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Abstract: The hospital environment is increasingly becoming an important reservoir for multi-drug-
resistant (MDR) Gram-negative bacteria, posing serious challenges to efforts to combat antimicrobial
resistance (AMR). This study aimed to investigate the role of hospital waste as a potential source of
MDR ESBL-producing bacteria. Samples were collected from multiple sources within a hospital and
its vicinity, including surface swabs, houseflies, and sewage samples. The samples were subsequently
processed in a microbiology laboratory to identify potential pathogenic bacteria and confirmed using
MALDI-TOF MS. Bacteria were isolated from 87% of samples, with the predominant isolates being
E. coli (30.5%), Klebsiella spp. (12.4%), Providencia spp. (12.4%), and Proteus spp. (11.9%). According to
the double disc synergy test (DDST) analysis, nearly half (49.2%) of the bacteria were identified as
ESBL producers. However, despite exhibiting complete resistance to beta-lactam antibiotics, 11.8% of
them did not test positive for ESBL production. The characterization of E. coli revealed that 30.6%
and 5.6% of them carried blaCTX-M group 1 type-15 and blaNDM genes, respectively. This finding
emphasizes the importance of proper hospital sanitation and waste management practices to mitigate
the spread of AMR within the healthcare setting and safeguard the health of both patients and the
wider community.
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1. Introduction

Multi-drug-resistant (MDR) bacteria, which produce both extended spectrum beta-
lactamase (ESBL) and carbapenemase, pose a significant and persistent global health
threat [1]. This phenomenon has resulted in increased rates of morbidity, mortality, and
escalated healthcare expenditures [1,2]. The presence of these bacteria in healthcare facili-
ties and their surroundings further exacerbates the problem [3]. Contaminated surfaces,
hospital sewage, and other environmental factors within the hospital have been identified
as potential reservoirs and sources of MDR bacteria due to their close proximity to patients
and healthcare workers. Furthermore, houseflies have the potential to mechanically trans-
mit MDR bacteria to both patients and the wider community [3–5]. In resource-limited
settings like Ethiopia, where healthcare infrastructure and waste management systems are
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suboptimal, the risk posed by hospital waste as a reservoir for MDR bacteria is becoming a
pressing concern [1,6].

Hospital sewage serves as a conduit for the disposal of various waste materials, in-
cluding fecal matter, biological wastes, biopsy specimens, clinical sample leftovers, and
discarded medical supplies, potentially carrying a myriad of pathogenic bacteria [7,8]. Such
sewage can contain MDR bacteria originating from infected or colonized patients, making
them a reservoir for the spread of drug-resistant strains within the hospital and to the
community [8]. The complex microbial niche in sewage provides opportunities for gene
transfer and genetic recombination, facilitating the acquisition and spread of resistance
determinants among bacteria [9,10]. Hospital environments, particularly those with inad-
equate sanitation and waste management practices, can attract houseflies, increasing the
risk of MDR bacteria being disseminated by these insects [6,11]. They can carry bacteria
on their body surfaces and within their digestive systems, facilitating their dissemination
from contaminated sources to other locations [11,12].

Previous studies conducted in the same study area have reported a high prevalence of
ESBL-producing bacteria and carbapenem-resistant strains among Gram-negative bacteria
isolated from clinical samples [13–17]. The prevalence rates for ESBL producers range from
50 to 80%, while carbapenem-resistant strains range from 10 to 20% [13–17]. Notably, ESBL
production is commonly observed in bacteria such as E. coli, K. pneumoniae, K. variicola, E.
cloacae, and many others [14,15,17]. Similarly, the emergence of carbapenem resistance is
frequently detected in Gram-negative bacteria such as A. baumannii, P. aeruginosa, E. coli,
and K. pneumoniae [16,17]. These resistant strains have been associated with healthcare-
associated infections, posing a serious threat to effective antimicrobial therapy [18]. As a
result, they contribute to increased morbidity, mortality, and healthcare costs [18,19].

Jimma Medical Center, located in Ethiopia, is a tertiary hospital that serves as a
referral center for the southwest region of the country and plays a crucial role in providing
essential healthcare services to a substantial population [20]. However, the potential
contribution of hospital waste to the spread of MDR bacteria in this setting remains poorly
understood. Therefore, understanding the dynamics and sources of MDR bacterial isolates
from hospital sewage, houseflies, and environmental samples provides valuable insights
into the prevalence, genetic characteristics, and potential transmission routes of drug-
resistant bacteria within healthcare settings and, more importantly, to the community.
Thus, based on the evidence, appropriate infection control measures can be implemented
to prevent their spread and reduce the burden of MDR infections. Therefore, this study
aimed to provide insights on potential reservoirs for MDR and ESBL-positive pathogenic
Gram-negative bacteria within the environment of Jimma Medical Center.

2. Results
2.1. Proportion of Bacterial Growth

The microbiological analysis revealed the presence of potential pathogenic bacteria
in samples obtained from houseflies, hospital rooms and medical device surface swabs,
and sewage samples. A total of 345 samples, including 111 surface swabs and 42 sewage
samples collected in 2019 and 192 housefly samples collected in 2021, were examined. The
overall isolation rate was 80.9% (95% CI: 77.2% to 84.6%), with a 100% isolation rate from
housefly and sewage samples. However, potentially pathogenic Gram-negative bacteria
were isolated from 40.5% (n = 45) of hospital rooms and medical device surface swab
samples (Figure 1).
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Figure 1. The proportion of aerobic bacterial growth obtained from housefly, sewage, and surface
swab samples.

2.2. Profile of Isolated Gram-Negative Bacteria

Further analysis of the bacterial isolates revealed a diverse range of species in surface
swabs, housefly, and sewage samples. A total of 37 different species of bacteria were
identified in housefly samples, while 23 species were isolated in sewage samples and
11 species in surface swabs. Among the housefly samples, Providencia species (20.7%) were
the most frequently isolated bacteria, followed by Proteus species (18.6%), E. coli (14.9%),
and Klebsiella species (11.2%). E. coli (60%), Aeromonas species (15.6%), and Acinetobacter
species (8.9%) were the predominant isolates in surface swabs. In sewage samples, E. coli
(52.1%), Klebsiella (19.1%), and Acinetobacter species (9.6%) were frequently identified.
However, it is noteworthy that MDR E. coli, Klebsiella, Acinetobacter, and Enterobacter species
were consistently isolated from all sample types. Despite the consistent presence of these
bacterial strains across all sample types, their prevalence and abundance varied (Table 1).

Table 1. The distribution of aerobic bacteria isolated from hospital rooms and medical device surface
swabs, housefly, and sewage samples at a tertiary hospital in Ethiopia.

Bacteria
Housefly Surface Swabs Sewage Total

n % n % n % n %

E. coli 32 29.6 27 25.0 49 45.4 108 30.4
Klebsiella species 24 54.5 2 4.5 18 40.9 44 12.4

Providencia species 44 100 - - - - 44 12.4
Proteus species 40 95.2 2 4.8 - - 42 11.8

Enterobacter species 16 69.6 1 4.3 6 26.1 23 6.5
Acinetobacter species 6 31.6 4 21.1 9 47.4 19 5.4

M. morganii 14 100 - - - - 14 3.9
Aeromonas species 1 NA 7 NA 2 NA 10 2.8
Kluyvera species 7 NA - - 2 NA 9 2.5
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Table 1. Cont.

Bacteria
Housefly Surface Swabs Sewage Total

n % n % n % n %

R. ornithinolytica 7 NA - - 2 NA 9 2.5
W. chitiniclastica 9 NA - - - - 9 2.5

C. freundii 5 NA - - - - 5 1.4
Pantoea species 2 NA - - 1 NA 3 0.8

P. gergoviae 1 NA - - 2 NA 3 0.8
E. hermannii 1 NA - - 1 NA 2 0.6

L. adecarboxylata 1 NA - - 1 NA 2 0.6
C. sakazakii - - - - 1 NA 1 0.3
E. fergusonii - - 1 NA - - 1 0.3
Hafnia alvei 1 NA - - - - 1 0.3

I. indica 1 NA - - - - 1 0.3
M. wisconsensis 1 NA - - - - 1 0.3
P. carotovorum 1 NA - - - - 1 0.3

P. putida 1 NA - - - - 1 0.3
Salmonella species - - 1 NA - - 1 0.3

S. maltophilia 1 NA - - - - 1 0.3
Total 216 60.8 45 12.7 94 26.5 355 100

Key: NA: not applicable, percentage was not calculated if the total number of bacterial isolates was less than 14.

2.3. Antibiotic Resistance Patterns

The results of the antibiotic susceptibility tests conducted on bacteria from all sample
types combined revealed a significant level of resistance to several antibiotics. Specifically, a
high rate of resistance was observed against cefuroxime, ampicillin, amoxicillin-clavulanic
acid, piperacillin, and cefotaxime, with 100%, 61%, 44%, 42.2%, and 41.1%, respectively.
Conversely, a low rate of resistance was observed against meropenem, amikacin, and
piperacillin-tazobactam, representing 3.1%, 3.1%, and 8.6%, respectively. Furthermore, the
double disc synergy test revealed that nearly half (49.2%) of the Gram-negative bacterial
isolates were ESBL producers. A high proportion of ESBLs was observed in species
such as Acinetobacter, Proteus, and Providencia, as indicated in Table 2. In general, an
alarming level of resistance, ranging from 30% (in gentamicin) to 61% (in ampicillin), was
observed to commonly used antibiotics, including beta-lactams, fluoroquinolones, and
aminoglycosides, in Gram-negative bacteria isolated from various environmental samples
of the medical center.

2.4. Molecular Epidemiology of ESBLs and Carbapenemase Expression in E. coli Strains

The findings of this study showed a high rate of ESBL- and carbapenemase-encoding
genes among E. coli strains obtained from surface swabs, housefly, and sewage samples.
A total of 66 E. coli strains were included in the analysis, and the presence of ESBL- and
carbapenemase-encoding genes was determined using DNA microarray technology. The
results revealed that 37.9% (n = 41) of the E. coli isolates exhibited at least one ESBL-
encoding gene, with the predominant variant being CTX-M group 1 type-15. Additionally,
5.6% (n = 6) of the E. coli isolates carried carbapenemase genes, solely blaNDM. Among
carbapenemase-encoding genes, five of them were found in housefly samples and the
remaining one gene was detected from a surface swab. Similarly, a high rate of ESBL genes
(43.9%) was detected in E. coli strains obtained from houseflies. However, 62.2% of the
blaTEM genes were found in E. coli strains obtained from sewage samples (Table 3).
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Table 2. The proportion of antibiotic-resistant Gram-negative bacteria obtained from surface swabs,
housefly, and sewage samples at a tertiary hospital in Ethiopia.

Antibiotics E. coli Klebsiella spp. Providencia spp. Proteus spp. Enterobacter spp. Acinetobacter spp. Ohers Total

AMP 73.1 100 86.4 81.0 95.7 100 91.3 61.0
PIP 65.7 100 61.4 59.5 60.9 IE 59.6 42.2

AMC 38 43.2 100 21.4 91.3 100 64.3 44.0
TZP 19.4 31.8 9.1 0 17.4 IE 17.0 8.6
CXM 100 100 - 100 - 100 100 100
CTX 34.3 50.0 65.9 64.3 69.6 100 44.6 41.1
CAZ 31.5 47.7 59.1 26.2 56.5 - 40.4 27.9
FEP 34.3 40.9 40.9 64.3 65.2 - 42.1 30.3
FOX 13.9 13.6 15.9 0 100 - 46.4 18.5

MEM 24.1 2.3 0 0 4.3 31.6 4.3 3.1
MXF 35.2 38.6 61.4 76.2 56.5 - 52.2 34.7
CIP 30.6 40.9 47.7 66.7 30.4 100 37.5 33.9
TM 20.4 31.8 34.1 66.7 47.8 47.4 42.6 29.7
GM 16.7 31.8 36.4 66.7 65.2 52.6 32.6 30.1
AN 1.9 2.3 0 4.8 8.7 5.3 8.5 3.1
SXT 43.5 47.7 61.4 71.4 56.5 57.9 50.0 38.7

ESBL 38.9 43.2 61.4 64.3 52.2 68.4 37.5 49.2

Key: AMP, ampicillin; AMC, amoxicillin/clavulanic acid; PIP, piperacillin; TZP, piperacillin-tazobactam; CXM,
cefuroxime; CTX, cefotaxime; CAZ, ceftazidime; FEP, cefepime; FOX, cefoxitin; MEM, meropenem; MXF, moxi-
floxacin; CIP, ciprofloxacin; GM, gentamicin; TM, tobramycin; AN, amikacin; SXT, sulfamethoxazole-trimethoprim;
ESBL, extended spectrum beta-lactamase; spp., species; IE, insufficient evidence; and “-”, no breakpoints. Only
resistant isolates were included in the proportion analysis, while intermediate and susceptible results were
excluded from the numerator. Additionally, rare bacterial isolates that do not have breakpoints in the EUCAST
guidelines were excluded from the denominator in AST analysis. The resistance patterns of specific bacterial
species are found in the Supplementary Table S1.

Table 3. Distribution of carbapenemase- and extended-spectrum-beta-lactamase-encoding genes of
Escherichia coli isolated from surface swab, sewage, and housefly samples at Jimma.

Types of Antimicrobial
Resistance Gene

Surface Swab
(n = 10)

Housefly
(n = 20)

Sewage
(n = 36)

Total

(n = 66) %

Carbapenemase encoding genes 1 5 0 6 5.6
NDM 1 5 0 6 5.6

ESBL encoding genes 8 18 15 41 37.9
CTX-M group 1 type-15 6 15 11 33 30.6
CTX-M group 1 type-9 2 0 2 3 2.7
CTX-M group 1, ND * 0 1 2 3 2.8

CTX-M group 1 type-15 + 9 0 2 0 2 1.8
AMPC encoding genes 3 2 1 6 5.6

CMY II (n = 11) 0 1 0 1 0.9
ACT/MIR (n = 10) 3 0 0 3 2.8

DHA (n = 5) 0 1 1 2 1.9
TEM/SHV encoding genes 3 11 23 37 34.3

blaTEM- (WT) (n = 144) 3 11 22 36 33.4
blaTEM-104K + 164C (n = 1) 0 0 1 1 0.9

Key: *—no specified CTX-M group-1, subtype enzymes.

3. Discussion

This study revealed that bacterial isolates were present in all sewage and housefly
samples, as well as in 40.5% of surface swabs. Although the proportion of bacteria detected
in surface swab samples was lower compared to housefly and sewage samples, it still
indicates a substantial presence of bacteria that could serve as potential sources of infections
within the healthcare facility. In our study, we identified a diverse range of antibiotic-
resistant bacterial isolates, including E. coli, Klebsiella spp., Providencia spp., Proteus spp.,
Enterobacter spp., Acinetobacter spp., Morganella morganii, and many others, in all categories
of samples. It is worth noting that a substantial proportion of these bacteria are known to
be pathogenic, or at least facultative pathogens, and have been associated with healthcare-
associated infections [21,22]. This emphasizes the potential role of the environment, as well
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as houseflies, in perpetuating the spread of MDR pathogens, not only among patients, but
to the wider community [6,23,24].

The microbiological analysis of surface swabs and sewage samples exhibited a wide
array of bacterial strains, including MDR ESBL strains. Therefore, sewage was only streaked
and analyzed with aerobic culture, so only the most prevalent aerobic Gram-negative
bacteria would be detected. The molecular characterization of E. coli strains from these
samples revealed the presence of acquired carbapenemase- and ESBL-encoding genes, such
as (blaNDM) (1), CTX-M group1 type-15 (17) and CTX-M group 1, ND (2), and blaTEM,
as well as AMPC-encoding genes, such as ACT/MIR and DHA (26). However, it is a
common practice at the hospital to release sewage into the nearby stream without proper
treatment. The high isolation rate of carbapenemase and ESBL bacterial strains in our
study makes this practice highly hazardous. Additionally, in the hospital rooms, the floors
are only mopped/cleaned twice daily with water and soap. In cases of suspected visible
contamination, a 5% sodium hypochlorite solution diluted in water is used for cleaning.
Such inadequate treatment and cleaning practices increase the risk of contamination for
patients, healthcare providers, and caregivers in the healthcare facility, as well as water
sources and the surrounding community [25–28]. In the community, transmission could
occur through direct contact with contaminated surfaces and water or indirectly through
animals that have direct contact with this contaminated water and environment [29].
The implications of this finding underscore the importance of implementing an effective
sewage treatment system and proper cleaning practices of the hospital rooms and medical
devices to mitigate the spread of MDR bacteria and minimize the risk of infections in
healthcare settings.

In this study, it was found that houseflies harbor a diverse range of bacteria, including
carbapenem-resistant strains and ESBL producers. Specifically, the analysis of E. coli strains
using DNA microarray technology revealed the presence of acquired blaNDM genes and
various ESBL-encoding genes in five and twenty E. coli strains, respectively. As a result,
houseflies have been recognized as potential vectors for the transmission of MDR bacteria
due to their attraction to waste areas such as open sewage systems, liquid and solid waste
disposal sites, waste bins, and poorly cleaned toilets [30]. These insects can carry bacteria
on their bodies and in their digestive systems, enabling them to spread pathogens from
contaminated sources like sewage or decaying organic matter to other surfaces, including
food, within a healthcare facility [30,31]. Moreover, houseflies can transport MDR bacteria
from the environment into healthcare settings or vice versa [32,33]. Hence, the detection of
MDR strains in the present study serves as a crucial warning, highlighting the necessity for
implementing specific hygiene precautions.

The resistance spectrum of identified bacterial strains, as well as the detected resistance-
encoding genes, was found to be similar to those observed in clinical samples from the
same area [17]. This highlights the potential risk of transmission and the challenges in
treating patients who acquire infections caused by these MDR bacteria transmitted through
the hospital environment [17,34,35]. Of particular concern is the presence of the acquired
blaNDM gene in this study, which encodes the New Delhi metallo-beta-lactamase and
confers resistance to many beta-lactam antibiotics, including carbapenems, the last-resort
antibiotics used to treat severe MDR bacterial infections [36]. It is worth noting that the
acquired blaNDM gene can be horizontally transferred to other bacteria in the environment,
further contributing to the dissemination of drug resistance [37–39]. Therefore, the high
prevalence of drug-resistant bacteria in these samples underscores the urgent need for
effective infection prevention and control strategies, including stringent hygiene practices
and proper waste management to minimize bacterial contamination in areas prone to
housefly infestation, such as toilets, sewage systems, waste bins, and the designated areas
for liquid and solid waste disposal in healthcare facilities.

This study has limitations that should be considered when interpreting these findings.
Firstly, it did not investigate the specific factors that contribute to the presence of MDR
bacteria in hospital waste, such as the duration and storage conditions of the waste or
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the impact of specific infection control practices. Understanding these factors could help
in identifying associated risk factors and developing appropriate waste management
strategies in the hospital. Secondly, this study did not thoroughly examine the extent of the
transmission risks posed by these samples, including the spread of drug-resistant bacteria
to patients within the hospital and the potential dissemination to the wider community.
However, we plan to perform phylogenetic analysis on these bacterial strains and compare
them to patient isolates [17]. Thirdly, we conducted molecular analysis to detect resistance-
encoding genes on the most prevalent species, E. coli only. As a result, this part of the
findings may not reflect the distribution of all resistance-encoding genes in other bacterial
clades obtained from surface swabs, houseflies, and sewage. Furthermore, sewage was not
analyzed using filtration and enrichment techniques. Thus, the real load of MDR bacteria
in sewage will be higher than described in this study once the sensitivity of isolation is
improved here. We made an intentional decision for this process to limit this study to the
most prevalent and most problematic isolates. In depth analysis of the sewage is beyond
the scope of this manuscript and is planned for future projects.

4. Materials and Methods
4.1. Description of the Hygiene Practice in Study Area

Hospital hygiene procedures at JMC include floor mopping/cleaning conducted twice
daily as part of routine tasks by janitors in the wards, waiting areas, and corridors. The
cleaning of windows and tiles is performed once a week. However, these cleaning activities
lacked specific protocols and typically involved the use of detergent-based products, soap,
or a diluted solution of 5% sodium hypochlorite (bleach) mixed with water at a ratio of 1:10.
The diluted bleach solution was mainly used in areas with frequent contamination within
the facility. The solid waste of the hospital is disposed of in open or closed waste bins
without undergoing proper treatment, such as autoclaving. Then, the waste is transported
to an incineration facility twice daily (morning and evening). It is stored there a day prior
to incineration and left open, which can lead to the attraction of houseflies (Figure S1).
Furthermore, the liquid waste and sewage system of the hospital are directly released into a
nearby stream without undergoing any treatment, such as chemical inactivation, filtration,
or UV irradiation, prior to discharge.

4.2. Study Design, Area, and Period

A cross-sectional study was conducted to assess the extent and distribution of MDR
ESBL pathogenic gram-negative bacteria on surfaces, sewage, and houseflies at JMC during
two specific periods: May to September 2019 and June to October 2021. To avoid bias,
neither the janitors nor the healthcare providers were informed about the environmental
sampling, which took place at random intervals during working days. Surface swab
samples were collected from various wards within JMC, including the intensive care units
(ICUs) and the operating theatres, as well as the recovery rooms. Additionally, the inpatient
units, such as the surgical, medical, gynecological, maternity, pediatric, and ophthalmology
wards, were sampled. Furthermore, sewage and housefly samples were collected from
different points within the hospital, encompassing patient care areas, wards, laboratories,
and waste disposal sites. It is important to note that these environmental sample collections
were conducted during periods when no known outbreaks caused by Gram-negative
bacteria were reported.

4.3. Sample Collection

The surfaces surrounding the patients’ rooms and medical devices were sampled via
swab. The following surfaces were chosen for sampling, if they were available for the
individual patient: IV stands, inpatient floors, chairs, room sinks, walls, surgical tables,
anesthesia tubes, forceps, chest tube sets, bedrails, bedside tables, toilet doorknobs, room
doorknobs, electricity buttons, and cupboard knobs. Sterile cotton swabs pre-moistened in
a sterile normal saline solution (0.9% NaCl) were used for sampling surfaces. At each site,
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an area of approximately 4 cm2 was swabbed in two directions at right angles to each other
in a close zigzag pattern, rotating the swab during sampling to ensure that the entire surface
of the swab was used according to the guidelines [40]. Sewage samples were collected by
spot sampling methods using a wide-mouth container directly from the manholes. A total
of 111 surface swabs and 42 sewage samples were collected. Using a single proportion
formula, 192 housefly samples from both dry and liquid waste disposal sites of the hospital
were included in this study. The sample size was calculated considering a 2.5% margin
of error, a 95% confidence level, and a 3.3% prevalence of ESBL-producing E. coli isolated
from fly samples reported in a previous study [41]. The houseflies were captured using
a sweeping net and dumped in one milliliter of sterile normal saline in separate sterile
glass test tubes. All samples were transported to the Core Research Laboratory of Jimma
University for analysis.

4.4. Bacteria Isolation

In the core research laboratory, the housefly external flora was collected by dipping
the housefly into a tube containing 1 mL of normal saline. Then, the housefly was briefly
vortexed inside the tube to detach the bacterial flora, and all the houseflies were discarded
thereafter. After this, 100 µL of the sample was inoculated on MacConkey agar. Similarly,
surface swabs and 100 µL sewage samples were also inoculated on MacConkey agar. All the
plates were then incubated aerobically at 37 ◦C for 16–18 h. After an overnight incubation,
the plates were inspected and if there was growth, separate colonies were selected and sub-
cultured again on MacConkey agar and incubated at the same environmental conditions
to get pure cultures. For the sewage samples, to purify them easily, different individual
colonies were selected from the third or fourth quadrant of the inoculated plate. These
selected colonies were then subcultured under similar environmental conditions. Once the
pure colony was obtained, they were saved with storage media containing skimmed milk,
glucose, glycerol, tryptone soya, and distilled water at −81 ◦C.

4.5. Bacterial Identification

All stored isolates were transported to the Medical Microbiology Laboratory in Munich,
Germany, and identified using matrix-assisted laser desorption ionization–time of flight
mass spectrometry (MALDI-TOF MS) (Bruker, Ettlingen, Germany).

4.6. Antibiotics Susceptibility Test

The antibiotic susceptibility testing was performed using the Kirby–Bauer disc dif-
fusion method for 16 antibiotics, namely ampicillin (10 µg), amoxicillin-clavulanic acid
(30 µg), amikacin (30 µg), ceftazidime (30 µg), ciprofloxacin (5 µg), cefotaxime (30 µg),
cefuroxime (30 µg), cefepime (30 µg), cefoxitin (30 µg), gentamicin (10 µg), meropenem
(10 µg), moxifloxacin (5 µg), piperacillin (100 µg), trimethoprim-sulfamethoxazole (1.25 +
23.75 µg), tobramycin (10 µg), and piperacillin-tazobactam (10 µg) (Bio-Rad, Feldkirchen,
Germany), and read using the ADAGIO 93400 automated system (Bio-Rad, Feldkirchen,
Germany). The readings were interpreted as resistant, intermediate (susceptible with in-
creased exposure), or susceptible according to the respective breakpoints for every organism
in the European Committee on Antimicrobial Susceptibility Testing [42].

4.7. Extended Spectrum β-Lactamase Detection

The phenotypic detection of ESBL production was performed for all Gram-negative
isolates by a double disc synergy test (DDST) using ceftazidime and cefotaxime with
amoxicillin-clavulanic acid (10 µg) on Mueller–Hinton agar [43].

4.8. DNA Extraction

All E. coli strains that showed ESBL features from DDST and/or were resistant to
cefotaxime, cefepime, cefoxitin, piperacillin-tazobactam, or meropenem in the Kirby–Bauer
disc diffusion antibiotic susceptibility tests were selected for genotyping. After overnight
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aerobic incubation on blood agar (Oxoid, Cambridge, UK) at 37 ◦C, three to five pure
colonies were taken with an inoculating loop and suspended in nuclease-free water and
extracted using a High Pure PCR template preparation kit (Roche, Mannheim, Germany)
following the manufacturer’s instructions. The quantity, purity, and concentration of
extracted DNA was measured by NanoDrop ND-100 (Thermo Fisher Scientific, Wilmington,
NC, USA).

4.9. Molecular Characterization of E. coli Strains

Check-MDR CT103XL DNA microarray kits (Wageningen, The Netherlands) were
used to detect and identify encoding genes for carbapenemase (IMP, VIM, KPC, NDM-1,
SPM, OXA-23 like, OXA-24 like, OXA-48 like, and OXA-58 like), AmpC-type β–lactamase
(ACC, ACT, CMY, DHA, FOX, MIR, and MOX), ESBL (cefotaximase-Munich (CTX-M
type)), GES, VER, PER, BEL, Temoneira β-lactamase (TEM), and sulfhydryl (SHV) variant
encoding genes using the DNA microarray technique [44].

4.10. Data Quality Assurance

To ensure the reliability of the data, quality control (QC) measures were implemented
throughout the entire laboratory process. Standard operating procedures (SOPs) were
followed during the pre-analytical, analytical, and post-analytical stages to ensure the
quality of the test results, thereby maintaining a high level of accuracy. Using DensiCHEK
plus (BioMérieux, Craponne, France), the inoculum density of bacterial suspensions was
standardized to 0.5 McFarland for all phenotypic antibiotic susceptibility tests. The Mueller–
Hinton agar plates (Bio-Rad, Feldkirchen, Germany) were evenly streaked and loaded with
antibiotic discs (Bio-Rad, Feldkirchen, Germany) according to the EUCAST guidelines [42].
Control strains of Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853 were
utilized to monitor the performance of antibiotic susceptibility tests.

4.11. Data Analysis

The data generated in the laboratory were entered into Epi-Data software version 4.6
and then analyzed using Microsoft Office 2016 Excel sheets and GraphPad Prism version
8.4.3. The findings were presented using descriptive measures, including tables, figures,
and percentages.

4.12. Ethical Consideration

Ethical clearance was obtained from the Ethical Review Board of Jimma University,
Institute of Health (protocol numbers: IHRPGO/495/2018 and IHRPGO/1087/21), and the
Ethics Committee of the Medical Faculty of Ludwig-Maximilians-Universität of Munich,
Germany (Opinion No: 21-0157).

5. Conclusions

The present study revealed a high rate of ESBL-producing Gram-negative bacteria
originating from patient surroundings and the hospital environment, including houseflies
caught in the hospital vicinity, as well as sewage samples. Moreover, the detection of
carbapenemase- and beta-lactamase-encoding genes was observed in E. coli strains, with
a predominant presence of blaNDM and blaCTX-M group 1, respectively. The isolation
rate of MDR bacteria from the houseflies was remarkable. Therefore, the implementation
of rigorous waste management and housefly control practices in and around healthcare
facilities is crucial to minimize the transmission of these resistant bacteria to patients and
the community at large. This includes the regular and thorough cleaning of surfaces and
medical devices, along with the proper segregation, handling, and disposal/inactivation
of hospital waste, particularly those with the potential for bacterial contamination. There
is also a dire need for proper sewage treatment, given the total absence, especially for
hospital wastewater.
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