp-up weighted function 
for 𝜁 initiated from zero, following the description in [51,79]. 

Underlying Knowledge-based Semi-Supervised Learning (UKSSL) [83] is a method 
for lung/colon cancer and blood cells classification, combining contrastive learning of 
medical visual representations (MedCLR) with an underlying knowledge-based multi-
layer perceptron classifier (UKMLP) [83]. MedCLR, inspired by SimCLR [84], extracts se-
mantic information from medical images by maximizing agreement [85] between aug-
mented views of the same image while minimizing agreement between different images. 

i, in conjunction with numerous positive keys k+i, m, is expected to result in a

minimized loss value. The loss for each pair
(
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here, the initial term corresponds to the standard cross-entropy loss and is assessed for 
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among ensemble predictions through mean squared loss. The ramp-up weighted function 
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Underlying Knowledge-based Semi-Supervised Learning (UKSSL) [83] is a method 
for lung/colon cancer and blood cells classification, combining contrastive learning of 
medical visual representations (MedCLR) with an underlying knowledge-based multi-
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mentation functions with a distribution learned from unlabeled data to perturb 𝑙(௜) 
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batch 𝐵, the network was learned to minimize the ensemble loss (ℒ௘): 
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here, the initial term corresponds to the standard cross-entropy loss and is assessed for 
labeled data, while the subsequent term, evaluated across all data, encouraged consensus 
among ensemble predictions through mean squared loss. The ramp-up weighted function 
for 𝜁 initiated from zero, following the description in [51,79]. 

Underlying Knowledge-based Semi-Supervised Learning (UKSSL) [83] is a method 
for lung/colon cancer and blood cells classification, combining contrastive learning of 
medical visual representations (MedCLR) with an underlying knowledge-based multi-
layer perceptron classifier (UKMLP) [83]. MedCLR, inspired by SimCLR [84], extracts se-
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here, τ stands for the temperature hyperparameter, k+, i, m refers to the mth positive legend
of
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i. The following equation calculates
the total JCL loss:

Lp
(
DX , Θ2, Θ′2

)
= − 1
|DX |∑

|DX |
i=1

1
M∑ M

m=1[Li, m] (14)

where M is the number of positive keys and DX is the set of labeled and unlabeled images.
The second phase involves maintaining an Exponential Moving Average (EMA) while fine-
tuning the pre-trained student-teacher model using the Mean Teacher approach following
the equation Θ′i = αΘ′i−1 + (1− α)Θi.

NoTeacher (NoT) [97] presents a departure from the Mean Teacher methodology,
where the teacher’s consistency target relies on the Exponential Moving Average (EMA)
of the student. There is a close association between the weights of the student and the
teacher for the reason the teacher’s weight is an ensemble of the student weights. However,
this approach can create a confirmation bias, where the teacher reinforces what it already
believes [68]. The NoTeacher framework uses two separate networks in place of an EMA
component to solve this issue. The NoTeacher framework applies two random augmenta-
tions to an input value x, resulting in two new samples, x1 and x2. These samples are fed
into two networks, F1 and F2, with similar architectures. For labeled inputs, the outputs
are labeled as f L

1 and f L
2 , and for unlabeled inputs, as f U

1 and f U
2 . Next, in order to ensure
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prediction consistency between F1 and F2, a loss function is computed. The consistency
loss and the supervised cross-entropy loss combine to form this loss function. The outputs
f1 from x1 and f2 from x2 must be similar when x1 and x2, are augmented versions of the
similar input x.

Moreover, if x serves as a labeled input, it is essential for both networks to provide
outputs that correspond with the target value y. The total loss is propagated backward
to adjust the network parameters to achieve this. Both the Mean Teacher technique and
the NoTeacher method use two networks with similar architectures. On the other hand,
the NoTeacher approach does away with the EMA, completely separating the networks.
Furthermore, NoTeacher’s loss function is based on a graphical model with f1, f2, and y as
its nodes. A consensus function called fc, which is connected to every node, ensures that
the outputs of the labeled and unlabeled data are consistent and fall between 0 and 1.

4.2. Deep Adversarial Methods

Deep adversarial models are different from discriminative models in that their primary
objective is to approximate the probability distribution from which the data originates
and generate similar samples [91]. Specifically, in machine-learning classification tasks,
the last stage is the same as for discriminative classifiers: estimating the target variable’s
conditional probability [98]. The deep adversarial semi-supervised techniques covered
in this section are based on variational autoencoders (VAEs) and generative adversarial
networks (GANs), as depicted in Figure 5.
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Figure 5. The section explores deep adversarial methods and comprehensively investigates techniques
involving Generative Adversarial Networks (GAN) and Variational Autoencoder (VAE). In GAN, data
generation involves a Discriminator D(X) assessing the authenticity of generated samples produced
by the Generator G(Z). Conversely, in VAE, data reconstruction occurs through an Encoder q∅(Z|X)

compressing input data X into a latent space Z, followed by the Decoder pΘ(X|Z) reconstructing the
input. Both models traverse distinct processes for data generation (GAN) and reconstruction (VAE),
contributing to their respective functionalities. These techniques are of pivotal significance in medical
image classification.

4.2.1. Generative Adversarial Network (GAN)

Using a scenario involving two deep neural network models—a generator and a
discriminator—Generative Adversarial Networks (GANs) [34] were constructed to demon-
strate the underlying distribution within real data samples. While the discriminator serves
as a binary classifier set with distinguishing real samples (from the dataset) from bogus
ones (by the generator), the generator seeks to produce acceptable samples that approxi-
mate the true data distribution. Both models underwent adversarial training, similar to the
two rivals who continuously hone their abilities to surpass one another in a competition.
A conventional GAN [34,99] comprises a generator, denoted as G, and a discriminator,



Information 2024, 15, 246 14 of 53

referred to as d. The objective of the generator G is to learn a distribution ρG over data
a given a prior on input noise variables ρz(z). The generator G produces fake samples
G(z) with the intention of deceiving the discriminator d. On the other hand, d’s goal is
to distinguish actual training samples a from the fake samples G(z). As shown, d and G
participate in a two-player minimax game with the value function V(G; D):

min
G

max
d
V(G; D) = Ea∼ρ(a)[log d(a)] +Ez∼ρz [log(1− d(G(z)))] (15)

Since GANs have the ability to learn the distribution of accurate data from unlabeled
samples, which makes them useful in semi-supervised learning (SSL). In SSL scenarios,
various approaches leverage GANs, and one effective method involves combining an
unsupervised GAN value function with a supervised classification objective function, such
as E(a, b)ϵXl

[log d(b|a)]. In this approach, GANs are used to generate new data points that
are similar to the actual data. The subsequent discussion reviews several notable methods
in the realm of semi-supervised GANs.

SS-DCGAN, as described in [100], is designed for retinal image synthesis and glau-
coma detection, drawing from the DCGAN architecture [101]. It improves upon Vanilla
GAN [102–104] by incorporating strided convolutions in the discriminator, fractional-
strided convolutions in the generator, batch normalization in both networks, replacing
fully connected layers with average pooling, utilizing ReLU activation in the generator
(excluding the output), and LeakyReLU activation in the discriminator. Specifically, one
change is to the final output layer of D, which has three neurons for glaucoma classifier
training and one neuron for synthesis. D therefore, acts as a classifier, assigning as normal,
glaucoma, or synthetic category to each sample. The loss function of the method was
defined as follows:

L = Lsupervised +Lunsupervised (16)

Lsupervised = −Ex, y ∼ ρdata (x, y)log((ρmodel (y|x, y) < K + 1)) (17)

Lunsupervised = −
{
Ex ∼ ρdata (x) log D(x) +E𝓏∼ρz(𝓏)log(1− D(G(𝓏)))

}
(18)

where Kclasses, Lsupervised represents the cross-entropy loss function. Meanwhile, Lunsupervised
corresponds to GAN’s two-player minimax game. Here, D(x) denotes the likelihood of
x belonging to actual data, and G(𝓏) represents the likelihood of 𝓏 originating from
the generator.

A supervised classification network C and a reconstruction network R, are components
of the GAN-based Semi-supervised Adversarial Classification (SSAC) [105] technique.
Learnable transition layers (T) facilitate the transfer of R′s acquired image representation
skills to C. R is an adversarial autoencoder-based unsupervised network made up of
a discriminator D and a generator G. G′s encoder and decoder produce reconstructed
patches with a 64× 64 size, and D is a four-layer deep convolutional neural network [106].
C is composed of two parts: a fully connected layer with two neurons, divided by a global
average pooling (GAP) layer, and an encoder resembling the one in R. It is significant
to remember that R and C do not share any parameters. Each learnable T layers in C
consists of a 1× 1 convolutional layer that transfers the feature maps obtained by R to
corresponding blocks. R underwent pre-training on both labeled and unlabeled data
during experimentation, whereas C received pre-training on ImageNet. This is how the
loss function is defined:

𝓁SSAC(Xm) = λ1{mse(G(Xm), Xm)− [bce(D(G(Xm)), 0) + bce(D(Xm), 1)]}
+bce (C(Xm), Ym)

(19)

within this context, the variable Xm signifies the mth input sample, while λ1 serves as
a weighting factor. The components of the function correspond to the mean squared
reconstruction loss incurred by G, the adversarial cross-entropy loss associated with D, and
the supervised classification loss.
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Bi-Modality Medical Image Synthesis Incorporating two or more imaging modalities
into a single examination is known as using SSL Sequential GANs [107,108]. This is made
possible by combining multiple techniques, including positron emission tomography (PET),
magnetic resonance imaging (MRI), and single photon emission computed tomography
(SPECT), which use optical, magnetic, and radioactive elements to detect anomalies in
the brain. Peta-SPECT and PET-CT are two types of bi-modal images [108]. Yang and
colleagues have presented a model that uses GANs to produce high-quality bi-modal
medical images [107]. This is performed by establishing two sequential generative networks,
each dedicated to a specific modality. The first modality is automatically identified by
a complexity measuring algorithm, which also provides a foundation for streamlining
the development of the second, more complex modality. The process of producing the
second modality is aided by training on the first modality. The generator network is
trained via SSL to produce realistic images across a diverse range. The supervised learning
approach involves understanding the joint distribution of various modalities, whereas
the unsupervised learning approach focuses on learning the marginal distribution of
modalities through adversarial learning. The architecture of the generator is as follows:
a real image of a modality is first encoded into a low-dimensional latent vector, which
is subsequently decoded to produce a synthetic image of the same modality. Using data
from the previously generated image of the first modality, an image-to-image translator
is used for the second modality to create an artificial image. Pairs of the original images
are given during the supervised training. As a result, for each pair of artificial images
generated by the generator, the matching pair from the original dataset can be found. As
a result, pixel-wise re-construction loss serves as the foundation for the loss function in
supervised training.

L1 = E(I1, I2) ∼ ρ(I1, I2)

[
||I1 − Î1||2 + ||I2 − Î2||2

]
(20)

where Î1 and Î2 refer to the synthetic images, whereas I1 and I2 denote the genuine im-
ages. The term ||x− x̂|| signifies the average Manhattan distance between the intensities
of images x and x̂, calculated pixel by pixel. Significant overfitting can affect a supervised
learning model because labeled images are not readily available. Consequently, an un-
supervised learning model is also applied, whereby the generator is trained with noise
vectors and unpaired images rather than encodings. This model aims to reduce the Wasser-
stein distances between the artificial and real images [109–111]. Thus, the unsupervised
generator’s loss function can be expressed as follows:

Lunsup = W1 ∗X + W2 ∗ Y (21)

the variables W1 and W2 represent the distance between actual and synthetic images of
two different modalities, with X and Y as additional variables. The generator is trained in a
semi-supervised manner using paired training images to initiate the training process. In
the following iteration, the decoder and image translator are trained in unsupervised way
using unpaired images. This alternating pattern of supervised and unsupervised training
has 40,000 iterations. The model uses supervised learning to generate precisely paired
images, and unsupervised training to boost diversity and realism. Each image pair was
classified as either clinically significant (CS) or non-CS. The generated images were used as
real training data in a task that classified prostate cancer using a single label.

The technique known as Uncertainty-Guided Virtual Adversarial Training with Batch
Nuclear-Norm Optimization [112] was designed to address overfitting on labeled data and
enhance the discriminative power and diversity of the model. This technique integrates
batch nuclear-norm (BNN) optimization [113], which, as proposed by Cui et al. [113]
calculates the nuclear-norm ||P(Θ)||∗ of the m× n prediction matrix P(Θ):

||P(Θ)||∗ = ∑ k = 1m∑ l = 1n σk, l(𝓅(Θ)) (22)
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The expression σk, l(P(Θ)) represents to the lth largest singular value of the matrix
P(Θ). The two main objectives of incorporating BNN optimization are to improve general-
ization and prevent overfitting on labeled data. This is accomplished by maximizing the
BNN loss of the batch containing the unlabeled data and minimizing the BNN loss of the
labeled data. Thus, the labeled BNN loss LlBNN and the unlabeled BNN loss LuBNN have
the following definitions:

LlBNN = αl/Bl||Pl(Θ)||∗ (23)

LuBNN = −αu/Bu||Pu(Θ)||∗ (24)

The labeled and unlabeled dataset sizes are represented by the variables Bl and Bu,
respectively, and the nuclear norm of the labeled and unlabeled prediction matrices is
indicated by ||Pl(Θ)||∗ and ||Pu(Θ)||∗, respectively. The proposed model incorporates
a BNN and uncertainty guidance during the computation of the VAT loss to exclude
unlabeled samples near the decision boundary. To ensure reliable learning objectives, the
uncertainty U𝒾 is computed for each unlabeled sample X 𝒾

U in a batch. The high degree of
uncertainty predictions is then eliminated.

U𝒾 = −
𝒸

∑
𝒿=1
PU𝒾,𝒿log

(
PU𝒾,𝒿

)
, 𝒾 ∈ 1 . . . BU (25)

The model is trained using multiple loss functions, with PU𝒾,𝒿 to representing the
predicted probability of X 𝒾

U for the 𝒿th category and 𝒸 denoting the total number of classes.
These include the losses Ll

bayes and LUbayes from the BNN, the cross-entropy loss from the

supervised model Lcls, the VAT loss derived from labeled data Ll
vat, the VAT loss guided

by uncertainty computed from unlabeled data L̃Uvat. The culmination of all losses calculated
over this labeled data is the comprehensive loss for labeled data:

Ll = Lcls + λvatLl
vat + λl

bayesL
l
bayes (26)

Likewise, the loss for unlabeled data can be determined in the following manner:

LU = λvatL̃Uvat + λUbayesL
U
bayes (27)

where λvat, λl
bayes, and λUbayes represent the weighting coefficients. The primary objective

function involves summing up both the supervised and unsupervised losses, Ll +LU .
CycleGAN architecture [114] is a network that can translate images from one domain

to another, even when there is no direct pairing between them [16]. The framework employs
a GAN, which consists of two generators, GAB and GBA. These generators are responsible
for learning mappings between the domains A = WLI and B = NBI, where GAB maps A
to B and GBA maps B to A. In addition, two discriminators, DA and DB, are trained to
differentiate between real and factious images from each domain. The model uses three
primary losses to optimize the training process: adversarial loss Ladv, cycle consistency
loss Lcyc, and similarity loss Lsim.

The loss term Lcyc, referred to as the cycle loss, is expressed as follows

Lcyc(G𝓅𝓆, G𝓆𝓅, X𝓅) = E[||X𝓅 − G𝓆𝓅(G𝓅𝓆(X𝓅))||] (28)

the indices 𝓅 and 𝓆 represent the original image domain and translated domain, respec-
tively. The adversarial loss for each generator, G𝓅𝓆, and discriminator, D𝓅, is denoted by
the term L.

Ladv(G𝓅𝓆, D𝓅) = EX𝓅 [log(D𝓅(X𝓅))] +EX𝓅 [log(1−D𝓅(G𝓆(X𝓅)))] (29)

To maintain the intricate details, such as capillaries and inner blood vessels, which are
vital for accurate diagnosis and specific to each image domain’s pathology, we incorporate
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a similarity loss, denoted as Lsim, to complement the cycle-consistency network. The loss
is defined as follows:

Lsim(GAB, GBA) =
[
1−∑𝒾 NF

(
X̂ 𝒾

A, GAB

(
X 𝒾

A

))]
+
[
1−∑𝒾 NF

(
X̂ 𝒾

B, GBA

(
X 𝒾

B

))] (30)

here, XA ∈ A and X B ∈ B represent images from domains A and B, respectively, where
𝒾th denotes the index over a set of N elements. The images translated by the generators
are denoted by X̂A and X̂ B. The function F

(
X , X̂

)
measures the structural similarity

(SSIM) between images X and X̂ , as proposed in [115] and defined as:

F
(
X , X̂

)
=

(
2µX µX̂ + 𝒸1

)(
2σX X̂ + 𝒸2

)(
µ2
X + µ2

X̂ + 𝒸1

)(
σ2
X + σ2

X̂ + 𝒸2

) (31)

The covariance between X and X̂ is denoted by σX ,X̂ ,

σX ,X̂ =
1

m− 1∑ m
𝒿=1(X𝒿 − µX )

(
X̂𝒿 − µX̂

)
(32)

where m represents the number of pixels, X𝒿 , and X̂𝒿 denote the 𝒿𝒿𝒿th pixel of X and
X̂ , respectively. Additionally, µX , µX̂ , σX , and σX̂ represent the mean intensities and
standard deviations of X and X̂ , while 𝒸1 and 𝒸2 are stabilization constants used to
prevent singularities when µ2

X + µ2
X̂ ≈ 0 and σ2

X + σ2
X̂ ≈ 0 are close to zero.

The main objective of the generative network is to minimize the overall objective
function, which is formulated as follows:

L(GAB,GBA,DA, DB)
= Ladv(GAB, DA) +Ladv(GBA, DB) + λ1Lsim(GAB, GBA)
+λ2Lsim(GAB, GBA) + λ3Lcyc(GAB, GBA,XA)
+λ4Lcyc(GBA,GAB,X B)

(33)

where λ𝒾 is a hyperparameter used to balance the impact of the losses. The generators aim
to minimize this function, while the discriminators aim to maximize it.

4.2.2. Variational Autoencoder (VAE)

Adaptable models called variational autoencoders (VAEs) [82,116] generative latent-
variable models in conjunction with deep autoencoders. Instead of directly modeling the
observations of the dataset, the generative model captures representations of the under-
lying distributions. 𝓅(𝓍,𝓏) = 𝓅(𝓏)𝓅(𝓍|𝓏), is the expression used to express the joint
distribution, where 𝓅(𝓏) is a prior distribution over the latent variables 𝓏. A variational
approximation 𝓆(𝓏|𝓍) to the posterior 𝓅(𝓏|𝓍) is constructed by an encoder, and a de-
coder parameterizes the likelihood 𝓅(𝓍|𝓏). This is the two-stage network architecture
of VAEs. The evidence lower bound, or ELBO, can be stated as follows. The variational
approximation of the posterior seeks to maximize the marginal likelihood:

log p(x) = logE𝓆(𝓏|𝓍)

[
𝓅(𝓏)𝓅(𝓍|𝓏)

𝓆(𝓏|𝓍)

]
≥ E𝓆(𝓏|𝓍)

[
log

𝓅(𝓏)𝓅(𝓍|𝓏)
𝓆(𝓏|𝓍)

]
(34)

In the upcoming section, we will examine several substantial latent variable techniques
employed in medical image classification through SSL.

MAVEN architecture [117] advances the field by combining image generation and
classification, drawing inspiration from Variational Autoencoder (VAE) [82,116] and Gener-
ative Adversarial Network (GAN) models [34,118,119]. While VAE employs an encoder
E and decoder D′ for explicit image generation, GAN operates with a generator G and
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discriminator D in a competitive learning setup to enhance performance over training data.
VAE-GANs, which integrate D′ and G, have the potential to merge these networks because
they both produce data from the representation 𝓏, as introduced by Makhzani et al. [120]. E,
G, and D, are the CNNs that make up MAVEN; they are implemented with either convolu-
tional or transposed convolutional layers. To create representation 𝓏(𝓍). E first reduces the
dimensionality of true samples 𝓍. Next, G generates generated samples by sampling noise
𝓏(𝓍) ∼ 𝓆λ(𝓍), or importing noise samples from distribution 𝓏 ∼ 𝓅ℊ(𝓏). D assesses
inputs from real unlabeled, labeled, and generated data distributions. G uses fractionally
stridden convolutions to extract the latent code and modify the image dimension.

In MAVEN, the integration of VAE − GAN extends to incorporate numerous dis-
criminators grouped in an ensemble layer. K discriminators are pooled together, and the
combined feedback

V(D) =
1
K ∑ K

𝓀=1𝓌𝓀D𝓀 (35)

is conveyed to G. A single discriminator is arbitrarily chosen to introduce variability in
feedback from considerable discriminators.

To support training for an 𝓃 − class classifier, D assumes an additional role as
an (𝓃+ 1) − classi f ier. A SoftMax function is used to generate multiple logits instead
of the sigmoid function. This allows D to take an image § as input and produce an
(𝓃+ 1)− dimensioanl vector of logits {𝓁1, . . . , 𝓁𝓃, 𝓁𝓃+1}. The generated data is repre-
sented by the (𝓃+ 1) class, and these logits are then converted into class probabilities for
the 𝓃 labels in the true data. The probability that the observation 𝓍 is true and falls within
class 1 for each 1 ≤ 𝒾 ≤ 𝓃,

𝓅(𝓎 = 𝒾|𝓍) = exp(𝓁𝒾)

∑𝓃+1
𝒿=1 exp(𝓁𝒾)

(36)

whereas the likelihood that 𝓍 is generated corresponds to 𝒾 = 𝓃+ 1.
Both supervised and unsupervised losses are included in D′s loss function. The

model employs the conventional supervised learning loss when it is given appropriately
labeled data. However, the unsupervised loss includes the original GAN loss for true and
generated data from two sources: directly from G and through G from E, when it receives
unlabeled data from three different sources.

LDsupervised = −E𝓍,𝓎∼𝓅data log [𝓅(𝓎 = 𝒾|𝓍)], 𝒾 < 𝓃+ 1 (37)

In G′s instance, the initial GAN loss and the feature loss are applied simultaneously.
The total G loss is made up of the cost of maximizing the log probability of D making an
error on the generated data as well as the combined feature loss.

LG f eature = ||E𝓍∼𝓅data f (𝓍)−E𝓍̂ ∼ G f (𝓍̂)||22 (38)

When using the encoder E, maximizing the ELBO is the same as minimizing the
Kullback-Leibler (KL) divergence and helps to make approximate posterior inferences. To
guarantee that the features of the data match the actual distribution of the data, the loss
function incorporates both a feature loss and the KL divergence.

LEKL = −KL[𝓆λ(𝓏 | 𝓍)||𝓅(𝓏)] = E𝓆λ(z|x)

[
log

𝓅(𝓏)
𝓆λ(𝓏 | 𝓍)

]
≈ E𝓆λ(𝓏|𝓍) (39)

SVAEMDA approach [121] presents a novel predictor employing a variational autoen-
coder framework to forecast connections between diseases and miRNAs [122–124]. This
model, a variant of autoencoder [82,125] stemming from variational Bayesian and proba-
bilistic graphical models, creates an estimated posterior probability distribution 𝓅Φ(𝓏|𝓍)
via its encoder, diverging from a predetermined latent vector. Following this, the decoder
employs samples from said distribution to restore the input data, yielding the probability of
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reconstruction 𝓅Θ(𝓍|𝓏). Here, Φ and Θ characterize the parameters governing the encoder
and decoder, respectively.

The marginal likelihood of the VAE model, represented as 𝓁(X, X′), is calculated by
summing the marginal log-likelihoods across all observed samples, which can be written as:

L
(
X, X′

)
= ∑ N

𝒾=1log𝓅Θ(𝓍𝒾) (40)

where N signifies the count of training samples (established miRNA-disease associations),
𝓍 represents an individual sample, and X′ refers to the VAE output. The marginal log-
likelihood of each sample, log𝓅Θ(𝓍), is characterized as:

log𝓅Θ(𝓍) = DKL(𝓆Φ(𝓏|𝓍)||𝓅Θ(𝓏|𝓍)) + L(Θ, Φ;𝓍) (41)

The initial part of the equation represents the KL divergence between the approxi-
mate and true posteriors, while the subsequent part denotes the variational lower bound
of log𝓅(𝓍), with 𝓅Θ(𝓏) serving as the prior distribution. By employing a reparame-
terization technique, the VAE renders the loss function differentiable and amenable to
optimization through stochastic gradient methods. This technique involves transforming
𝓏 as 𝓏 = µ + σ ⊙ ∈, where ∈ is sampled from a normal distribution with mean 0 and
standard deviation 1, while µ and σ denote the mean and standard deviation parameters of
𝓆Φ(𝓏|𝓍), respectively, and ⊙ signifies the Hadamard product. Finally, the lower bound of
the marginal log-likelihood is approximated as:

L(Θ, Φ;𝓍) ≈ −DKL(𝓆Φ(𝓏|𝓍)||𝓅Θ(𝓏)) +
1
L∑ L

𝓁=1log𝓅Θ(𝓍|𝓏𝓁) (42)

where L represents the number of samples drawn for 𝓏, and the computation of the first
term on the right-hand side follows the methodology outlined by Kingma et al. [82].

Robust predictive model SCAN [126], integrating a Bayesian variational autoencoder,
has been developed for predicting cancer prognosis. SCAN consists of a microarray VAE
and a multimodal classifier. The microarray VAE acquires concise gene profile repre-
sentations and enables SSL by integrating untagged patient data. Furthermore, SCAN
encompasses microarray and clinical classifiers, each followed by a standard output layer
to generate predictions. The multimodal classifier manages both microarray and clinical
data, with weighted outputs merged to generate the ultimate prediction.

The equation for the shared output layer is represented as:

𝓎̂i = σ
(

1𝓍 ⊙𝓌T
𝓍 ·O𝓍 + 1C ⊙𝓌T

C ·OC
)

, 𝒾 = 1, 2 (43)

Here, O𝓍 and OC denote the outputs from microarray and clinical classifiers, respec-
tively. 𝓌𝓍 and 𝓌𝒞 represent the corresponding weights, ⊙ denotes the element-wise
product, and σ(·) is the sigmoid function. The indicator functions 1𝓍 and 1C ensure that
the weighted vote takes into account either microarray or clinical data, enabling patients
with or without missing clinical features to contribute to predictions. For Type I patients,
predictions are the average of 𝓎̂1 and 𝓎̂2. For other types, predictions directly come from
𝓎̂i obtained from the available subnetwork classifier. Lower bounds for Type I I and I I I
patients are calculated differently in the microarray VAE.

The complete loss function L encompasses lower bounds representing data generation
probabilities for various patient categories, in addition to an auxiliary loss function BCE
specifically for Type I patients. Subsequently, the model’s loss function is iteratively
refined through back-propagation with mini-batches while both the microarray VAE and
multimodal classifier are concurrently trained. An extra lower bound can be introduced to
accommodate Type IV patients, and the assignment of distinct weights to each lower bound,
informed by domain expertise, presents promising directions for future investigation.
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4.3. Pseudo-Labeling Methods

Pseudo-labels [39] are labels assigned to unlabeled data based on their highest pre-
dicted probability. During fine-tuning with Dropout, these labels are used to train a
pre-trained network in a supervised way, using both labeled and unlabeled data.

b′mi =

{
0 i f i = argmaxi0 fi0(x)
1 otherwise

(44)

The pseudo-labels are recalculated at each weight update and integrated into the
same loss function used for the supervised learning task. It is essential to balance the
contributions of labeled and unlabeled data to network performance, given their significant
difference in numbers. Therefore, the overall loss function is formulated in a way that takes
into account the imbalance between the two types of data.

L =
1
n∑ n

m=1∑ K
i=1
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(
b′mi , f ′mi

)
(45)

where n denotes the number of mini-batches in the labeled data for SGD, while n′ represents
the number of mini-batches in the unlabeled data. f m

i signifies the output units of sample m
in the labeled data, with bm

i being its associated label. Similarly, f ′mi represents the output
units of sample mm in the unlabeled data, where b′mi represents its pseudo-label. The
coefficient α(t) is a balancing factor between these components.

This section will discuss pseudo-labeling methods, which can be broadly catego-
rized into two categories. The first category aims to improve the overall performance of
the framework by using multiple networks or leveraging disagreements among differ-
ent perspectives. The second category relies on self-training techniques. Additionally,
self-supervised learning has proved to be highly effective in unguided domains, devel-
oping specific self-training self-supervised methods. Figure 6 illustrates the operational
framework of Co-Training and Self-Training, respectively.
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Figure 6. The pseudo-labeling technique in DSSL classification methodologies is exemplified through
depictions of the co-training and self-training frameworks. Co-training showcases a method with
data instances v1 and v2, whereas self-training begins with data augmentation Aug, followed by
processing to create augmented data pairs xi, xj and their processed forms hi, hj. Fine-tuning then
generates final representations zi, zj aiming to maximize similarity.
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4.3.1. Co-Training

Co-training [127] is an approach that suggests each data instance in a dataset has
two distinct and complementary perspectives, called v1 and v2, where 𝓍 = (v1, v2).
Classifiers C1 and C2 are then trained on View− 1 v1 and View− 1 v2, respectively, with
the objective of achieving consistent predictions on X . This concept is formulated in an
objective function.

Lct =
H(C1(v1)) + H(C2(v2))

2
− H

(
C1(v1) + C2(v2)

2

)
(46)

where H(·) represents entropy. According to the co-training assumption, C(𝓍) = C1(v1) = C2(v2)
holds for all ∀𝓍 = v1, v2 sampled from X . The supervised loss function for the labeled
dataset X L utilizes the conventional cross-entropy loss.

Ls = H(𝓎, C1(v1)) + H(𝓎, C2(v2)) (47)

The equation H(𝓅,𝓆) is used to represent the cross-entropy between distributions
𝓅 and 𝓆. Co-training effectiveness depends on the unique and complementary nature
of the views used, but the loss functions Lct and Ls only guarantee consistency in model
predictions. To address this limitation, ref. [128] introduces the View Difference Constraint.

∃X ′ : C1(v1) ̸= C2(v2), ∀𝓍 = (v1, v2) ∼ X ′ (48)

where X ′ is used to depict adversarial examples of X with the aim of ensuring that
X ′ and X do not intersect, the View Difference Constraint in the loss function focuses
on minimizing the cross-entropy between C2(𝓍) and C1(ℊ1(𝓍)), where ℊ(·) generates
adversarial examples. Thus, the loss function can be expressed as follows:

Ldi f (𝓍) = H(C1(𝓍), C2(ℊ1(𝓍))) + H(C2(𝓍),𝓅1(ℊ2(𝓍))). (49)

Co-training [129] is a method that is used in conjunction with an active learning
framework (COAL) to categorize mammographic images. COAL has two training phases:
first, the classifiers are trained, and then additional pseudo-labeled data is assigned to
unlabeled samples through self-learning. Two neural network models, one for the CC and
one for the MLO position, are trained using mammographic images. Then, two prediction
models, H1 and H2, are developed independently, each containing overlapping information
from the other. These trained models are used to predict datasets in unannotated low-value
datasets Ulv. The two mammographic images with the highest prediction confidence,
Q1, and Q2, are selected and added to the dataset in order to update the H1 and H2
prediction models. These high-confidence prediction outcomes of models H1 and H2 are
called “Pseudo-labels”. This iterative process continues until all Ulv samples have been
exhausted. This iterative approach establishes a co-training mechanism for the training of
mammogram images.

Q(t)
1 = argmax

𝓊∈U(t)
valueless

(P(𝓎max∗ |𝓊; H(t− 1) 1))

−P((𝓎max∗ |𝓊; H(t− 1) 2))
(50)

Q(t)
2 = argmax

𝓊∈U(t)
valueless

(P(𝓎max∗ |𝓊; H(t− 1) 2))

−P((𝓎max∗ |𝓊; H(t− 1) 1))
(51)

COAL employs a method that is based on sample query criteria to obtain the most
valuable annotated datasets Amv, the most valuable unannotated datasets Umv, and their
corresponding human-annotated labels Ymv. After that, two neural networks are used to
predict pseudo-labels for the remaining unannotated datasets of lower value Ulv.
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Weakly supervised learning [130], which incorporates pseudo-labeling [39], develops
predictive models with limited supervision and is emerging as a significant framework
in machine learning. It encompasses incomplete, imprecise, and erroneous supervision
categories [131]. In incomplete supervision, scant ground-truth labels are combined with
abundant unlabeled data [132], with a particular emphasis on semi-supervised learning
devoid of human intervention [23,132], which forms the central focus of this section. The
Double-Tier Feature Distillation Multiple Instance Learning (DTFD-MIL) approach for
MSI classification [133] addresses the challenge of excessive patch cropping for generating
high-resolution images. Their method involved using pseudo-bags Psebag to augment
bag size and applying feature distillation (FD) alongside instance probability derivation.
Evaluation of the CAMELYON-16 and TCGA lung cancer datasets demonstrated the
superior performance of their framework compared to existing methods. Additionally,
their approach integrates four feature distillation strategies (FDS): MaxS, MaxMinS, MAS,
and AFS.

DTFD−MIL =
(

Psebag + (MaxS, MaxMinS, MAS, AFS)
)

(52)

Another integrated weakly supervised deep learning framework for medical disease
classification and localization utilizes multi-map transfer layers for feature learning and
squeeze-and-excitation blocks for recalibrating cross-channel features [134]. This approach
employs a multi-instance multi-scale (MIMS) convolutional neural network (CNN) to
classify medical images [135]. The proposed MIMS integrates a multi-scale convolutional
layer to combine data patterns from various receptive fields and introduces a ‘top-k pooling’
method to merge feature maps from multiple spatial dimensions. Additionally, a weakly
supervised learning technique known as CNN-MaxFeat-based RF is developed [136], which
employs a fully patch-based convolutional network to extract discriminative blocks and
generate comprehensive descriptors for whole slide images (WSI). This method enhances
performance by incorporating aggregation strategies, feature selection, and a context-
aware technique.

4.3.2. Self-Training

Techniques for pseudo-labeling are based on the self-training algorithm [137]. A model
is first pre-trained on labeled data, and it is subsequently improved by making predictions
about unlabeled data. The technique known as “Entropy Minimization” [138,139] A model
is first pre-trained on labeled data, and it is subsequently improved by making predictions
about unlabeled data. The technique known as “Entropy Minimization”:

min
Θ

∑L
i=1LS( f (Xi; Θ), Yi) + α

L+U

∑
i=L+1

LU
(

f (Xi; Θ), Ŷi
)

(53)

where Ŷ typically comprises substantial noise.
ACPL (Anti-curriculum Pseudo-labeling for Semi-supervised Medical Image Classifi-

cation) [43], which was introduced by Liu et al. [43], is a method for image classification
designed specifically for datasets like Chest X-ray and ISIC2018 Skin Lesion Analysis. The
aim of ACPL is to overcome the limitations of conventional pseudo-labeling approaches and
achieve state-of-the-art performance comparable to consistency-based techniques. ACPL is
a method that identifies a change in distribution between labeled and unlabeled data. It
strategically selects unlabeled samples for pseudo-labeling to maximize dissimilarity from
the labeled data distribution. This helps to improve the balance of the training process and
increases the likelihood of belonging to the minority class. To evaluate the usefulness of
each sample, ACPL uses a measure called cross-distribution sample informativeness (CDSI).
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This measures the proximity of unlabeled instances to a highly informative set of labeled
instances named the anchor set DA. The computation of CDSI involves several steps.

h( fΘ(𝓍), DA) =

{
1,
0,

pγ(ζ = high|𝓍,DA) > τ
otherwise

(54)

The variable ζ in this context stands for the random variable that represents the
level of information content, which can be either low, medium, or high. The parameter γ
denotes the Gaussian Mixture Model (GMM), and τ is defined as the maximum value of the
probabilities pγ(ζ = low|𝓍,DA) and pγ(ζ = medium|𝓍,DA). The informative Mixup (IM)
technique was used for pseudo-labeling after the most informative unlabeled samples were
determined. This technique creates an output within [0, 1]|𝓎| by combining the labels from
the K-nearest neighbor (KNN) classification with the labels from the model pΘ(·), where
pΘ(𝓍) = σ( fΘ(𝓍)), were fΘ(𝓍) represents the input image feature and σ(·) represents the
final activation function. The model prediction, pΘ(𝓍), and the KNN prediction, which is
weighted by the density score, are computed as a linear combination by the IM technique
to carry out the pseudo-labeling process. After pseudo-labeling, the most informative
pseudo-labeled samples were chosen for the anchor set using the Anchor Set Purification
(ASP) algorithm.

Meta pseudo-labels [140] aim to improve the process of generating pseudo-labels
by utilizing feedback analysis between a Student and a Teacher model in the context of
Chest X-ray Image Classification. The feedback loop from the Student helps the Teacher
refine the generation of pseudo-labels to better align with the Student′s performance on
labeled data, unlike Pseudo Labels where the Teacher remains fixed and pre-trained, solely
responsible for generating pseudo-labels for the Student [141]. In contrast, Meta Pseudo
Labels involve simultaneous training of both the Teacher and Student models. To enhance
evaluation accuracy, consider fine-tuning the Student model trained on pseudo labels
using labeled X-ray images. The Teacher Network uses ResNet-50 [105,142] as its CNN
model backbone, while InceptionResNet-V2 [143] serves as an alternative, known for its
superior performance in supervised learning tasks. The parameters of the Student network
is updated based on minimizing the cross-entropy (CE) loss.

ΘPL
S = argmin

ΘS

L𝓊(ΘT , ΘS) := E𝓍𝓊 [CE(T(𝓍𝓊; ΘT), S(𝓍𝓊; ΘS))] (55)

The CE loss is given by:

Jbce = −
1
M∑ M

m=1[𝓎mlog (hΘ(𝓍m)) + (1− 𝓎m)log(1− hΘ(𝓍m))] (56)

D = {F ,𝓅(X )} (57)

DS =
{(
XS1 , YS1

)
,
(
XS2 , YS2

)
, . . . , (XSn , YSn)

}
(58)

DT = {(XTm , YTm), (XTm , YTm), . . . , (XTm , YTm)} (59)

S and T represent the Student and Teacher networks within the meta-pseudo-label
methodology, respectively, and D denotes the image domain, which comprises the feature
space F and the probability distribution P(X ). DS refers to the source domain, which
encompasses 16% of the labeled X-ray image data, whereasDT represents the target domain,
which contains nearly fully unlabeled X-ray image data.

KS = {TS, Φ(·)S}; KT = {TT , Φ(·)T} (60)

The objective involves transferring the weights Φ(·)S derived from training the Teacher
Network on 16% labeled X-ray images to initialize the weights Φ(·)T for training the
network on 0.5% labeled data.
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4.4. Graph-Based Methods

With roots in both graph theory and machine learning, semi-supervised learning with
graph-based methods (GSSL) has a long history. Using these techniques, one can create
graphs that show the relationships between data points by joining nodes that represent
relationships or proximity between data points with edges. Due to their ability to support
clustering assumptions, graph-based techniques have historically been extensively em-
ployed in semi-supervised learning [144]. This makes it possible to find groups of related
data points that can be labeled. Moreover, these techniques are predicated on the manifold
assumption that nodes linked by significant weighted edges generally represent adjacent
samples on a low-dimensional manifold and have the same label [145]. In this section,
we will explore techniques for GSSL that use graph embedding to compress nodes into
concise vectors that capture both their importance and the structural context of neighbor-
ing nodes. For a given graph G(V , E), each node’s embedding is denoted by a mapping
fZ : v→ 𝓏v ∈ Rd, ∀v ∈ V , where ⌈ ≪ |V| is the number of nodes in the graph and fZ

retains a certain measure of proximity defined within the graph G. Among the array of
deep embedding methods, two prominent categories are distinguished: those relying on
AutoEncoders and those employing Graph Neural Networks (GNNs), as depicted in the
Figure 7.
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Figure 7. The described frameworks offer fundamental insights into both AutoEncoder and GNN-
based approaches for the process of DSSL medical image classification. The graph-based AutoEncoder
employs an Encoder to transform input data into a latent representation Zi, decoded to reconstruct the
input graph S′i. The GNN-based model features interconnected nodes A− E representing processing
stages, arrows indicate data flow within this network.

4.4.1. AutoEncoder

Every node 𝒾 in a graph G(V , E), has a neighborhood vector S𝒾 ∈ R|V|. This vector
S𝒾 functions as a high-dimensional representation of node 𝒾 in its neighborhood and shows
how similar node 𝒾 is to every other node in the graph. Using hidden embedding vectors
such as S𝒾 , autoencoding entails encoding nodes and deconstructing the original data from
these embeddings. Typically, these methods’ loss function is defined as follows:

L = ∑
𝒾∈V
||Dec(𝓏𝒾)− S𝒾 ||22 (61)
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where,
Dec(Enc(S𝒾)) = Dec(𝓏𝒾) ≈ S𝒾 (62)

A graph-based SSL framework called GraphXNET [146] is intended for classification
tasks where there are a lot of unlabeled samples and few labeled samples. The normalized
graph of the p-Laplacian with p = 1 yields the function ∆1(𝓊) =

∣∣∣WD−1𝓊
∣∣∣, which is

used in the model. The algorithm works like this: the model finds a set of labeled nodes
I𝓀 ⊂ {1 . . . l} for every class 𝓀. For each class 𝓀, a variable 𝓊𝓀 is chosen, whose values
span all of the graph’s nodes. The selected L variables are related to the constraint for all
unlabeled nodes 𝒾 > l, assuming L is the total number of classes.

∑ L
𝓀=1𝓊

𝓀
𝒾 = 0, ∀𝒾 > l (63)

Additionally, a constraint incorporating a small positive value ϵ is applied, defined as:{
𝓊𝓀

l ≥ ϵ i f 𝒾 ∈ I𝓀
𝓊𝓀′

l ≥ −ϵ i f 𝒾 ∈ I𝓀 and 𝓀′ ̸= 𝓀
(64)

The model’s goal is to minimize the normalized ratios ∑𝓀
∆1(𝓊𝓀)
|𝓊𝓀| . The ChestX-ray14

dataset was used to assess this model [147].
Graph-Embedded Random Forest [148] technique enhances the standard random

forest algorithm to address the challenges associated with limited labeled samples. In
conventional approaches, scarcity of training data results in shallow trees, inaccurate leaf
node predictions, and suboptimal splitting strategies [149]. To overcome these drawbacks,
Gu et al. [148] proposed a graph-based model that substituted a graph-embedded entropy
for better splitting in place of the information gain algorithm. This technique preserves
the advantages of random forests, including computational efficiency and resistance to
overfitting, while enhancing reliability with a small labeled dataset by utilizing the local
structure of unlabeled data. The graph Laplacian regularization term is combined with
supervised loss in the loss function. First, labeled and unlabeled data are used to create a
graph G(V , E ,W), where nodes are training samples andW is a symmetric weight matrix
that is calculated as follows:

W𝒾𝒿 =

e−
||𝓍𝒾 , 𝓍𝒿 ||

2
2

2σ2 i f (𝓍𝒾 , 𝓍𝒿) are consider neighbors
0 otherwise

(65)

Originated from the graph embedding’s label information for unlabeled samples, the
new insight gained is expressed as follows:

G𝓂(𝓌, τ, Xl , Yl , X𝓊) = G𝓂(S)− (|Sl |G𝓂(Sl) + |S𝓊|G𝓂(S𝓊))

|S| (66)

In this case, S stands for the node, Sl for the left child node, S𝓊 as the right child node,
τ for the threshold, Xl and Yl for labeled instances and the class labels that correspond to
them, and X𝓊 as unlabeled instances.

4.4.2. GNN-Based

The limitations of autoencoder-based approaches are addressed by a number of so-
phisticated embedding techniques that include specialized functions that concentrate on
each node’s local neighborhood rather than the entire graph [150]. GNNs [47,151], which
are widely adopted in modern deep embedding methodologies, serve as a foundational
framework for designing deep neural networks tailored to graph structures. GNN-based
approaches typically involve two fundamental operations: aggregation and updating.
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The following section examines the fundamentals of GNNs and explores several popular
extensions aimed at refining each operation.

Label propagation [152] technique based on graphs is utilized to predict the labels of
unlabeled images in brain tumor classification using SSL [152]. This approach involves
transferring label data from labeled images to unlabeled ones via a graph, supplemented
by an additional 3D-2D consistent constraint to improve its efficacy. The cost function for
this method is delineated as follows:

E(S) =
µ

2

n

∑
i=1
||si − yi||2 +

λ

2
||(I − B)T(I − B)S||2F (67)

where S represents the predicted labels for all images post-label propagation, with si ∈ R1×c

indicating the one-hot vector for the label of the ith image. The parameters µ > 0 and λ > 0
serve as balancing weights, while Yn×c denotes the one-hot label matrix,

Yi, j =

{
1 i f xi ∈ L and yi = j
0 otherwise

(68)

The elements within the cost function incorporate various constraints, including a
smoothness constraint that ensures that images with proximity in the feature space share
similar labels, a fitting constraint that preserves the labels of labeled images, and a 3D
scan-consistent control.

B =


1 1

ns
1
ns . . . 0

0 1 1
ns . . . 0

...
0

...
0

...
0

. . .
. . .

...
1

 (69)

The 3D scan-consistent term B enforces uniform labels among images from the same
patient and is defined as |S− BS|2F. The estimation of labels for unlabeled images xi
is achieved by selecting the label with the highest value within the respective vector si
as follows:

ŷi = argmax
j

Si, j, i ∈ {l + 1, . . . , n} (70)

Semi-Supervised Hypergraph Convolutional Network (Semi-Supervised HGCN) [153],
proposed by Bakht et al. [153], presents an innovative approach to classifying colorectal
cancer (CRC). Hypergraphs, a vital component of this method, offer a more minute rep-
resentation of relationships between nodes than standard graphs, as they allow one edge
to connect multiple nodes. The classification task focuses on CRC Whole Slide Images
(WSIs), which are high-resolution images obtained from microscope slides capturing tissue
structures relevant for identifying malignancy. Initially, the images are partitioned into
patches of size 224× 224. After that, a feed-forward VGG-19 [154,155] model is used to
extract a matrix of feature X , from the set of n patches. Subsequently, the feature matrix
X is used to construct a hypergraph characterized as G(V , E ,W). Every vertex in this
hypergraph is connected to k of its closest neighbors. To facilitate further analysis, the
hypergraph is further represented by a vertex-edge probabilistic incidence matrix H of size
n× n.

h(n, e) =

{
exp

(
−d

Pmaxdavg

)
, i f n ∈ e

0, i f n /∈ e
(71)

The formula uses three variables: d, which stands for the Euclidean distance between
the current node and its neighbor, davg, which stands for the average Euclidean distance
between the k-neighbors, and Pmax, which stands for the maximum probability. The
following method was used to determine the degrees for each vertex v ∈ V and edge e ∈ E:

d(v) = ∑ v′∈ Vh
(
v′, e

)
, d(e) = ∑ e′∈ Eh

(
v, e′

)
(72)
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During the classification phase, the diagonal matrices Dv and De are obtained by
segregating node and edge degrees. X and H are then fed into a hypergraph neural network
(HGNN) that consists of three hidden convolutional layers and a SoftMax classification
layer. Using spectral graph convolution, representation learning is accomplished in the
following way:

XL+1 = σ
(
D−

1
2 vHWD−

1
2 eHTD−

1
2 vXLΘL

)
(73)

In each layer of a neural network, an activation function is applied to the output
of the previous layer. The output of layer L is denoted as XL+1, which is then used as
input for layer L + 1. During the training process, the parameter Θ is trainable, and W is a
diagonal matrix.

4.5. Multi-Label Methods

Conventional techniques for multi-label learning frequently involve deep neural
networks (DNNs) [156–158] that are trained using binary cross-entropy (BCE) loss, which
converts the primary task into multiple binary classification tasks. However, BCE loss may
encounter difficulties owing to imbalances between the positive and negative labels. In
the context of semi-supervised multi-label learning (SSMLL), we consider a feature vector
x ∈ X and its corresponding label vector y ∈ Y , where X = Rd denotes the feature
space, and Y = {0, 1}q represents the label space that contains q potential class labels.
Here, yk = 1 denotes the relevance of the kth label to the instance, while yk = 0 indicates its
irrelevance. The aim of SSMLL is to create a classification function f :

DL ∪ DU → 2L (74)

where L denotes the set of possible labels. This section delves into inductive and transduc-
tive methods, with inductive methods focusing on refining the prediction model, whereas
transductive techniques directly enhance the prediction itself, as depicted in the Figure 8.
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Figure 8. Illustration of the two scenarios in multi-label SSL: Inductive and Transductive. In the
Inductive scenario, the trained model M possesses the ability to predict labels for any unseen node.
Conversely, in the Transductive scenario, only the labels of unlabeled nodes within the training
dataset require inference.

4.5.1. Inductive Methods

Inductive techniques are used to create a classifier that can predict the label of any
object within the input domain. During the training process, unlabeled data can contribute
to the development of this classifier. Once the training is complete, the classifier can
independently predict the labels of multiple new and unseen instances. This is consistent
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with the approach of supervised learning, where the model is trained to anticipate the
labels of fresh data observations.

In order to establish a new scheme for labeling lesions and speed up the collection
of diabetic retinopathy fundus images with multiple lesions, a multi-label classification
model featuring Grad-CAM [159] has been introduced. A more generalized version of
CAM called Grad-CAM [160–162], can be used in any convolutional deep learning model.
To compute Grad-CAM, the final convolutional layer is usually chosen. Assume for the
moment that the final convolutional layer’s output map is identified by the notation Ak,
where k is the number of these output maps. The following formula is used to determine
the final Grad-CAM, also known as IGrad> − CAM:

𝓌kc =
Z
W ∑ W

i=1∑ H
j=1

∂Aijk

∂†c
(75)

IGrad> − CAM = ReLU
(
∑ K

k=1𝓌kc · Ak

)
(76)

where the variable 𝓎c represents the score of a specific class c before going through the
softmax operation, while Ak has dimensions W × H, through differential operations of
𝓎c concerning Ak, we can derive 𝓌kc, which signifies the weight of map Ak for class c. Z
served as the normalization factor. After applying a weighted summation of maps Ak,
we used the rectified linear unit ReLU activation function. We also computed the Guided
Backpropagation map for each predicted outcome, which is denoted as Ic

Guided−Backprop. By
performing element-wise multiplication of Grad-CAM and Guided Backpropagation, this
method obtains a more detailed guided Grad-CAM outcome for each expected outcome.

Ic
Guided−Grad−CAM = Ic

Guided−Backprop · I
c
Guided−CAM (77)

To derive the ultimate integrated Guided-Grad-CAM for the outcomes of multi-label
classification, the Guided-Crad-CAMs are consolidated via normalization:

IGuided−Grad−CAM =
1
Z ∑ C

c=1 Ic
Guided−Grad−CAM (78)

In this context, Z represents the normalization factor, while C denotes the total number
of categories in the multi-label classification model.

The Multi-Symptom Multi-Label (MSML) [163] classification network was devel-
oped using a Semi-Supervised Active Learning (SSAL) [164–166] technique to capture the
characteristics related to COVID-19 lung multi-symptoms [163]. The ResNet50 [106,167]
architecture served as the core of the MSML model, with modifications made to simplify the
model structures. In addition, a custom classifier with average pooling and fully connected
layers was used to handle multi-label tasks. The use of sigmoid cross-entropy loss allows
for more effective capture of distinctive features associated with COVID-19 pulmonary
symptoms, described as:

LCE = − 1
N

N

∑
i=1

(
𝓎(i)log 𝓎̂(i) +

(
1− 𝓎(i)

)
log

(
1− 𝓎̂(i)

))
(79)

As such, 𝓎̂(i) =
(

1
1+e−x

)
, where 𝓎(i) represents the ground truth of the input, N

indicates the batch size, and x is the output of the last layer.
During each iteration of Active Learning (AL), samples are chosen using traditional

techniques such as Least Confidence (LC) and Multi-label Entropy (MLE). To overcome
their constraints, a novel multi-label margin (MLM) strategy has been introduced.

MLM(x) =

∣∣∣∣p(l1|x)− max
2≤i≤l

p(li|x)
∣∣∣∣ (80)
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Here, p(li|x) signifies the probability of symptom li being present in image x. This
strategy aims to improve sample informativeness for more efficient AL in the classification
of COVID-19 lung multi-symptoms.

Deep Subspace Analysis for Semi-supervised Multi-label Classification (DSSC) [168]
is a novel method for analyzing Diabetic Foot Ulcers (DFUs) [169] that was introduced by
Azadeh and Hossein [168]. This technique uses transfer learning with the Xception [170]
model to extract distinctive features. DSSC integrates Deep Subspace-Based Descriptors
to map image sets onto a linear subspace within the Grassmann Manifold, and geodesic
distances are computed to define each point as a vector relative to the unlabeled images,
enabling semi-supervised learning. The Geodesic-Based Relational Representation ap-
proach begins by employing relational divergence and K−medians clustering to identify
representatives of unlabeled data. Subsequently, linear subspaces were established for
both the labeled data and centroids of the unlabeled data. Every image undergoes the
transformation into an image set via data augmentation, and its representation is derived
from the intermediate layer output of a customized Xception network, employing Singular
Value Decomposition (SVD).

The training process employed the DFU dataset, which comprises both labeled
datasets denoted as L̆ and unlabeled datasets denoted as Ŭ. L̆ is represented as a set
L̆ = [ l1, l2, . . . , lm], while Ŭ is defined as Ŭ =

[
u1, u2, . . . , up

]
. The unlabeled data

was organized into the matrix C̆ after applying K − medians clustering, given by
C̆ =

[
c1, c2, . . . , cp

]
. Each image in L̆ was then transformed into an image set: For each

L̆j in L̆, Lj =
[
lj1 , lj2 , . . . , ljp

]
, L̆j =

[
uj1 , uj2 , . . . , ujp

]
. Similarly, for each centroid of un-

labeled data C̆j: For each C̆j in C̆, C̆j =
[
cj1 , cj2 , . . . , cjm

]
, C̆j =

[
ucj1 , ucj2 , . . . , ucjp

]
. The

geodesic distance between Lj and all C̆j in C̆ was computed to represent each labeled image.
This geodesic distance for the respective image is denoted as ||dGi||:

||di|| =
(
Gd

(
L̆i, C̆1

)
, Gd

(
L̆i, C̆2

)
, . . . , Gd

(
L̆i, C̆α

))
(81)

as described in the equation,
dG(X, Y) = ||Θ||2 (82)

Additionally, the performance was improved by employing multi-label relative fea-
ture (MLRF) classification, which transforms multi-label datasets into single-label sets
to enhance classification efficiency, thereby enhancing the DFU classification accuracy in
clinical scenarios.

4.5.2. Transductive Methods

Transductive methods for SSL are commonly classified as either graph-based or non-
graph-based [171]. Vapnik [172] introduced the concept of transductive learning in the
1990s, where all unlabeled data points were considered part of the testing set [173]. These
methods make use of the structural characteristics present in both the training and testing
datasets to accurately locate the maximum margin hyperplane. Another category of
transductive methods involves graph-based approaches, where a graph is constructed
with nodes representing both labeled and unlabeled instances and edges indicating the
similarity between these instances [174–176]. This section mainly focuses on explaining the
construction and weighting mechanisms of the graph-based transductive methods.

MCG-Net [177] and MCGS-Net [177], developed for analyzing Fundus Images, utilize
a Graph Convolutional Network and SSL to extract image representations from both the
SSL and ODIR datasets [177]. This process yields a feature vector, x ∈ RD×1, after global
max pooling. The Graph Self-Supervised Learning (GSSL) [178,179] element incorporates
a fully connected layer as a classifier, enabling the MCGS-Net to learn from unannotated
data using SSL. Conversely, the Graph Convolutional Network (GCN) component utilizes a
classifier derived from the GCN to capture category correlations in fundus images. Initially,
GCN vertices are represented by one-hot vectors in H(0) ∈ RC×d0 , where C denotes the
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number of categories and d0 represents the dimension of the one-hot vector. Each vertex
corresponds to a category in the GCN. The update rule for each GCN layer is formulated
as follows:

H(l+1) = σ
(

D−
1
2 AD−

1
2 H(l)W(l)

)
(83)

Here, A represents the adjacency matrix, D is the degree matrix, H(l) is the vertex
features at layer l, W(l) is the trainable weight matrix, and σ(·) is an activation function.

The GCN layers are arranged in succession to convert these vertex representations into
an interconnected classifier, referred to as H(2), where the dimension d2 equals D, resulting
in H(2) ∈ RC×D. Through the dot product (·) operation between the feature vector x
and the classifier H(2), we derive the predicted score s1 for the ODIR image, denoted as
s1 ∈ RC×1, presents as:

s1 = H(2) · x (84)

Within the Generalization Enhancement Module of GSSL, the pretext task is based
on SSL, where GSSL predicts the transformation type of the fundus image. Given an
input image X, it generates transformed images X0 and X1 through rotation. These trans-
formed images are subsequently inputted into a convolutional neural network, resulting in
predicted probabilities F(X0) and F(X1). The label 0 is assigned to F(X0), and 1 to F(X1).

The formulation of the multi-label classification loss function is as follows:

Lossodir = −∑ N−1
i=0 ∑ C−1

c=0 (yci · log pci + (1− yci) · log(1− pci)) (85)

here, N represents the total number of samples; C indicates the number of categories;
yci denotes the true label for sample i and category c, while pci signifies the predicted
probability of sample ii belonging to category c.

Consistency-based semi-supervised evidential active learning framework (CSEAL) [53]
is tailored for multi-label classification tasks on diagnostic radiographs, employing a semi-
supervised active learning strategy alongside held-out validation and test sets. The labeled
training samples are designated as

{
xL

i , yi
}LT

i=1, whereas the remaining unlabeled sam-

ples are denoted by
{

xU
i
}LU

i=1. The validation set
{

xL
i , yi

}LV
i=1 adheres to LV ≪ LT for a

realistic configuration. In binary classification, the class predictors p1 =
[
p+1 , p−1

]⊤ and

p2 =
[
p+2 , p−2

]⊤ are derived by applying a sigmoid function to the output logits f1 and
f2 [180,181]. These Bernoulli variables possess beta distribution priors characterized by
τ1 = [α1, β1] and τ2 = [α2, β2], respectively. Using the output logits, evidence is computed
to estimate τ1 and τ2, where τ = exp(f) + 1, with f constrained within [−10, 10]. During
inference, the prediction probabilities for each class are computed as the mean of the beta
distribution, denoted as p̂1 =

[
p̂+1 , p̂−1

]⊤
= [α1/E1, β1/E1]

⊤, where the total evidence is
E = α + β [182]. The Kullback-Leibler (KL) term gauges the divergence between the beta
prior with adjusted parameters

∼
τ = y + (1 + y) ⊙ τ and the uniform beta distribution,

signifying complete uncertainty. The general loss function of the CSEAL is expressed
as follows:

LCSEAL(x, y) = λsup
[
Lerr(y, p̂) + Lvar(p̂,τ) + λt𝓁reg(τ, y) + λconsLcons(p̂1, p̂2)

]
(86)

where parameter λt is a regularization coefficient that adapts over the first t epochs, starting
at 1.0 and gradually decreasing. The loss components consist of Lerr(y, p̂) and Lreg(τ, y),
which relate to the Bayes risk and the squared error between y and p. Lreg(τ, y) is a
regularization term based on KL divergence. The consistency term Lcons(p̂1, p̂2) is only
calculated when comparing the outputs of two separate networks.
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To effectively promote active learning, the estimated aleatoric uncertainty (AU) [183]
for each class was calculated as the expected entropy of the class predictor, considering its
beta distribution prior:

AU = Ep∼Beta(α, β){H|p|} =
1

ln 2 ∑
γ∈{α, β}

γ

E
(φ(E + 1)− φ(γ + 1)) (87)

This value was derived using the digamma function φ(·). Image-level uncertainty
scores can be obtained by aggregating the label-level AU scores.

4.6. Hybrid Methods

Hybrid approaches, which incorporate a number of techniques such as consistency reg-
ularization, data augmentation, entropy minimization, and pseudo-labeling, have become
increasingly popular in recent years [184]. The hybrid techniques covered in this section
will include Mixup [185], a straightforward data-agnostic method for data augmentation.
Mixup generates virtual training examples using the following formula:

x̃ = λxi + (1− λ)xj
, ỹ = λyi + (1− λ)yj

(88)

In this case, λ is a number between 0 and 1, and (xi, yi) and
(
xj, yj

)
stand for two

instances from the training set. By imposing a rigid requirement that samples’ linear inter-
polations match the linear interpolations of their corresponding labels, Mixup efficiently
expands the training dataset.

A graph-based technique called the Local and Global Consistency Regularized
Method [186,187] uses the Mean Teacher framework [187] to enforce local and global
data consistency. Instances belonging to the same class should be located in the same area
of the feature space, according to local consistency [187], while instances belonging to the
same global structure should have the same label. This technique fosters both local and
global consistency by means of label propagation (LP). The affinity matrix-based proximity
of labeled samples to unlabeled samples is used by the LP SSL algorithm to propagate labels
from labeled samples to unlabeled samples. The weighted average of labeled instances that
are close to an unlabeled instance x is used to calculate the label for that instance. Once the
label for x is determined, it can be applied to additional nearby unlabeled data. Lastly, a
graph is built using ground truth labels and labels created by the LP algorithm:

Aij =

{
1, i f yi = yj
0, otherwise

(89)

where the representation of the labeled data is denoted as yi and yj, to maintain both local
and global consistencies, the Contrastive Siamese loss [188] is utilized, aiming to bring
instances of the same class closer and diverge those from different classes:

Ls =

{
||𝓏i −𝓏j||2, i f Aij = 1

max
(
0, 𝓂− ||𝓏i −𝓏j||2

)
, i f Aij = 0

(90)

The final loss function in this case is represented as follows and includes the feature
vector 𝓏 and hyperparameter 𝓂, which were taken from the student network’s intermedi-
ate layers:

Ltotal = Lossmt +𝓌(τ)
(
λg1∑ xi , xj∈Xl Ls1+λg2∑ xi∈Xl , xj∈Xu Ls2

)
(91)

the Mean Teacher loss Lossmt and two graph-based losses Ls1 and Ls2 combine to form the
overall loss. The weight of the loss computed on labeled instances is represented by λg1,
and the weight of the loss added on both labeled and unlabeled instances is represented
by λg2. Specifically, the loss on unlabeled samples is not individually computed due to
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potential noise in the predicted labels from the LP algorithm, which could adversely affect
the method’s performance if included.

CamMix semi-supervised framework [189] was proposed by Guo et al. [189] for
medical image classification, which is similar to MixMatch [190], and integrates several
self-supervised learning techniques. This framework utilizes a consistency-based method
for unlabeled data to create robust pseudo-labels for various augmentations. The MixUp
technique, which mixes samples by linearly interpolating their labels and inputs, tends to
produce mixed samples that are not naturally occurring, as the authors noted. To address
this, they developed a novel MSDA technique called CamMix, which combines labels
and input sample pairs using a class-activation mask created from the predictions of both
labeled and unlabeled samples. Entropy minimization for unlabeled data is accomplished
by refining the target distribution, much like in MixMatch. The following procedure was
used to obtain the class activation map for each batch b at each epoch:

GradMaxCambatch = max
(

ReLU
(
∑k𝓌batch, k Ak

))
(92)

here, ∑k 𝓌batch, k for batch b and A is the weight of feature map k. It is calculated as follows:

𝓌b
k =

1
Z ∑i∑j

∂Yb

∂Ak
ij

(93)

The expression Ak
ij, represents the pixel value at location (i, j) of k, where Z is the

total number of pixels in k, and Yb is the maximum prediction score of batches b from
the classification model. The binary mask CamMask is created by applying a random
threshold λ ∈ [0, 1] to the gray-level GradMaxCambatch. Other pixels are set to 0, while
those with values greater than 1 − λ are set to 1. The CamMix algorithm processes a
batch of labeled and unlabeled data with their predictions, incorporating both robust and
weak augmentations. It produces a mixed batch of real and shuffled samples, with label
mixing based on the pixel count in the CamMask. As a result CamMask is determined by
computing GradMaxCam(input1, 1− λ), taking into account the true samples input1 and
the shuffled samples input2 = input[random_index] along with their corresponding label
targets target1 and target2. The parameter lam is then computed based on the pixel count in
CamMask using the subsequent equation:

lam =
sum(CamMask == 1)

CamMask.size(0)× CamMask.size(1)
(94)

The combined batch mixedinput is derived by computing the following from input
input1 and input2:

mixedinput = input1 × CamMask + input2 × (1− CamMask) (95)

Finally, the model’s total loss is determined as:

l = criterion(logits, target1)× lam + criterion(logits, target2)× (1− lam), . (96)

where, logits = model
(
mixedinput

)
.

PLGAN [191], an acronym for Pseudo-labeling Generative Adversarial Networks, was
pioneered by Mao et al. [191] and combines pseudo-labeling [192], GANs [193], Contrastive
Learning (CL) [194], and MixMatch [190]. Its training process comprises four steps: pre-
training, image generation, finetuning, and pseudo-labeling. First, using CL to extract
important image features, the feature layer of ResNet50 [195] is pre-trained. Next, by
creating images with random Gaussian noise, GANs are used in the image generation
stage to mimic the real distribution of labeled images [196]. The produced images are
then classified using the cross-entropy loss in the finetuning step, which improves the
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discriminator for classification. This model incorporates global and local classifiers using
two convolutional blocks for feature extraction. Lastly, in the pseudo-labeling step, the
MixMatch technique is utilized. To increase the dataset, the trained generator sets up more
unlabeled samples, which are subsequently added to the initial dataset. To create the full
set of pseudo-labels, pseudo-labels are made for both the generated and true samples. Four
loss functions total, one for each step, make up the overall loss function. The infoNCE
loss [197] for CL and the reconstruction loss to keep the CL pattern from collapsing are
the loss functions for the first step. The least squares loss is used in the second step. The
loss in the semi-supervised finetuning step is an amalgam of unsupervised and supervised
cross-entropy losses. Finally, the MixMatch loss function is used in the fourth step.

The model’s performance was assessed using a dataset of retinal degeneration classifi-
cation optical coherence tomography (OCT) [198] images, where each sample is classified
into one of four groups (three disease labels and one ordinary label).

Deep virtual adversarial self-training with consistency regularization [199] combines
adversarial training [200] with consistency regularization [201] in a deep virtual self-
training framework. Self-training involves iterative generation of labels for unlabeled
samples using the model itself. To improve the labeled training set, only labels with the
highest probability above a predetermined threshold were maintained. Both the labeled
and unlabeled samples were subjected to consistency regularization. To guarantee con-
sistency with the true labels, a small amount of augmentation was applied to the labeled
samples. To verify consistency with the pseudo-labels, soft augmentation is followed by
the generation of pseudo-labels for unlabeled samples, and then substantial augmentation.
With the goal of enhancing the model’s generalization and robustness, virtual adversarial
training was added. The supervised cross-entropy loss for labeled data, the regularization
loss for unlabeled data, and the virtual adversarial training loss applied to both labeled and
unlabeled data make up the weighted sum of the model’s loss function, which is expressed
as follows:

L = ls + α ·lr + β ·lvat (97)

where α and β = weighting coefficients.
TNCB [202], proposed by Aixi et al. [202], introduced a tri-net model to tackle class

imbalance in medical image classification, integrating regular-rebalancing learning and
an adaptive balancer to mitigate the prediction bias arising from imbalanced datasets. In
a class C classification scenario, the labeled dataset is shown as DL =

{(
xi, yi)}N

i−1, and

the unlabeled dataset is DU =
{(

Ui)}M
i−1, where xi stands for a medical image that has

been labeled, yi for the corresponding ground-truth label, and N and M for the counts of
the labeled and unlabeled images, respectively. In the TNCM dual-student-single-teacher
setup, both ‘Student1’ and ‘Student2’ networks share identical architectures, comprising
an encoder and a classifier. Labeled data in the ‘Student1’ network underwent processing
using the regular sampler SP, involving an encoder fP parameterized by ΘP and a classifier
gP parameterized by ΦP. The steady supervised loss for labeled images within a regular
sampled batch B is defined as:

Lpsup =
B

∑
i−1

H
(

yi
P, pi

P

)
, with pi

P = gP

(
fP

(
xi

P, ΘP

)
, ΦP

)
(98)

where B denotes the batch size and p(·) represents the cross-entropy loss function defined
as H

(
yi

P, pi
P
)
= −yi

Plog pi
P. A rebalancing sampler Sn is used by the ‘Student2’ on the

labeled dataset. By adjusting the probability of sampling each class in accordance with its
sample size, this sampler makes sure that classes with smaller sample sizes have a higher
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chance of being chosen. In the event that Kc represents the quantity of images for class c,
the rebalancing sampling probability Pc for that class c can be written as:

Pc =
(1/Kc)

υ

∑C
c−1(1/Kc)

υ (99)

parameter υ controls the sampling frequency. Essentially, a higher υ increases the probability
of the sampling class c. Consequently, a batch of labeled images

{(
xi

n, yi
n
)}B

i−1 is selected,
and ‘Student2’ undergoes rebalancing supervision training. Therefore, the rebalancing
supervised loss is:

𝓁nsup =
B

∑
i−1

H
(

yi
n, pi

n

)
, with pi

n = gn

(
fn

(
xi

n, Θn

)
, Φn

)
(100)

The teacher network consisted of a balanced classifier gt and balanced encoder ft,
which operated as a self-ensemble of the two student networks. To be more precise, the
EMA of the parameters from both student networks was used to continuously update
the weight parameters (encoder: Θt, classifier: Φt) of the teacher model. As a result,
during training, the teacher model dynamically changes alongside the dual-student model.
Formally, the teacher’s weight parameters are updated in the current training steps s based
on the following equation

Θs+1
t = λΘs

t + (1− λ)
(

ω(s) ·Θs
p + (1−ω(s) ·Θs

n)
)

, Φs+1
t = λΦs

t + (1− λ)(ω(s)·
Φs

p + (1−ω(s) ·Φs
n))

(101)

where the decision advantages are adaptively scaled using ω(s), a dynamic parameter, and
λ stands for the momentum coefficient. The model guides the current-step student with
the help of a current-step teacher who adjusts to the student’s state from the previous step,
which is a notable finding. A suggested approach allows the model to learn from a “virtual
future”, but it depends on multilevel updates and virtual updates of a sizable amount
of unlabeled data [203]. Initially, the s-step teacher model is updated before the updated
teacher Θ̃s

t , Φ̃s
t is prioritized for optimization using the labeled data. The dual-student

network’s labeled images
(
xi, yi) are mixed using a mixup operator M, directly from

regularly rebalanced sampled batches.

Mς

(
xi

p, xi
n

)
= ςxi

p + (1− ς)xi
n (102)

xi
Mix =

(
xi

p, xi
n

)
and yi

Mix =
(

yi
p, yi

n

)
(103)

where ς ∼ Beta(a, a) follows the beta distribution [185]. Subsequently, the mixed images
from each batch were fed into the teacher model for virtual optimization. The virtual
supervised loss is given by:

Lvirtual =
B

∑
i−1

(
yi

Mix, gt

(
ft

(
xi

Mix, Θs
t

)
Φs

t

))
(104)

The final optimized teacher model for TNCB is as follows:

Θ̃s
t = Θs

t − α∇Θt Lvirtual and Φ̃s
t = Φs

t − β∇Φt
Lvirtual . (105)

4.7. Advantages and Disadvantages of DSSL Approaches

DSSL frameworks have significantly impacted various domains by offering a variety
of techniques for learning unlabeled data features and tackling complex pattern classi-
fication tasks. This section delves into the advantages and challenges associated with
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these architectures, acknowledging their importance in enhancing the application of DSSL
models, especially in the challenging area of medical image processing, as depicted in
Table 3.

Table 3. Advantages and disadvantages of DSSL methods.

Methods Advantages Disadvantages

Consistency
Regularization

• Effective mitigation of challenges with dual models
(Temporal Ensembling)

• Model diversity and memory optimization (Dual-decoder models)
• Introduction of perturbations for robustness (Mean Teacher

and derivatives)

• Need for control over perturbation intensity
(Mean Teacher)

• Inadequate perturbations cause ‘lazy
student’ issues

• Risk of widening performance gap due to
excessive perturbations

Deep Adversarial

• Diverse design and functionality of core components (generator,
encoder, discriminator, classifier)

• Evolutionary progression among Semi-GAN models
• Incorporation of additional information for enhanced output

diversity and realism
• Performance enhancement through integration of local

information and consistency regularization
• Enhanced flexibility and adaptability with the introduction of an

Encoder module (CycleGAN)
• Utilization of VAE architecture for effective management of latent

variables and label information (Semi-supervised VAE)
• Framework integration and enhancement for improved overall

performance (Bayesian VAE)

• Increased complexity of implementation
and understanding

• Potential overfitting due to
complex architectures

• Higher computational demands for training
and inference

• Challenges in interpreting complex models
• Dependency on significant amounts of

labeled data

Pseudo-Labeling
• Enhances quality of pseudo-labels (Self-training)
• Produces accurate and dependable outcomes (co-training)
• Consistency in model structure (co-training)

• Potential performance reduction due to
shared parameters (co-training)

• Dependency on different initialization
techniques (co-training)

Graph-Based
• Effective label inferences on generated similarity graphs
• Integration of topological and feature knowledge

• Complexity in implementing and
understanding graph-based models

• Computational demands for processing large
graphs and label propagation

Multi-Label
• Prevalence of inductive-based and transudative-based methods
• Potential for performance enhancement with deep models
• Customized model architectures tailored for multi-label tasks

• Reliance on primary CNNs and autoencoders
• Need for further exploration of

other techniques

Hybrid

• Impressive results on diverse benchmark datasets
• Effectiveness of hybrid methods like MixMatch
• Integration of self-supervised learning methodologies with

data augmentation

• Increased complexity due to the integration
of multiple learning paradigms

• Increased risk of overfitting if not properly
regularized or if data is limited

• Potential difficulty in generalizing to unseen
data or different domains

• Risk of bias if models are trained on
biased datasets

Regarding Section 4.1 consistency regularization, achieving competitive results is often
challenging because of single networks’ simplistic parameter update mechanisms and the
instability associated with serial training. On the other hand, Temporal Ensembling with
dual models tends to mitigate these issues effectively. Dual-decoder models are crucial for
maintaining model diversity while optimizing GPU memory usage. Furthermore, different
perturbations are introduced to the training data by methods like the Mean Teacher and
its derivatives, emphasizing the necessity of controlling the perturbation intensity. Inade-
quate changes may lead to the ‘lazy student’ phenomenon [204,205], causing significant
fluctuations in the learning model. On the contrary, excessive image perturbations have
the potential to exacerbate the disparity in performance between teachers and students,
which could lower students’ motivation to learn and negatively impact their ability to
classify objects.

The semi-GAN methods discussed earlier differ in the design and functionality of
their core components, such as generators, encoders, discriminators, and classifiers. In
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Section 4.2, we discuss the evolutionary progression observed in the semi-GAN models.
DCGAN [100] and SSAC-GAN [105] extended the foundational GAN by incorporating
additional information, such as category data and painted images. Bi-modality GAN [107]
and Optimized GAN [112] build upon the Improved GAN [206] by integrating local
information and consistency regularization, respectively. An encoder module is introduced
by CycleGAN [114] to learn an inference model during training. Reflecting its name, the
Semi-supervised VAE adopts the VAE architecture to tackle SSL challenges with the M2
framework [207] as its base structure. VAE-GAN [120] and VAE-Forecast [121], which
expand upon M2, introduce additional auxiliary variables, each serving distinct roles in
their respective models. Bayesian VAE [126] combines elements from various VAE models
to improve overall framework performance. The effective management of latent variables
and label information is crucial for the success of these approaches in semi-supervised
settings, where many labels are unobserved.

Improving pseudo-label quality is the main goal of self-training (Section 4.3). Co-
training, on the other hand, is based on a number of independent data features and
produces results that are more reliable and accurate. Co-training models typically use
distinct initialization strategies but share the same structure. Co-trained networks may
perform worse if their parameters are the same since they have different optimization
objectives and gradient descent directions. Section 4.4 uses Graph-based DSSL models to
conduct label inferences on a generated similarity graph. This integrates both topological
and feature knowledge, allowing label information to be extended from labeled to unlabeled
samples. So far, in the discipline of multi-label scenarios (Section 4.5), inductive-based and
transductive-based methods remain prevalent. Although some recent initiatives [53] have
attempted to leverage deep models to enhance performance, they often rely on primary
CNN and autoencoders. There is potential to devise more customized model architectures,
specifically for multi-label tasks. In addition, exploring other techniques holds promise for
further advancement in this area.

Hybrid techniques in Section 4.6 have achieved impressive results on diverse bench-
mark datasets like MoNuSeg, Ki-67, ILD, ISIC2018, BRUS, OCT, Chest X-ray, and Brain
Tumor MRI, where MixMatch [190] is a fundamental framework. These hybrid methods
effectively minimize entropy while ensuring alignment with conventional regularization
methods. Recent self-supervised learning methodologies have integrated data augmenta-
tion to fully leverage the benefits of consistency training frameworks in both consistency
regularization and hybrid approaches.

5. Comparative Analysis and Discussion
5.1. Datasets

In this review, we selected a broader range of datasets to assess the deep semi-
supervised medical image classification methods. Table 4 presents widely used datasets
covering important human body organs, including the brain, mammogram, chest, and
foot, as well as a variety of modalities, such as optical coherence tomography (OCT),
dermoscopy, histopathology, ultrasound, and X-ray images. Furthermore, the table pro-
vides dataset sizes and links for reference. Table 5 reveals methods that are easy to im-
plement, provide effective feature representation, and are popular concerning datasets.
Semi-supervised techniques are widely applied to a variety of medical image datasets,
mainly in different dimensions. MR and CT classifications of body cavities and brain
organs or lesions are examples of semi-supervised methods that are frequently used with
3D images [105,152,208,209]. There are two main reasons why some semi-supervised tech-
niques work better with 2D data in particular situations. To begin with, some datasets, e.g.,
the ones containing dermoscopy images [210], endoscope images [211], histopathological
images [212,213], and X-rays [92,214], do not have 3D attributes. Second, to tackle difficult
issues that usually demand more training, semi-supervision is frequently combined with
other tasks. It can worsen memory overhead and processing time when applied to 3D
images, as demonstrated by multimodal semi-supervised approaches [215] and domain
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adaptation [216]. Although 3D image classification offers the advantage of utilizing more
contextual information, it entails addressing challenges with data-enhancement process-
ing and memory usage. On its counterpart, 2D images offer a greater variety and more
adaptable augmentation techniques than 3D images.

Table 4. A quick overview of datasets for medical image classification.

Organ Dataset Modality Scale Link

Brain MICCAI [217] MRI 600 (https://www.med.upenn.edu/sbia/brats2018/data.html)

PLung

CheXpert [78] Radiographs 224,316 (https://stanfordmlgroup.github.io/competitions/chexpert/)

ChestX-ray14 [218] Radiographs 30,805 (https://www.v7labs.com/open-datasets/chestx-ray14)

LIDC-IDRI [219] CT 1018 (https://wiki.cancerimagingarchive.net/pages/viewpage.
action?pageId=1966254)

TianChi [220] CT 800 (https://tianchi.aliyun.com/competition/entrance/231601)

Breast

CBIS-DDSM [221] DICOM 2620 (https://wiki.cancerimagingarchive.net/pages/viewpage.
action?pageId=22516629)

Ki-67 [222] Histopathological 4599 (https://wiki.cancerimagingarchive.net/pages/viewpage.
action?pageId=93257945)

Skin ISIC2018 [223] RGB 807 (https://challenge.isic-archive.com/data/)

Retina
ACRIMA [224] Fundus 705 (https://figshare.com/s/c2d31f850af14c5b5232)

Messidor [225] OCT 1200 (https://www.adcis.net/en/third-party/messidor/)

Colon Colorectal Cancer [226] Histopathological 630 (https://www.iccr-cancer.org/datasets/published-datasets/
digestive-tract/colorectal/)

Hip DDH [227] Radiographs 354 (https://data.mendeley.com/datasets/jf3pv98m9g/2)

Bladder Tumor (TURBT) [228] Endoscope 1754 (https://zenodo.org/records/7741476)

Foot
Knee (MRNet) [229] MRI 1370 (https://stanfordmlgroup.github.io/competitions/mrnet/)

DFUC_2021 [169] RGB 15,683 (https://dfu-2021.grand-challenge.org/Dataset/)

RNA miRNAs [230] Histopathological 15,183 (https://dianalab.e-ce.uth.gr/mited/#/)

Multi-Organ MoNuSeg [231] Histopathological 30 (https://monuseg.grand-challenge.org/Data/)

Table 5. Comparative analysis of deep semi-supervised methods based on utilized medical image
datasets of reviewed studies.

Dataset 2D/3D Consistency
Regularization

Deep
Adversarial

Pseudo-
Labeling Graph-Based Multi-Label Hybrid

MICCAI [217] 2D, 3D ✓
LIDC-IDRI [219] 2D, 3D ✓ ✓ ✓ ✓
TianChi [220] 2D, 3D ✓ ✓✓
Ki-67 [222] 2D, 3D ✓
Tumor (TURBT) [228] 2D, 3D ✓
CheXpert [78] 2D ✓✓ ✓ ✓ ✓✓
ChestX-ray14 [218] 2D ✓✓✓ ✓ ✓✓
CBIS-DDSM [221] 2D ✓ ✓ ✓
ISIC2018 [223] 2D ✓✓ ✓ ✓ ✓ ✓✓
ACRIMA [224] 2D ✓ ✓
Messidor [225] 2D ✓ ✓ ✓✓
Colorectal Cancer [226] 2D ✓ ✓
DDH [227] 2D ✓
DFUC_2021 [169] 2D ✓
MoNuSeg [231] 2D ✓
Knee (MRNet) [229] 3D ✓
miRNAs [230] 3D ✓

Note: “✓” denotes single use of the dataset; “✓✓”, or “✓✓✓” denotes multiple use of the dataset in the
particular methods.

From Table 5, it is evident that the LIDC-IDRI [219], CheXpert [226], ChestX-ray14 [227],
and ISIC2018 [208] datasets were frequently utilized by the analyzed methodologies, partic-
ularly those employing consistency regularization, deep adversarial, and hybrid methods.
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https://stanfordmlgroup.github.io/competitions/chexpert/
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https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=22516629
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=22516629
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=93257945
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=93257945
https://challenge.isic-archive.com/data/
https://figshare.com/s/c2d31f850af14c5b5232
https://www.adcis.net/en/third-party/messidor/
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Consistency regularization [74] techniques are favored because of their straightforward im-
plementation, extensive incorporation of auxiliary tasks, and aptness in extracting beneficial
feature representations from unlabeled data by ensuring consistency across additional tasks.
Although uncertainty guidance maps can mitigate potential biases in teacher models and
encourage student models to acquire more reliable knowledge, their use entails significant
computational overhead and complexity. On the other hand, Adversarial training [99,232]
can align the prediction distribution of unlabeled data with that of labeled data, thereby
facilitating the efficient utilization of unlabeled samples. In addition, Hybrid training [184]
methodologies utilize the strengths of various deep semi-supervised learning techniques,
thereby providing unique architectures and promising avenues for further advancements
in diverse medical imaging tasks.

5.2. Experimental Analysis

As far as we know, no prior study has established a unified benchmark for evaluating
deep semi-supervised medical image classification algorithms across various lesions, or-
gans, and tissues using the same dataset. Thus, this study aimed to fill this gap by selecting
representative methods and assessing them using widely used datasets. The experimental
outcomes for the two chest X-ray datasets, CheXpert [78] and ChestX-ray14 [218], were
obtained using the available open-source code for the selected methods and compared
with published study results. Furthermore, the results for the ISIC2018 [223] dataset were
compiled from studies that reported the performances of different techniques. Performance
evaluation was conducted using two commonly employed classification metrics: accuracy,
AUC-ROC, and F1 score.

5.2.1. Experiments on CheXpert and ChestX-ray14 Datasets

The CheXpert [78] dataset, which comprises 224,316 chest radiographs from 65,240 pa-
tients with 14 categories labeled as positive, negative, or uncertain, was utilized in our
classification experiment. Specifically, we selected 4576 positive and 167,407 negative ob-
servations for pneumonia from these categories [78,233]. Similarly, the ChestX-ray14 [218]
dataset, with 112,120 X-ray images from 30,805 patients and multiple labels for nine dif-
ferent diseases, was used to select 1431 positive and 334 negative pneumonia observa-
tions [147,233]. Following the semi-supervised learning protocol, we set the ratio of the
labeled data in the training dataset to 10% and 20% [29,214,234–237]. The experiments
were conducted using TensorFlow 2.8 on a system equipped with a Windows 10 operat-
ing system and an Nvidia RTX 3080 graphics card for training. The initial learning rate
LRate was set to 0.001, and the learning rate was adjusted for each epoch m using the
formula: β = LRate × (1−m/max_m)0.9. The maximum number of iterations was capped
at 5000 and the weight decay was fixed at 1 × 10−4. Random images sized 320 × 320 pixels
were chosen for training, and ResNet50 [218] served as the backbone network for all the
methods. The experimental results are presented in Table 6.

Based on the observations in Table 6, it can be concluded that single models, such as
MAVEN [117], generally underperform compared with multi-model approaches, such as
NoTeacher [97] and S2MTS2 [95]. This disparity is primarily due to the inherent limita-
tions of single-classification networks, particularly when there is an insufficient number
of labeled images available. Consequently, single models may produce suboptimal out-
comes. However, employing multiple models for collaborative training can lead to more
robust generalization. It is worth noting that SRC-MT [92], which is classified as a sin-
gle model, demonstrates performance on par with that of multiple models, including
pyramid consistency regularization, which ensures consistent results across various post-
interpolation scales.

For multi-type models, NoTeacher techniques [97] demonstrated a slightly inferior per-
formance compared to the self-training approach [140]. This discrepancy arises because the
SRC-MT model [92] updates its parameters using EMA, resulting in a significant parameter
correlation. Consequently, errors in the teacher model can lead to instability in the outputs
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of the student model. In contrast, the self-training method employs a single model to itera-
tively refine predictions, starting with a small labeled dataset and progressively integrating
unlabeled data by assigning pseudo-labels based on current predictions. Furthermore,
enhancements such as transformation consistency [163], uncertainty perception [92], dis-
criminators [112], and auxiliary tasks [107] can further improve the performance of the
baseline [218].

Table 6. Comparison of performance matrices between published and accomplished review study
using DSSL classification methods on the CheXpert and ChestX-ray14 datasets.

Methods Reference
Metrics form Published Articles

Proposed Study Metrics

10% Proportion 20% Proportion

Acc (%) AUC (%) F1 (%) Acc (%) AUC (%) F1 (%) Acc (%) AUC (%) F1 (%)

Consistency Regularization

Baseline ResNet50 [218] - 66.40 - 67.51 69.84 66.70 74.49 81.06 80.49

Temporal Ensemble Unsupervised VAE [79] - 65.81 - - - - - - -

Mean Teacher
SRC-MT [92] 91.04 92.27 58.61 93.13 92.89 85.01 96.56 94.12 87.84
S2MTS2 [95] - 82.50 - - - - - - -
NoTeacher [97] - 78.87 - - - - - - -

Deep Adversarial

GAN
BiModality SS-GAN [107] - - - 82.67 79.03 80.32 88.45 86.01 83.79
Uncertainty-Guided [112] 79.49 69.75 80.69 - - - - - -
CycleGAN [114] - - - - - - - - -

VAE
MAVEN [117] 52.57 - - 63.85 60.89 61.22 65.77 63.07 63.62
SVAEMDA [121] - - - - - - - - -
SCAN [126] - - - 67.39 61.05 63.81 73.56 74.08 70.67

Pseudo-Labeling

Self-Training ACPL [43] - 94.36 62.23 87.16 90.3 64.54 94.01 94.69 69.53
Meta Pseudo-Label [140] 85.92 - - - - - - - -

Graph-Based

AutoEncoder
GraphXNET V1.0 [146] - 62.12 - 68.30 64.51 67.08 72.84 69.09 71.02
GraphXNET V2.0 [146] - 76.14 - 77.56 78.16 75.16 82.43 89.38 86.70

GNN-Based
Label Propagation [152] - - - - - - - - -
SS-HGCN [153] - - - 82.37 85.61 80.73 88.09 91.79 90.37

Multi-Label

Inductive MSML [163] 95.72 - - 90.43 91.19 88.01 96.07 94.03 93.23

Transductive
MCG-Net [177] - - - 87.27 85.04 81.49 89.48 88.76 84.22
MCGS-Net [177] - - - 91.54 92.06 89.88 93.01 94.97 93.06

Hybrid

CamMix [189] - 95.34 - 93.08 92.03 88.54 96.02 97.37 94.89
PLGAN [191] 97.50 - - - - - - - -
Deep Virtual Adversarial
CR [199] - - - 93.02 92.79 89.09 95.21 98.02 93.27

TNCB [202] 96.24 99.23 - 91.06 92.37 89.26 97.08 99.69 94.22

Our analysis of the experimental results revealed significant differences when compar-
ing the outcomes with 20% labeled data to those with 10% labeled data. These disparities
were particularly pronounced in the F1 score, emphasizing the significance of the propor-
tion of labeled data. Increasing the labeled data improves the model performance and
stabilizes it. Furthermore, these fluctuations highlight the limitations of specific approaches,
such as multilabel [177] and aggregation perception [153], which may depend heavily on
better network initialization.

The transition from supervised to semi-supervised learning involves the development
of a more robust model with fewer labeled samples. Our comparison of the experimental
performance with the current ResNet50 [218] baselines indicates that incorporating unla-
beled data can significantly enhance supervised learning results. However, a gap remained
between the F1 score achieved by the fully supervised baseline (80.49%) and those of the
semi-supervised methods.
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5.2.2. Experiments on ISIC2018 Dataset

Codella et al. [238] provided a detailed overview of the ISIC2018 dataset [223], which
comprised 2594 images, including 2076 for training and 518 for testing. To facilitate the
assessment, the training set was divided into 20% of the labeled data. The dataset was
used to evaluate various deep semi-supervised medical image classification approaches,
which were categorized and classified based on their performance assessments, as shown
in Table 7 presents the results. It is evident that semi-supervised classification methods
using the ISIC2018 dataset [223] have significantly improved in recent years. Models that
employ consistency regularization are frequently utilized, and some have achieved an
optimal performance.

Table 7. Comparison of performance matrices between published studies and accomplished review
study using DSSL classification methods on the ISIC2018 dataset.

Methods Reference
Metrics form Published Articles

Proposed Study Metrics

10% Proportion 20% Proportion

Acc (%) AUC (%) F1 (%) Acc (%) AUC (%) F1 (%) Acc (%) AUC (%) F1 (%)

Consistency Regularization

Baseline ResNet50 [239] 89.28 - 81.28 83.43 85.88 76.04 90.03 91.83 81.71

Temporal Ensemble Unsupervised VAE [79] - - - - - - - - -

Mean Teacher
SRC-MT [92] 92.54 93.58 60.68 89.20 87.91 57.03 89.04 91.37 60.49
S2MTS2 [95] - 94.71 62.67 - - - - - -

Deep Adversarial

GAN
BiModality SS-GAN [107] - - - 89.17 91.10 79.83 91.24 92.63 78.09
Uncertainty-Guided [112] 94.27 96.04 69.97 - - - - - -

VAE
MAVEN [117] 82.12 - - 80.52 81.37 71.02 83.45 86.07 76.03
SCAN [126] - - - 80.83 82.33 71.87 83.59 87.29 76.71

Pseudo-Labeling

Co-Training COAL [129] - - - - - - - - -

Self-Training ACPL [43] - 74.44 - 69.49 71.05 62.03 73.11 75.07 63.98

Graph-Based

AutoEncoder
GraphXNET V1.0 [146] - - - 73.44 71.63 65.93 81.27 73.26 74.92
GraphXNET V2.0 [146] - - - 77.29 73.57 68.39 81.29 77.29 78.73
SS-HGCN [153] - - - 88.05 83.99 77.84 88.70 84.31 79.47

Multi-Label

Inductive MSML [163] - - - 87.74 84.54 78.46 89.28 87.16 81.28

Transductive
MCG-Net [177] - - - 72.30 69.17 66.05 79.95 74.44 68.94
MCGS-Net [177] 81.36 - 72.07 78.25 73.64 68.02 83.79 79.60 74.40

Hybrid

CamMix [189] - 94.04 - 82.60 78.00 65.80 85.41 81.60 76.30
Deep Virtual Adversarial
CR [199] - - - 86.60 84.70 79.19 92.62 87.50 81.01

TNCB [202] 95.94 96.14 - 88.89 90.78 79.27 92.20 92.32 92.98

During the training process, contrastive learning is often unstable, leading to its com-
bination with other consistency regularization constraints to align unlabeled samples more
closely with the distribution of labeled samples. In the domain of deep semi-supervised
learning, GAN-based methods [47,149] have garnered considerable attention, utilized
their unique advantages, and demonstrated performances that are on par with those of
recent studies. The TNCB (Tri-Net) method [202] achieves optimal results across three
metrics by employing regular-rebalancing learning and an adaptive balancer within a dual-
student-single-teacher framework to guide semi-supervised mechanical image classification
training. Adaptive balancer learning is further strengthened by integrating the two types
of balancing techniques [239], resulting in an exceptional classification performance.

When comparing the two fully supervised baselines, it is worth noting that the semi-
supervised classification approaches using 20% labeled data on the ISIC2018 dataset out-
performed the fully supervised performance (F1 score of TNCB [202]). This could be
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attributed to two factors. First, the ISIC2018 dataset [223] is relatively less complex to clas-
sify than datasets such as CheXpert [78] and ChestX-ray14 [218]. Second, the instabilities
encountered during training occasionally result in scenarios in which the semi-supervised
performance surpasses that of the fully supervised learning.

6. Discussion on Challenges and Future Directions

Although substantial progress has been achieved through DSSL, there were several
unanswered research questions that still warrant further investigation. In the following,
we outline some of these open questions and potential avenues for exploration.

Theoretical Analysis. Presently available semi-supervised methods mainly use un-
labeled samples to impose constraints, and then update the model with labelled data.
However, there is still more to learn about the inner workings of DSSL and the effectiveness
of different approaches, such as loss functions, training approaches, and data augmen-
tation. To balance the supervised and unsupervised losses, a single weight is usually
assigned, with an equal amount of importance given to each unlabeled instance. However,
in practical situations, not all unlabeled data have the same significance for the model.
To address this concern, Ren et al. [240] explored the possibility of assigning different
weights to each unlabeled example. For consistency regularization, SSL [241] delves into
the connection between the loss geometry and the training process. In order to better
understand the limitations and association of these approaches, Zoph et al. [242] carried
out experimental investigations into the effects of data augmentation and labeled dataset
size on pretraining and self-training. Additionally, Ghosh and Thiery [243] explore the
features of consistency regularization techniques when data instances are positioned close
to low-dimensional manifolds, particularly in relation to effective data augmentation or
perturbation techniques.

Incorporating Domain Knowledge. The drawbacks of limited data can be addressed
by incorporating domain-specific knowledge, which also enhances the interpretability
and generalizability of models [244]. However, acquiring and utilizing medical domain
knowledge presents several challenges. First, knowledge is intricate and subject to uncer-
tainty, which is influenced by individual differences. Second, using domain knowledge
for reasoning still presents challenges due to gaps in our understanding and the com-
prehensibility of deep learning techniques. When it comes to image data, leveraging
inherent prior knowledge within medical images, such as spatial constraints [245] and
anatomical priors [246,247], offers a promising approach. Additionally, considering the
multimodal nature of medical data, complementary information from other modalities can
enhance analysis. However, semi-supervised learning with multimodal data faces hurdles,
including missing modalities [248], intermodal class imbalances [249], and heterogeneous
multimodal data [248].

Effective Learning. A prevalent strategy in advanced contemporary methods entails
consistent training on extensive unlabeled datasets while preserving the unaltered model’s
predictions. This approach was demonstrated by VAdD [67] and VAT [232], which utilized
adversarial training to identify optimal adversarial examples. Another promising direction
is data augmentation, which comprises techniques such as adding noise or random pertur-
bations, including Hide-And-Seek [250], CutOut [251], GridMask [252], and RandomEras-
ing [253]. Specifically, advanced data augmentation methods, such as AutoAugment [254],
RandAugment [255], and Mixup [185], also function as a form of regularization.

Learning for Different Modalities. In order to obtain accuracy, conventional mod-
els typically employ the use of labeled data and a standard cross-entropy loss function.
However, the presence of noisy initial labels in community-labeled samples may introduce
errors in the training dataset. Augmenting the prediction objective consistently to guar-
antee comparable predictions for comparable inputs is one possible way to deal with this
problem [41]. Another innovative approach is to use a fresh L1-norm formulation of Lapla-
cian regularization within a graph SSL, drawing inspiration from sparse coding [256]. Class
imbalance is a common issue in real-world contexts, where many SSL approaches assume
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a uniformly distributed training dataset across all class labels. However, recent research
efforts have focused on addressing class imbalance in by synchronizing pseudo-labels
toward the desired class distribution in unlabeled data [257] or using graph-based SSL to
manage various degrees of class imbalance [258]. Contemporary techniques frequently use
consistency training on enhanced unlabeled data to boost output without changing the
model’s predictions. While unlabeled data have the potential to enhance learning under
specific conditions, empirical studies have shown that it can also degrade performance
under certain circumstances [259–261]. Therefore, the need for convenient semi-supervised
learning techniques is increasing in order to safeguard performance when working with
unlabeled data.

7. Conclusions

Recent developments in deep semi-supervised learning (DSSL) have drawn a lot of
curiosity from researchers because of their possible real-world uses. Due to the broad
success of deep learning approaches, advanced DSSL techniques have been developed
and are currently becoming progressively more prevalent in the field of medical image
classification. In this work, we provide an extensive overview of the different deep semi-
supervised techniques applied to medical image classification. We also discuss possible
directions concerning this discipline’s future research. Given the enormous potential of
deep learning deployment and the growing prevalence of using unlabeled data to address
medical challenges, we predict that deep semi-supervised methods for medical image
classification will soon line up with the performance of supervised methods, even with
complex datasets. The purpose of this review is to serve as a useful tool for medical image
processing researchers and to encourage future advancements in the field.
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DSSL Deep Semi-Supervised Learning
AI Artificial Intelligence
SIFT Scale-Invariant Feature Transform
CNN Convolutional Neural Network
SSL Semi-Supervised Learning
SL Supervised Learning
EM Expectation Maximization
GAN Generative Adversarial Networks
VAE Variational Auto-Encoders
JS Jensen-Shannon
MSE Mean Squared Error
KL Kullback-Leibler
UKSSL Underlying Knowledge-based Semi-Supervised Learning
MedCLR Contrastive Learning of Medical Visual Representations
LTrans Light Transformer
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MSA Multi-Head Self-Attention
MLP Multi-Layer Perceptron
EMA Exponential Moving Average
SRC Sample Relation Consistency
S2MTS2 Mean Teacher for Self-supervised and Semi-supervised Learning
NoT NoTeacher
SSAC Semi-supervised Adversarial Classification
GAP Global Average Pooling
PET Positron Emission Tomography
MRI Magnetic Resonance Imaging
SPECT Single Photon Emission Computed Tomography
CS Clinically Significant
ELBO Evidence Lower Bound
DTFD-MIL Double-Tier Feature Distillation Multiple Instance Learning
MIMS Multi-Instance Multi-Scale
WSI Whole Slide Image
CDSI Cross-Distribution Sample Informativeness
GMM Gaussian Mixture Model
KNN K-Nearest Neighbor
ASP Anchor Set Purification
CE Cross-Entropy
GSSL Graph-Based Semi-Supervised Learning
Semi-Supervised HGCN Semi-Supervised Hypergraph Convolutional Network
CRC Classifying Colorectal Cancer
HGNN Hypergraph Neural Network
DNNs Deep Neural Networks
BCE Binary Cross-Entropy
SSMLL Semi-Supervised Multi-Label Learning
MSML Multi-Symptom Multi-Label
SSAL Semi-Supervised Active Learning
AL Active Learning
LC Least Confidence
MLE Multi-label Entropy
MLM Multi-Label Margin
DFUs Diabetic Foot Ulcers
SVD Singular Value Decomposition
MLRF Multi-Label Relative Feature
GCN Graph Convolutional Network
AU Aleatoric Uncertainty
LP Label Propagation
PLGAN Pseudo-Labeling Generative Adversarial Networks
CL Contrastive Learning
OCT Optical Coherence Tomography
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