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Abstract: Synthesis of bioinks for bioprinting of respiratory tissue requires considerations related
to immunogenicity, mechanical properties, printability, and cellular compatibility. Biomaterials
can be tailored to provide the appropriate combination of these properties through the synergy of
materials with individual pros and cons. Sodium alginate, a water-soluble polymer derived from
seaweed, is a cheap yet printable biomaterial with good structural properties; however, it lacks
physiological relevance and cell binding sites. Collagen, a common component in the extra cellular
matrix of many tissues, is expensive and lacks printability; however, it is highly biocompatible and
exhibits sites for cellular binding. This paper presents our study on the synthesis of bioinks from
alginate and collagen for use in bioprinting respiratory tissue models. Bioinks were synthesized from
40 mg/mL (4%) alginate and 3 mg/mL (0.3%) collagen in varying ratios (1:0, 4:1, 3:1, 2:1, and 1:1);
then examined in terms of rheological properties, printability, compressive, and tensile properties and
cellular compatibility. The results illustrate that the ratio of alginate to collagen has a profound impact
on bioink performance and that, among the examined ratios, the 3:1 ratio is the most appropriate for
use in bioprinting respiratory tissue scaffolds.

Keywords: bioink; sodium alginate; collagen; bioprinting

1. Introduction

Bioinks for bioprinting are formulations of biomaterials with bioactive components
such as cells and/or growth factors which are playing an important role in the field of tissue
engineering [1,2]. For this, the biomaterial must support cell attachment, proliferation, and
migration and, in some cases, direct cellular differentiation, while lacking immunogenicity.
From the mechanical point of view, an optimal biomaterial must also exhibit properties
similar to those of the native tissue being mimicked or regenerated while also degrading at
a controlled rate that matches the rate of cellular in-growth and extracellular matrix (ECM)
production. Further, for use in bioprinting, the selected biomaterial must exhibit a high
degree of printability which is influenced by rheological properties such as viscosity and
shear-thinning behavior, as well as what crosslinking methods the material is compatible
with [1,2]. Balancing all these requirements makes the development of biomaterial for
bioprinting an extremely challenging process, forming one of the bottlenecks in the field of
bioprinting for tissue engineering to date [3]. Combinations of hydrogel materials have
been shown to exhibit a balance of these properties that allow for their use in a wide
range of tissue engineering and bioprinting applications, with physiological relevance
being increased with the number of different biomaterials combined; however, many
biomaterials are expensive, which often becomes a limiting factor to the complexity of
fabricated bioinks [4–7].
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Alginate, also known as sodium alginate, or alginic acid, is a water-soluble polymer
derived from seaweed [2,8]. As a natural polymer, alginate demonstrates limited immuno-
genicity and is biocompatible; however, it lacks cell adhesion motifs which limits its ability
to be used as a biomaterial without addition of other components or other chemical modifi-
cations [9]. Due to its compatibility with ionic crosslinking, and shear-thinning behavior,
alginate has been widely used in bioprinting applications, as relatively low pressures may
be utilized for extrusion reducing cell death through process-induced forces, while also
undergoing rapid crosslinking when printed into ionic solutions such as CaCl2, which
allows for a high degree of printability and maintained structure fidelity over extended
culture periods [10]. For example, alginate and its composites have been used in bioprinting
applications spanning soft, cardiac, and bone tissues [11–13]. Collagens, of which there
are over 20 different types, are one of the most abundant natural proteins in the body [4].
Consisting of self-aggregating polypeptide chains held together by hydrogen and covalent
bonding, collagen displays a high degree of receptors for cell attachment and adhesion,
and demonstrates high biocompatibility. Type 1 collagen has been used extensively in
tissue engineering applications due to its physiological relevance as a structural compo-
nent in tissues including respiratory, vascular, cartilage, and skin tissues, among many
others [14]. Collagen is often an addition to composite bioinks as it is one of the primary
ECM components in the human body (accounting for ~30% of the total body protein count).
Indeed, it has been illustrated that the addition of collagen to bioinks helps support and
direct natural cellular activities including cell adhesion, migration, structural stability,
and tissue repair [14,15]. While collagen hydrogels can be formed though dissolution in
slightly acidic solutions, and collagen can be crosslinked through control over pH and
temperature, scaffolds predominantly fabricated from collagen exhibit poor printability
and mechanical stability [16,17]. While collagen materials can be chemically modified to be
photo-crosslinkable, it is common to combine collagen materials with other biomaterials in
order to improve printability and structural fidelity [14–19].

Development of bioinks for use in respiratory tissue engineering (RTE) and bioprint-
ing requires a bioink that mimics respiratory tissue, which is relatively soft, exhibiting
stiffness values ranging from 0.44–0.75 kPA, and elastic moduli around 5–30 kPa, while
also containing physiologically relevant components and exhibiting an acceptable degree
of printability [20]. As type 1 collagen is the primary component of native respiratory
tissue, development of collagen-based biomaterials is a promising direction of research [14].
Due to the expensive nature of collagen, as well as its lack of printability and mechanical
stability, a composite hydrogel from collagen and other complementary materials should
be used to synthesize the RTE bioinks. The complementary properties of alginate and
collagen make them prime candidates for development of an optimized bioink for use in
bioprinting respiratory tissue scaffolds [16]. Alginate and collagen have previously been
combined to form inks for cartilage, cardiac, and angiogenic applications [16,21–23].

In this study, 4% alginate and 0.3% collagen solutions were combined in ratios in-
cluding 1:0, 1:1, 2:1, 3:1, and 4:1 alginate: collagen under the hypothesis that materials
with higher alginate concentrations would exhibit a greater degree of printability and
mechanical strength, while materials with a greater collagen content would demonstrate
greater cell viability and proliferation. Rheological studies, compression tests, tensile tests,
and cell proliferation studies were all carried out to characterize the bioinks. All results
were considered in terms of what would be optimal for RTE, such as the bioink exhibiting
a high degree of printability, moderate mechanical properties similar to that of native lung
tissue, and a high degree of cell viability.

2. Materials and Methods
2.1. Materials

Sodium alginate (medium viscosity, molecular weight~200 Kd., 180947), calcium chlo-
ride dihydrate (223506), cell proliferation reagent WST-1 (SKU5015944001), and ethylenedi-
aminetetraacetic acid tetrasodium salt (EDTA) (E6511) were purchased from Sigma-Aldrich
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(St. Louis, MO, USA), while Type 1 bovine methacrylated collagen (PhotoCol Methacrylated
Collagen, 9007-34-5) was purchased from Advanced Biomatrix (Carlsbad, CA, USA).

2.2. Bioink Synthesis

Sodium alginate (4% (w/v)) solution was prepared through dissolution of alginate
powder in magnetically stirred phosphate-buffered saline (PBS) at room temperature. The
solution was stirred until all powder was dissolved and a homogeneous solution was
formed (~4 h). Stock collagen solution was formed through addition of 38 µL of 1.0 mol/L
acetic acid solution to 33 mL distilled water. Then, 100 mg of collagen was added to the
acidic solution and stirred until dissolved (~2 h). Then, the prepared 3 mg/mL collagen
solution was added to the alginate solution to form the desired ratio (1:1, 2:1, 3:1, or 4:1
alginate: collagen) at room temperature. Then, 1.0 mol/L NaOH solution was added
dropwise while stirring to neutralize the solution (pH = 7–7.4). Prepared solutions were
refrigerated until use. All solutions were prepared twice to provide technical replicates.

2.3. Rheological Properties

Rheological characterization was completed using an RVDV-X rheometer (Brookfield
Engineering Labs Inc., Middleborough, MA, USA). Briefly, 2 mL of prepared uncrosslinked
bioink was pipetted gently into the gap between the rheometer plate and cone, with a
0.5◦ geometry. Samples were set over 2 min to release any residual stress and reach the
preset temperature prior to testing. Rheological properties and temperature dependence
were investigated through shear stress sweep tests from 10–500 rad/s first at temperatures
of 25 ◦C, 35 ◦C, and 45 ◦C. The Herschel–Bulkley rheological fluid-flow model was fit to
each composition for analysis using MATLAB R2023A (Equation (1)).

τ = τ0 + k
.
yn, (1)

where τ is shear stress (Pa), τ0 is yield stress, k is the consistency index (Pa·sn),
.
y is shear

rate (s−1), and n is a dimensionless constant indicating the flow index. The determination of
temperature dependence and rheological properties was later used to inform the selection
of printing parameters including printing head speed, printing pressure, and temperature
of the printing bed and nozzle. All studies were carried out in triplicate.

2.4. Printability

Initial printing parameters (printing head speed and printing pressure) were selected
and modified as required to obtain a well-defined extrusion printed structure using a
GeSiM mbH BioScaffolder 3.2 outfitted with a 27-gauge needle (0.21 mm inner diameter)
at 25 ◦C. Two-layer 10 × 10 mm constructs were printed from each material composition
while printing pressure and printing head speed were varied. A designed strand diameter
equal to the dimension of the inner diameter of the extrusion needle used (0.21 mm) and
a strand spacing of 1.0 mm were selected. Printed constructs were then imaged with
strand diameter and strand spacing, among other printed dimensions being measured
and recorded.

While the materials were evaluated for how closely they were able to meet the design
criteria, the major goal was to select printing speeds and pressures for each material that
provided the most similitude between scaffolds printed from each material. Therefore,
printability was assessed in terms of selecting parameters for each material to obtain a
consistent scaffold with strand diameters of 400 µm as this was a more feasible strand
diameter to obtain with the alginate/collagen materials without using a smaller needle
size that would cause significant cell damage during extrusion. Scaffolds were printed into
a 50 mM CaCl2 crosslinking solution and crosslinked overnight before imaging to allow
for consistent swelling effects. Compositions with acceptable printability and mechanical
properties were then used for tensile testing and biocompatibility studies.
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2.5. Compression Testing

Bulk material specimens were prepared and used for compression testing using a
BOSE BioDynamic 5010 Mechanical Tester (20 N load cell capacity), Bose Corporation,
Framingham, MA, USA. Briefly, each material was poured into a cylindrical mold with a
diameter of 10 mm and immersed in 100 mM CaCl2 crosslinking solution. Molds remained
immersed in the crosslinking solution until homogeneous crosslinking of the bulk con-
structs had been achieved (~48 h). The cylindrical bulk specimens were then removed from
the mold, and sectioned into discs with a height of 5 mm for final cylindrical sample di-
mensions of 10 mm by 5 mm. Each specimen was measured and exact height and diameter
were recorded. Specimens (n = 6) were then compressed at a rate of 0.01 mm/s to a max
compression of 2 mm to ensure the safety of the load cell. The height and diameter of each
specimen after compression were then measured. These static compression tests were used
to determine the influence of alginate/collagen ratio on the bulk compressive modulus,
and modulus of resilience.

2.6. Tensile Testing

Specimens were designed based on previous studies [24], for tensile testing of printed
hydrogel constructs. Briefly, 3 mm tall cylindrical scaffolds with a diameter of 9 mm were
printed with 1 mm strand spacing on all but the top two layers. The top two layers were
printed with a strand spacing of 0.27 mm to form a solid surface. These samples were
fabricated using the optimal printing parameters found in the printability study in order
to print highly similar scaffolds from each material. Scaffolds were then crosslinked for
24 h in 50 mM CaCl2. Constructs (n = 6) underwent tensile testing with a crosshead speed
of 50 µm/s to a maximum displacement of 5 mm using a previously developed tensile
testing apparatus [24]. These settings were selected due to previous studies determining
that they are optimal for consistency of results using this apparatus. Displacement and
force measurements were collected and converted to stress–strain curves which were then
used to determine Young’s modulus and ultimate tensile strength (UTS).

2.7. Cellular Viability

Biocompatibility of the various inks was assessed through incorporation of human
pulmonary lung fibroblasts (HPFs) (cryopreserved, C12360, LOT #446Z031), isolated from
healthy human respiratory tissue, purchased from PromoCell (Heidelberg, Germany) into
the bulk materials. Each material was loaded with 2 × 106 primary human pulmonary
fibroblasts per mL, and 100 µL of a specified material was pipetted into each well of a
96-well plate with one row (n = 12) for each material of interest. Crosslinker (50 mM CaCl2)
was added to each well and left for 20 min before it was removed and replaced with cell
culture media (Fibroblast Growth Media 2, PromoCell). The plates were cultured in an
incubator (37 ◦C, 5% CO2), with a plate removed after 1, 3, 5, 7, 10, and 14 days. The
cell-containing material was then dissolved with EDTA. The plates were centrifuged and
the EDTA was removed and replaced with PBS. WST-1 was then added and the plates
were incubated for 1 h before absorbance measurements were taken using a BioRad xMark
microplate spectrophotometer (Bio-Rad, Hercules, CA, USA) at a wavelength of 440 nm.

2.8. Statistical Analysis

Statistical analysis was carried out using SPSS 28 statistical analysis software. Non-
parametric independent samples Kruskal–Wallis tests with pairwise comparisons were
utilized for the mechanical studies, with p < 0.05 considered significant, while general
linear modeling with univariate analysis of variance (ANOVA) was used for analysis of the
cellular viability and proliferation results, with p < 0.05 considered significant.
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3. Results
3.1. Rheological Properties

Solutions of 1:1, 2:1, 3:1, 4:1, and 1:0 alginate: collagen underwent rheological testing
to help inform the selection of printing parameters (Figure 1).
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Figure 1. Comparison of rheological flow properties of 4% alginate, 4:1 alginate: collagen, 3:1 alginate:
collagen, 2:1 alginate: collagen, and 1:1 alginate: collagen when undergoing a shear rate sweep from
10 to 500 rad/s at 25 ◦C.

As shown in Figure 1, viscosity decreases with an increased ratio of collagen solution,
with pure 4% alginate demonstrating significantly more viscous behavior, and the 1:1 ratio
demonstrating the lowest viscosity. Table 1 demonstrates the values obtained from fitting
the Herschel–Bulkley fluid model to the rheological data.

Table 1. Herschel–Bulkley fluid-flow model constants and goodness of fit analysis at 25 ◦C (* indicates
significant differences from other materials at p < 0.01).

Material τ0 K n R2 RMSE

4% Alginate 1 × 10−6 ± 1 × 10−6 17.5 ± 7.3 * 0.8 ± 0.1 0.99 39.8
4:1 Alginate: Collagen 6 × 10−3 ± 3 × 10−3 2.7 ± 1.4 0.8 ± 0.1 1.00 2.8
3:1 Alginate: Collagen 6.7 ± 7.5 3.4 ± 1.4 0.8 ± 0.1 1.00 3.2
2:1 Alginate: Collagen 1 × 10−2 ± 1 × 10−3 2.9 ± 0.9 0.8 ± 0.1 1.00 3.5
1:1 Alginate: Collagen 6.4 ± 9.0 2.7 ± 2.0 0.7 ± 0.1 1.00 2.6

Abbreviations: τ0 (yield stress), K (consistency index), n (flow behavior index), R2 (coefficient of determination),
RMSE (root-mean-square deviation).

In many cases, the value of τ0 was negligible or insignificant. All materials demon-
strated shear-thinning behavior (n < 1) and were well characterized by the Herschel–Bulkley
or power law models as indicated by an R2 of 0.99 or higher. While the consistency index
(K) of all solutions containing collagen were quite similar, the 4% alginate material had a
significantly higher consistency index value.

Viscosity dependence on temperature for each material was then analyzed through
shear stress sweeps at temperatures of 25, 35, and 45 ◦C (Figure 2). In general, viscosity
decreased with increasing temperature, as expected, due to the thermal sensitivity of
both alginate and collagen, with thermal crosslinking being one of the primary means of
stabilizing collagen solutions [14]. The Herschel–Bulkley constant values can be found in
Supplementary Table S1. The 1:1 ratio did not have a high enough viscosity to increase
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torque beyond 10%, which is the accuracy limit of the equipment used; therefore, further
rheological data for the 1:1 alginate: collagen material are not reported here.
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3.2. Printability

As can be seen in Figure 3, scaffolds were successfully printed from all materials
with the exception of the 1:1 alginate: collagen solution. Although strands with printed
diameters around 400 µm could be printed from the 1:1 material (Table 2), due to its low
viscosity, the consistency of structurally stable strands was limited, leading to many gaps
in the scaffold, and this limited the ability to form consistent multilayer constructs. Due
to this, the 1:1 ratio was removed from consideration. In all other materials, consistent
porosity and strand diameters were achieved.

Printing optimization determined that use of a 200 µm needle was suitable for 4%
alginate and 4:1 alginate: collagen; however, the fast speed required for printing the 4:1 ratio
material with the 200 µm needle begin to cause disruptive movement in the crosslinking
media. Therefore, instead of increasing print speed further, a smaller diameter needle
(150 µm) was used for all less-viscous ratio solutions. It was found that by adjusting
the print speed and pressure for each material, consistent strands with diameters around
400 µm could be obtained.

Table 2. Optimal printing parameters for each material to obtain strand diameters around 400 µm.

Material Pressure (kPa) Speed (mm/s) Needle Diameter (µm) Printed Strand Diameter (µm)

4% Alginate 10 24 200 412.4 ± 17.3
4:1 Alginate: Collagen 10 47 200 406.9 ± 18.5
3:1 Alginate: Collagen 10 8 150 394.6 ± 21.5
2:1 Alginate: Collagen 9 10 150 400.3 ± 24.3
1:1 Alginate: Collagen 8 10 150 399.5 ± 27.8
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3.3. Compression Testing

Figure 4 demonstrates a representative stress–strain curve obtained from the force
displacement data obtained through compression testing.
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As demonstrated in Figure 5 and recorded in Table 3, as collagen concentration
increases, the compressive modulus decreases, with very large decreases being seen moving
from 4% alginate to 4:1 alginate: collagen, as well as between 3:1 alginate: collagen and 2:1
alginate: collagen.
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Table 3. Compressive modulus of the various material ratios.

Material Static Compressive Modulus (kPa)

4% Alginate 310 ± 23
4:1 Alginate: Collagen 143 ± 20
3:1 Alginate: Collagen 79 ± 20
2:1 Alginate: Collagen 31 ± 17
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3.4. Tensile Testing

Stress–strain curves were calculated from the obtained force–displacement data. A
representative stress–strain curve can be seen in Figure 6.
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From the stress–strain curves obtained, Young’s modulus and ultimate tensile strength
were obtained. It should be noted that these tensile tests are characterizing the bond
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strength between printed layers, not the strength of a bulk material. These values are
summarized in Table 4 and Figures 7 and 8.

Table 4. Tensile properties of the various material ratios.

Material Young’s Modulus (kPa) Ultimate Tensile Strength (kPa)

4% Alginate 24.3 ± 0.6 5.93 ± 0.06
4:1 Alginate: Collagen 23.5 ± 1.4 5.92 ± 0.06
3:1 Alginate: Collagen 24.9 ± 0.6 6.16 ± 0.03
2:1 Alginate: Collagen 27.6 ± 2.2 5.53 ± 0.46
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Interestingly, the tensile mechanical properties of the various ratio materials did not
follow the decreasing trend that was found in the compressive studies; in fact, there was
no statistically significant difference in either Young’s modulus or UTS for all materials
(p < 0.05). It was also found that the yield point of the tested scaffolds was at a very similar
stress to the UTS, as can be seen in the stress–strain curve.

3.5. Cellular Viability

From Figure 9, there was an initial decrease in live cell population from Day 1 to 3
before cell proliferation picked up. Both the 1:1 ratio and 4% alginate materials demon-
strated a decrease in cell viability after Day 7 and Day 10, respectively, while the 3:1 and
2:1 materials demonstrated a consistent increase in cell viability after Day 5. The cell-only
wells did demonstrate a significantly greater cell viability and appeared to reach confluency
around Day 10, likely due to a lack of change in the culture environment, compared to
encapsulating cells needing to remodel their new environment for preferable cell growth
conditions [2].
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4. Discussion

While alginate and collagen composite bioinks have been used throughout the field of
tissue engineering, few studies have been reported characterizing alginate and collagen
composite materials in depth, and no studies have utilized the exact same ratios of materials.
Although this makes direct comparisons with the literature challenging, general trends can
be seen, including good mechanical stability and a high degree of biocompatibility [25–27].
Furthermore, our study illustrates the promise of this composite bioink for application
in RTE.

Based on the Herschel–Bulkley fluid model, it could be seen that increasing the ratio of
collagen solution to alginate led to a decrease in viscosity, with a 1:1 ratio leading to a very
low viscosity material. However, all material solutions demonstrated shear-thinning behav-
ior (n < 1) which is optimal for bioprinting due to the reduced force required for extrusion.
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o values were minimal, the power law fluid-flow model would also be an
accurate model to describe the flow behavior of alginate/collagen materials. Viscosity of
each material could also be seen to generally decrease with increased temperature. The
determined variation in viscosity with both collagen concentration and temperature was
then used to inform the selection of starting printing parameters for each material, and a
consistent printing temperature of 25 ◦C. In the literature, the development of an injectable
alginate/collagen composite has been reported, with the results demonstrating similar
trends in both alginate-concentration dependance [28] and temperature dependence [29].

Printability characterization was carried out by varying both printing pressure and
speed for each material, in order to form consistent dimensions. A goal strand diameter
of 400 µm was selected as it allowed the printing of multilayer (10+) scaffolds with good
structural fidelity. While strands with diameters more similar to the inner diameter of
the needles used (200 µm or 150 µm) could be formed by further increasing the print
speed and decreasing print pressure, it was found that there were often more breaks or
inconsistencies in the strands printed in these conditions. This form of strand breakage
was very common in the 1:1 ratio material even at settings leading to strand diameters
around 400 µm, making it unsuitable for printing larger multilayer structures which led
to its removal from consideration from further experiments. Suitable settings were found
for all other remaining materials and these settings were then utilized for all further
printing, with printability assessments carried out at various stages through printing to
ensure the maintenance of similar-diameter strands over a printing period. By maintaining
consistent strand diameters between the different ratio materials, the connection area
between strand layers and overall volume of material was able to be kept consistent in
order to allow for direct comparison of mechanical properties of each material. While using
different concentrations of their base alginate and collagen solutions, results published in
the literature have also found that higher alginate concentrations tend to lead to improved
printability, which is caused by the increased speed of ionic crosslinking of alginate in
comparison to the crosslinking mechanisms that are compatible with collagen [21,25,30].

Compressive properties of each bulk material were assessed, with the compressive
moduli decreasing with increasing concentration of the collagen solution. As the structural
stability of the material is reliant upon the ionic crosslinking of the alginate solution, this
trend is expected. However, in contrast, tensile testing of 3D printed scaffolds from each
material demonstrated an increase in tensile properties moving from the 4% alginate
material to the 3:1 ratio solution, while there was no significant difference in Young’s
modulus. As these measured tensile properties are heavily dependent on scaffold layer
bonding rather than the bulk material properties, bonding between strands with lower
alginate concentrations could be greater due to a reduced rate and/or a lesser degree of
ionic crosslinking leading to strands being less solidified by the time the next layer is
printed on top. More studies would be required to confirm this hypothesis; however, it
is also possible that collagen fibers, aligned by printing, may also provide strength when
placed under tensile stress, with this ability being compromised once the main alginate
structure becomes too weak to provide a stable frame. Other studies on the mechanical
properties of alginate/collagen bioinks have also found increases in the tensile properties
of alginate ink with the addition of collagen, as well as a similar increase in compressive
properties, which might be attributed to the compact and interconnected 3D network
formed through the addition of collagen [21].

As native lung tissue has stiffness values ranging from 0.44–0.75 kPA [20], and elastic
moduli around 5–30 kPa, an optimal biomaterial would exhibit properties within these
ranges, with middle range values preferred for mimicry of the native bronchioles. While
the measured Young’s modulus fit into the upper range, the ultimate tensile strength was
much greater than that of native lung tissue. However, as it is expected that the mechanical
properties of these materials would degrade over time, alginate/collagen solutions appear
to provide a good starting point, as materials with less ultimate tensile strength would be
extremely difficult to handle without damaging.
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While the cell viability results show that using cells in culture media results in greater
cellular proliferation over a 14-day period than cells encapsulated in the biomaterials,
significant cellular proliferation can be seen in all the biomaterials after a short adaption
period. This biomaterial encapsulation also likely slows cell growth and proliferation as it
lessens the free movement of waste and nutrients to and from cells [2]. Over the period
of 14 days, materials with higher alginate concentrations (4% alginate, and the 4:1 ratio)
begin to show a decrease in cellular viability, while the 3:1 and 2:1 ratios demonstrate
sustained growth. Previous studies have shown that an increase in collagen in proportion
to alginate in alginate/collagen composite hydrogels tends to exhibit a greater degree of
cellular viability due to the greater number of cell-binding ligands [25–27]. The 1:1 ratio,
tested here to determine if the lesser viscosity is more favorable, also demonstrated lesser
cell viability and proliferation over the 14-day time period, though this is likely due to loss
of cell-containing material due to a lack of mechanical stability. The delay in increasing
cell viability seen in this study appears to be similar to other studies utilizing similar
materials, where significant increases are not immediately seen [26,27,29]. This is likely
due to cells acclimating to their encapsulating environment, which necessitates remodeling
of the environment before cell growth is promoted.

5. Conclusions

Bioink synthesis is one key in the 3D printing of tissues as the biomaterial must sup-
port cell attachment and proliferation, exhibit mechanical properties similar to the targeted
tissue, and have a high degree of printability in order to form consistent printed structures.
Sodium alginate is a very commonly utilized biomaterial due to its cost, biocompatibility,
printability, and structural fidelity, while collagen is commonly used as it is the most com-
mon natural occurring component in ECM, providing cell attachment motifs and increasing
physiological relevance. In the present study, we synthesized bioink from 4% alginate and
3 mg/mL collagen in ratios of 4:1, 3:1, 2:1, and 1:1, respectively, and then characterized these
bioinks in terms of rheological properties, printability, compressive and tensile properties,
and cellular compatibility. Our results demonstrated that all bioinks with exception of the
1:1 ratio had acceptable printability, compressive, and tensile properties, and that the 3:1
and 2:1 ratios exhibited improved cellular proliferation. Due to the similitude in mechanical
properties and biocompatibility of the bioinks with 2:1 and 3:1 ratios, the selection of the
optimal material came down to cost. As collagen is a very expensive material, the bioink
with a ratio of 3:1 ratio was determined to be the preferred bioink out of the tested materials
for further development of 3D bioprinted lung tissue models.
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