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Abstract: With the rise of a new generation of low Earth orbit (LEO) satellite constellations and the
advancement of the 6G network, satellite–terrestrial integrated Internet of Things (IoT) in the future
will achieve global coverage through the integration of LEO constellation, and extend computing to
the edge of the network through the deployment of edge computing services in LEO constellation so
as to meet the demand of mass connection and low latency data processing. The LEO constellation
network of the future will be an edge cloud network combining network and computing. In this
paper, we propose a computation offloading strategy for the combined optimization of energy and
computational load in a LEO constellation edge cloud network (hereinafter referred to as LEO-ECN).
First, we establish the LEO-ECN system model, in which the user task can be offloaded to the
satellite through the multi-hop path. Then, a cost model considering energy consumption and load
calculation is proposed. Finally, a joint optimization problem to minimize energy consumption and
balance the LEO-ECN load is established, which is a convex optimization problem. The simulation
result demonstrates that, compared with the benchmark strategy, our proposed strategy has better
performance and can improve the computing resource utilization of LEO-ECN.

Keywords: LEO constellation; edge computing; computation offloading; joint optimization

1. Introduction

With the development of space technology, the cost of satellite manufacturing and
launch has been greatly reduced, and the second wave of low-orbit constellation construc-
tion has arrived [1]. New space companies, such as OneWeb, SpaceX, Telsat and others, are
ambitious to build low-orbit mega-constellations. SpaceX has laughed 1892 satellites [2]
in orbit as of November 2021. A large number of LEO satellites run in space and form
the satellite internet through inter-satellite links. LEO satellites act as data routing and
forwarding nodes, but most nodes cannot effectively cover users on land most of the time,
resulting in a waste of satellite resources and energy [3].

Along with the commercialization of 5G technology, academia has started research
on 6G technology. The 6G technology is still in the stage of demand analysis and concept
demonstration, but a consensus can be reached that the 6G network will be a ubiquitous
network integrating the sky and the ground, connecting everything. However, the ground
network cannot achieve global coverage, and it is impossible to lay optical fibers or set up
base stations in deep mountains, seas, and deserts. At present, ground networks can only
cover 20% of the global land area, and they are mainly concentrated in urban areas [4]. On
the other hand, the ground network is very fragile and vulnerable to damage caused by
various natural disasters. The low-orbit constellation communication has the advantages of
seamless global coverage, ultra-low latency, and no need for ground infrastructure. It will
be an indispensable and important part of Internet of Things and has become a research
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hotspot in the industry and academia. Figure 1 shows the scenario of the satellite–terrestrial
integrated Internet of Things.

The rapid development of the mobile internet has brought us many innovative user
applications, such as voice/face recognition, 4K/8K high-definition video, VR/AR games,
holographic communication [5], etc. Most of these new applications are computationally
sensitive, which drives the development and deployment of edge computing in terrestrial
Internet of Things.

In the coming years of satellite–terrestrial integrated Internet of Things, the network
will extend to space. As a way for users to access Internet of Things, LEO satellites are at
the edge of the entire network. Deploying edge computing servers on LEO constellation
satellites to provide users with space edge cloud computing services is a matter worth
considering. First of all, LEO satellites are at the edge of the network and can provide lower
response delays. Even if users can access the data center through the ground network, the
current global distribution of data centers is not uniform. In the case of long distances,
the edge of LEO computing services can provide users with lower propagation delay [3].
Secondly, the LEO edge cloud does not need the support of ground infrastructure. On the
one hand, it can operate autonomously and has strong damage resistance; on the other
hand, it will not be constrained by geography, politics, economy and other factors, such as
ground deployment. It is the only means for users without ground infrastructure to obtain
nearby computing resources. Finally, the advantages of LEO constellation global coverage
can lift the time and space constraints of users. Users anywhere in the world can access
the edge of cloud computing services at any time. In the LEO constellation edge cloud,
the LEO satellite is no longer only a user access and routing switching node, but also a
node capable of providing computing services. The LEO constellation is no longer just a
communication carrier network or pipeline, but a space-based computing network. Using
the mega-constellation network to provide users with edge cloud computing services has
the following benefits.

(1) It breaks through the capability limit of a single LEO satellite and can provide more
powerful computing capacity.

(2) It avoids the waste of satellite resources and energy, and improves the cost–
efficiency ratio of the LEO megaconstellation.

(3) The space cloud computing infrastructure has been built with independent op-
eration and elastic destruction resistance, which is not limited by natural disasters and
geographical environment.

(4) Provides edge computing services seamlessly and anywhere in the world.

Figure 1. The satellite–terrestrial integrated Internet of Things scenario.
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However, mega LEO constellation edge cloud network is a resource-constrained
system, in which energy supply and computing capacity are much lower than the ground
edge computing cloud. In order to improve the user capacity that the entire edge cloud
can serve, the utilization of system resources needs to be optimized. On the one hand, the
energy consumption of the system when the user offloads the task needs to be reduced; on
the other hand, the computing resource utilization of the satellite in the LEO edge cloud
needs to be balanced to avoid local congestion and overload. To the best of our knowledge,
there are no studies that provide a task offloading strategy for edge computing cloud across
the entire LEO constellation network.

In this work, we propose a joint optimization strategy of energy consumption and
computing load for the LEO constellation edge cloud processing offloading task of user.
Our main contributions are summarized as follows.

(1) The system model of LEO constellation edge cloud network is established. The
model dispatches the computing resources of all satellites in the constellation to perform
computing offloading for user tasks. Unlike other satellite edge computing models, the
satellite terminal only considers offloading tasks to directly connected or neighbor satellites.

(2) The influence of the network path on computational offloading performance is
considered, and the energy consumption caused by the inter-satellite multi-hop path is
taken as part of the system cost. However, the influence of the path on computational
offloading is often ignored in the existing literature.

(3) A cost model for combined optimization of energy consumption and computational
load is proposed. Under the condition of limited computing resources in the low-orbit
constellation, the system performance of the entire constellation edge cloud network is
optimized by minimizing the total energy consumption of all users and balancing the
computing load of all satellites in the constellation. The numerical simulation results show
that the proposed strategy is superior to the benchmark strategy.

The remainder of this paper is organized as follows. In Section 2, an overview of the
existing work is given. Section 3 describes the system model of the LEO constellation edge
cloud network. The joint optimization problem formulation and the operation mechanism
are presented in Section 4. Section 5 shows the simulation results with the proposed strategy.
Finally, this work is concluded in Section 6.

2. Related Works

At present, there has been some research on LEO satellite edge computation, mainly
focusing on how the computation task makes the offloading decision between the satel-
lite and satellite terminals. For example, in the multi-user single-satellite access scenario,
Ref. [6] established the LEO computation offloading model based on the joint optimization
of system energy consumption and user delay and used the Nash equilibrium method
of game theory and the Lagrange multiplier method of convex optimization to solve the
optimal offloading strategy, step by step. In the multi-user and multi-satellite access sce-
nario [7] proposed a two-layer computing offloading scheme integrating the satellite and
the satellite terminal. The problem was formulated to an allocation problem, and the
improved Hungarian algorithm was used to solve the problem. Simulation analysis was
carried out from the two dimensions of reducing the task average delay and system energy
consumption; Ref. [8] proposed a three layer architecture for multi-user multi-satellite
computing offloading scheme, including terrestrial users, satellite and ground cloud ser-
vices, which considers single satellite coverage time and limited in-orbit computing power.
The offloading decision was solved from the perspective of minimizing the total energy
consumption of ground users. First, by adopting a relaxation method, the nonconvex
problem is converted into a linear programming problem. Then, a distributed solution
for large-scale networking is proposed based on the ADMM method. In [4], considering
the dynamic characteristics of the satellite, the communication time between offloading
satellite and ground user was limited, the model for the ground user and satellite was
established based on queuing theory, taking the average response time and average energy
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consumption of a single task as optimization objectives, and the only optimal offloading
strategy was obtained based on the Nash equilibrium in game theory.

In the above literature, the LEO edge computation offloading strategy mainly uses the
access satellite or access satellites’ neighbors. Although the over-top satellite can provide
the lowest delay, due to the limitations of satellite-carried devices in a space environment,
volume, weight, energy and other aspects, the processing capacity of a single satellite is very
limited, unable to serve enough users, resulting in the number of users being limited. On
the other hand, due to the uneven distribution of users, overtop satellites are used in user-
dense areas, which results in too few satellite computing resources allocated and an increase
in the response delay of a single user. The researchers gradually realized the possibility of
using the LEO constellation network to provide edge computing services and developed
some preliminary ideas. In [5], a satellite-ground integrated edge computing network
architecture (STECN) was proposed, in which the LEO satellite network deployed on the
MEC platform was included, and its system architecture, collaborative offloading process,
functional composition, and challenges and problems were described in detail. Ref. [3]
discussed the possibilities and challenges of providing satellite-borne cloud computing
services on a new generation of mega constellations, and discussed three application cases
that can benefit from them, one of which is edge computing. In [9], the edge computing
architecture of low-orbit constellation communication network was designed, but only one
satellite orbit was considered in the modeling, and the offloading range was limited to the
satellite within two hops from the user. A summary of the literature is listed in Table 1.

Inspired by the above facts, this paper proposes an edge computing resource allocation
strategy in a mega LEO constellation, which considers the unified arrangement of the
energy resources and computing resources of the entire LEO constellation. A shared LEO
constellation resource pool is formed for dynamic use by all users. Like the data center on
the ground, all servers in the data center are scheduled and managed in a unified way to
provide elastic and scalable computing resources.

Table 1. Summary of literature.

References Offloading Scenario Optimization Goal Full Constellation Offload

[3] - - mentioned

[4] multi-user
single-satellite

user response time &
user energy no

[5] - - mentioned

[6] multi-user
single-satellite

system energy & user
delay no

[7] multi-user
multi-satellite

system energy & user
delay no

[8] multi-user
multi-satellite user energy no

[9] multi-user one satellite
orbit - mentioned

3. System Model

In this section, the system model is shown in Figure 2, which is composed of LEO
satellites, satellite terminals, gateway stations and the edge computing orchestrator. Each
LEO satellite is equipped with router units and onboard MEC servers. The router unit
is used for inter-satellite data exchange, and the onboard MEC server provides edge
computing services. The router unit of each satellite node is connected with the intra-plane
and inter-plane links to form an inter-satellite routing and forwarding network and realize
the network layer reachable between MEC servers. As the control node of the edge cloud
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network, the edge computing orchestrator is deployed behind the ground gateway station,
which receives the computing request of the satellite terminal and centrally schedules user
tasks to be offloaded by the satellite terminal among LEO satellites.

Figure 2. The LEO-ECN scenario.

In this model, there are M LEO satellites. The single satellite is denoted as m. The
set of LEO satellites can be denoted asM = {m ∈ N+|m ∈ [1, M]}. There are N satellite
terminals, the terminal is denoted as n, the set of satellite terminals can be denoted as
N = {n ∈ N+|n ∈ [1, N]}. The notations used in this paper are summarized in Table 2.
Next, we introduce the communication, network, computation, load models in detail.

3.1. Compute Offloading Mechanism

In LEO-ECN, the edge computing orchestrator has the global view of the entire LEO
cloud network system, including the network resource view and computing resource
view. The network resource view contains topology and routing information of the entire
system, which changes regularly and predictably with the relative motion of satellites. The
computing resource view contains the computing resource usage and remaining status of
all satellites, which changes with the previous and current amounts of offloading tasks. The
orchestrator, as the control center of the entire system, can obtain the latest global status
information in real time.

When the user needs to offload the computing task, the satellite terminal will send
the computing offloading request to the orchestrator. The orchestrator summarizes all
computing requestsW at the current time t and runs the optimal algorithm combining with
the network resources and computing resources at the current moment to make the optimal
offloading decision, determine the satellite nodes for each user to provide computing
service, which will be announced to each satellite terminal, and then the satellite terminal
sends the task data to the service satellite arranged by the orchestrator. After the calculation
is completed, the service satellite sends response data to the satellite terminal, and finally
completes the task of offloading. The main process is shown in Figure 3.

Considering the autonomous operation of the whole system and the reduction in
signaling delay, the orchestrator, as a control node, also can be distributed on satellite
nodes with high performance, and status information can be synchronized between control
nodes through distributed consistency protocol. On the other hand, compared with virtual
machines, containers can make more efficient use of the limited computing resources of the
space-borne MEC server, and computing services are provided by enabling the space-borne
MEC server to instantiate containers.
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Table 2. Notation definitions.

Symbol Definition

M Set of LEO satellite m
N Set of ground terminals
W Set of computation task
Dn Data size of task n
Cn Number of CPU cycles for task n
Bn Channel bandwidth of ground terminal n
Gt Transmitting antenna gain of ground terminal n
Gr Receiving antenna gain of ground terminal n
Lgs

p Rain attenuation of ground-satellite link
Lgs

n Free space loss of ground terminal n
Ngs Noise power of ground terminal to access satellite
Pgs

n Transmit power of ground terminal n
Rss

i,j Inter-satellite link transmit rate from satellite i to j

Kb Boltzmann’s constraint
Ts System noise temperature

Eb/N0 Ratio of received energy-per-bit to noise power density
Pss

i,j Transmit power of satellite i to satellite j

Lss
i,j Free space loss of the inter-satellite link

G(k) Graph of the k topology snapshots
V Set of satellite nodes in the graph G(k)

E(k) Set of inter-satellite links in the k snapshot
Fm Maximum CPU cycles provided by onboard MEC server

Ep
n,m Energy consumed on the path from ground terminal n to service satellite m

Ec
n,m Energy that service satellite n consumes for task n

hop Number of hops ground terminal to service satellite
fm CPU frequency of the MEC server on the satellite m
Θ The total cost of compute and path

Figure 3. Compute offloading process.

3.2. Communication Model

We assume that each satellite terminal uses TDMA multiple access and can access
only one satellite at a time. Benefiting from the global coverage of low-orbit constellations,
satellite terminals can always be covered by low-orbit satellites. The satellite–ground link
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and the inter-satellite link use microwaves. Satellite terminals uplink transmit rate Rgs
n can

be expressed as [10]:

Rgs
n = Bn log2

(
1 +

Pgs
n GrGtL

gs
p Lgs

n

Ngs

)
, ∀n ∈ N (1)

where Bn denotes the channel bandwidth of satellite terminal n. Gt and Gr stand for the
transmitting antenna gain and the receiving antenna gain, respectively. Lgs

p denotes the
rain attenuation. Lgs

n is the free space loss. Ngs denotes the noise power from ground to
access satellite. Pgs

n denotes transmit power of satellite terminal n. The inter-satellite link
transmit rate Rss

i,j is computed as [11]

Rss
i,j =

Pss
i,j GrGtLss

i,j

KbTs(Eb/N0)
, ∀i, j ∈ M (2)

where Kb is Boltzmann’s constant, Ts is the system noise temperature, and (Eb/N0) is the
ratio of received energy-per-bit to noise power density. Pss

i,j denotes the transmit power
of satellite i when data are sent to satellite j. Lss

i,j is the free space loss of the inter-satellite

link. We assume the transmitted power Pgs
n and Pss

i,j are fixed values, and thus the energy
consumption is proportional to the time transmitting data from satellite terminal to satellite.

3.3. Network Model

Different from the fixed topology of the terrestrial mobile network and wired network,
the LEO constellation network has a dynamic time-varying discrete topology as illustrated
in Figure 4. The dynamic network topology is considered a periodically repeating series
of K topology snapshots [12] separated by every inter-satellite link switching. Each of the
snapshots is modeled as a graph G(k) = (V, E(k)), where V is the set of satellite nodes,
and E(k) is the set of inter-satellite links in the k snapshot.

Figure 4. The LEO constellation network discrete topology.

In the LEO constellation edge cloud network, the computing data of the users may
reach the satellite providing computing offloading service through inter-satellite multi-hop
path after being scheduled by the orchestrator. The cost of multi-hop path cannot be
ignored because of the delay and energy consumption of each hop link. We assume that the
ground terminal under each satellite transmits calculation data to the destination satellite
using the shortest path. When the topology snapshot changes, the shortest path may also
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change. So the Dijkstra algorithm runs to calculate the shortest path from each node to
other nodes in each topology snapshot. The shortest path contains the next hop to other
nodes and the number of hops to go through. When the satellite–ground link changes, for
the continuous offloading tasks, such as video codec, the migration overhead caused by
shortest path tree switching should be considered. However, it has little influence on the
second-level real-time response tasks. The offloading task model studied in this paper is
the second-level response task.

3.4. Computation Model

For the sake of simplicity, each satellite terminal generates only one computation
task at a time, and the set of tasks is denoted asW = {Wn|Wn , {Dn, Cn}, n ∈ N}. Dn
represents the amount of data that the task Wn needs to upload in bytes. Cn represents the
required CPU computing capacity in cycles per second. In space, onboard devices require
additional protection from the space environment, especially from particle radiation. On the
other hand, satellites are strictly limited in size, power consumption and weight. Therefore,
the performance of spaceborne MEC servers is much worse than that of ground-based
edge computing servers, and its computing capacity is very limited. Assume that the total
computing capacity of each satellite is equal, and the maximum value is expressed as Fm in
cycles per second. A MEC server on a single satellite may not be able to meet the computing
requirement of a user’s task. It is reasonable to assume that the computing task can be
divided, and the variable xn,m is used to represent whether the computing task n of the
ground terminal is offloaded to satellite m. Then, there are the following constraints:

∑
m∈M

xn,m = 1, ∀n ∈ N (3)

∑
n∈N

xn,mCn ≤ Fm, ∀m ∈ M (4)

xn,m ∈ [0, 1] (5)

4. Problem Formulation and Analysis
4.1. Energy Cost
4.1.1. Path Energy Cost

For the energy model, since user task data may reach the satellite providing computing
service in LEO Constellation edge cloud network through multi-hop path, the energy
consumption of a single user’s computing task should include path energy consumption in
addition to CPU computing energy consumption of onboard MEC servers. Path energy
consumption refers to the energy consumption generated when the task data sent from
the ground terminal to the service satellite pass through multi-hop forwarding nodes and
the energy consumption generated when the response data sent from the service satellite
to the ground terminal passes through multi-hop forwarding nodes. We call the former
the forward path energy consumption expressed as E f p

n,m and the latter the reverse path
energy consumption expressed as Ebp

n,m. Therefore, the total path energy consumption of a
computation task is expressed as

Ep
n,m = E f p

n,m + Ebp
n,m (6)

For simplicity, assume that the forward and reverse paths are symmetric and consistent,
i.e., the forward and reverse paths pass through the same number of nodes and hops.
Forward and backward path energy consumption can be further expressed as

E f p
n,m = E f p,1

n,m +
hop

∑
i=2

E f p,i
n,m (7)
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Ebp
n,m =

hop−1

∑
i=1

Ebp,i
n,m + Ebp,hop

n,m (8)

where hop indicates the number of hops on the path, E f p,1
n,m represents the energy consump-

tion of the first hop transmission in the forward path, namely, the energy consumption of
the satellite terminal satellite–ground uplink, Ebp,hop

n,m represents the energy consumption of
the last hop of the reverse path, that is, the energy consumption of the satellite terminal

satellite–ground downlink,
hop
∑

i=2
E f p,i

n,m , and
hop−1

∑
i=1

Ebp,i
n,m respectively represents the total energy

consumption of inter-satellite multiple hops in the forward and reverse path. Consider-
ing that the amount of data after calculation is generally small, the transmission energy
consumption of the reverse path can be ignored for simplicity. Therefore, the total energy
consumption of the path can be modeled as

Ep
n,m = E f p,1

n,m +
hop

∑
i=2

E f p,i
n,m (9)

E f p,1
n,m = Pgs

n
xn,mDn

Rgs
n

(10)

E f p,i
n,m = Pss

i
xn,mDn

Rss
i

(11)

4.1.2. Computation Energy Cost

The computation energy consumption denoted as Ec
n,m refers to the amount of en-

ergy that service satellites m consume to perform a satellite terminal’s computing task
n. The computational requirement for tasks Wn assigned to satellite m is xn,mCn, and the
computation data volume assigned to satellite m is xn,mDn. According to the realistic
measurements [13], the computation energy consumption is proportional to the square of
the CPU frequency, and specifically Ec

n,m is described as

Ec
n,m = ε( fm)

2xn,mCn (12)

where ε is the energy coefficient which depends on the chip architecture. Without loss
of generality, we think the CPU frequency fm is different on the satellites due to the
heterogeneity of the onboard MEC server.

Therefore, the total energy consumption of service satellite m for the computing task
of ground terminal n can be expressed as

En,m =Ep
n,m + Ec

n,m

=Pn
xn,mDn

Rn
+

hop

∑
i=1

Pi
xn,mDn

Ri

+ ε( fm)
2xn,mCn

(13)

The total energy consumption of the computation task n offloading to the LEO con-
stellation edge cloud can be expressed as

∑
m∈M

En,m (14)

4.2. Computing Load Cost

In the LEO-ECN, LEO satellites cannot effectively cover users most of the time, result-
ing in idling and waste of resources. In addition, due to the uneven distribution of ground
terminals and user tasks, unloading tasks from ground terminals to directly connected
satellites is easy to cause local overload of computing resources on satellites. From the
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perspective of system, tasks can be balanced to those idle satellites as much as possible so
as to improve the efficiency and resource utilization of the whole low-orbit constellation
edge cloud. We sum up the mean square error of the computing power demand assigned to
each satellite as the cost of load balancing in a low-orbit constellation edge cloud network.
The cost is related to the level of load balancing. Specifically, the more balanced the load,
the smaller the cost. The system load balancing cost can be expressed as

∑
m∈M

( ∑
n∈N

Cnxn,m − ∑
n∈N

Cn/M)2 (15)

4.3. Objective Function

From the perspective of the system, the LEO-ECN has limited energy resources,
so it needs to minimize the energy consumption of all tasks, and on the other hand,
the computing capacity is also limited, and we should properly allocate the computing
resources of all satellites, balance system load and improve system resource utilization [5].
Therefore, the overall cost function could be formulated as Equation (16).

min
n,m

Θ = min
n,m ∑

n∈N
∑

m∈M
En,m + β ∑

m∈M
( ∑

n∈N
Cnxn,m − ∑

n∈N

Cn

M
)2

= min
n,m ∑

n∈N
∑

m∈M
(Pn

xn,mDn

Rn
+ β

hop

∑
i=2

Pi
xn,mDn

Ri
+ ε( fm)

2xn,mCn)

+ β ∑
m∈M

( ∑
n∈N

Cnxn,m − ∑
n∈N

Cn

M
)2

(16)

In (16), Θ denotes the overall cost, and β is the weight of the load balance cost. With
the definition and the constraints of (3)–(5) above, the objective function is a quadratic
programming problem, which is convex, since xn,m is continuous. We use opensource
software CVXPY [14] to solve the problem.

5. Numerical Simulation

In this section, to verify the performance of our proposed strategy, we conducted a
series of evaluation experiments. First, we simulated and compared the LEO constellation
cloud network offloading strategy with the access satellite offloading strategy and neighbor
satellite offloading strategy proposed in the existing papers. Then, we evaluated and
compared our joint optimization strategy and benchmark strategy in the whole LEO
constellation offloading scenario.

5.1. Simulation Setup
5.1.1. Constellation Parameter

We used open source software SAVI [15] to design three low-orbit satellite constel-
lations with different numbers of satellites, and then obtained the snapshots of the three
constellations at a certain time through ephemeris calculation, extracted the correspond-
ing topological information according to the snapshots, which was used to calculate the
shortest path between any satellites. Considering the batch and iterative update of satel-
lite payload, the performance of MEC servers on each satellite is different. The average
dominant frequency of MEC servers CPU is set to 1 GHz, and the standard deviation
is 0.2. The energy coefficient of CPU ε is set to 10−28. As the loads of each MEC server
are also different at different time slots, the computation resources of MEC are assumed
to be normally distributed with the mean of 2 GHz and standard deviation of 0.2. The
parameters of the three low-orbit constellations are shown in Table 3.
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Table 3. Constellation parameters.

Parameter Constellation 1 Constellation 2 Constellation 3

constellation type near-polar near-polar near-polar
number of orbits 6 6 12

satellites per orbit 6 12 12
inclination 86.4◦ 86.4◦ 86.4◦

semimajor axis 7158.14 km 7158.14 km 7158.14 km
altitude 780 km 780 km 780 km

longtitude boundary 75◦ 75◦ 75◦

CPU frequency (Ghz) per MEC server N (1, 0.2) N (1, 0.2) N (1, 0.2)
computation capacity per satellite

(Gcycle/s) N (2, 0.2) N (2, 0.2) N (2, 0.2)

5.1.2. User Task Parameter

The user task distribution of each satellite is not balanced. There are many reasons
that affect the user task distribution on the satellite. The first is geographical. Specifically,
the majority of the population lives and produces on land, so when the satellite covers
the ocean, the number of users is very small, and when the satellite passes over land,
the number of users’ tasks is increased. The second is the economic factor. Users in
economically developed areas will have more tasks, because there are more netizens and
more demands for computing and offloading. Third, due to the relative movement of the
low-orbit constellation, the ground area connected to the same satellite will change, leading
to changes in the distribution of user tasks on the satellite. For simplicity, we assume that
the user tasks are mainly concentrated on satellites over the land, and the tasks are evenly
offloaded to the current satellite nodes covering the land. As shown in Figures 5–7 [16],
satellite red indicates high user task density. The amount of data Di required to offload for
each user task conforms to the normal distribution N (10, 2) Mbytes, and the computing
resources Ci required conform to the normal distribution N (1, 0.2) Gcycles.

Figure 5. Constellation 1 snapshot.

5.1.3. Communication Parameter

Communication parameters mainly include the transmission rate, transmission power,
etc., which are summarized in Table 4. These parameters are referenced in [11].



Electronics 2022, 11, 2024 12 of 18

Figure 6. Constellation 2 snapshot.

Figure 7. Constellation 3 snapshot.

Table 4. Communication parameters.

Parameter Value

Satellite terminal uplink power 0.2 W
Satellite terminal transmit rate 2 Mbps
Inter-satellite transmit power 3 W

Inter-satellite transmit rate 30 Mbps
Boltzmann’s constraint Kb 228.6 dB

System noise temperature Ts 25 dB

5.2. Performance Metrics

The comparative performance metrics include satellite resource utilization, task re-
sponse rate and joint optimization cost. Specifically, satellite resource utilization is defined
as the ratio of allocated satellite resources to the total computing capacity of the entire
constellation, which is calculated as (17).

∑
m∈M

∑
n∈N

Cnxn,m/ ∑
m∈M

Fm (17)
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The task response rate is defined as the ratio of the number of successfully offloaded
tasks to the number of all current task offloading requests, which can reflect the ratio that
user requests can be accessed. In addition, considering there is little research on the whole
constellation related offloading strategy, we adopted the ground commonly used two kinds
of offloading strategy in edge computing as a benchmark.

(1) Random strategy: When the task offloading request arrives, the orchestrator
randomly selects service satellites for the task. If the service satellite has enough computing
resources, the task will be accepted; otherwise, the task will be rejected.

(2) First fit strategy: The orchestrator will select service satellites from all the satellites
that can be offloaded for the task. The selection is generally randomized. Here we use a
greedy strategy to select the satellite with the most resources available.

In the whole constellation offloading scenario, we compared and evaluated the joint
optimization strategy with the benchmark strategy with different optimizing options,
including energy cost, load balancing cost and joint optimization cost.

5.3. Simulation Results

Figure 8 depicts the satellite resource max utilization under three different offloading
strategies with different constellation sizes. From the simulation results, we can find that
the utilization of satellite computing resources is only about 20% using the access satellite
offloading strategy, and no more than 50% using the neighbor offloading strategy, and the
joint optimization offloading strategy can make full use of the satellite computing resources
of the whole system to improve the utilization efficiency of the constellation edge cloud
network system.

For example, constellation 2 with 72 satellites, as shown in Figure 9, under access
satellite offloading strategy, the satellite resource utilization with each concurrent tasks
demand varies slightly in fluctuations. As the number of offloading tasks increases, the
whole constellation satellite resource utilization is maintained at no more than 20%. The
neighbor satellite offloading strategy utilizes the neighbor node of the satellite directly
connected to the satellite terminal, which has a higher resource utilization ratio than the
access satellite strategy, but it does not increase after exceeding the computing capacity
of all the neighboring satellites. In practice, the more imbalanced distribution of tasks
will lead to lower utilization of satellite resources. Figure 10 shows the task response rate
under the constellation 3 of 144 satellites with different concurrent tasks. It can be seen
that as the number of tasks increases, the task response rate decreases gradually under
the offloading strategy of access satellites and neighbor satellites, and the all-constellation
joint offloading strategy can meet the access of more offloading tasks. In the scenario of
whole-constellation offloading, it can be seen from Figure 11 that the satellite resources
utilization rate under the joint optimization strategy is the highest, which is 40% higher
than the random offloading strategy and about 20% higher than the FirstFit strategy.
When the computational capacity of the whole constellation meets the requirements of
all offloading tasks, the joint optimization strategy can maintain the task response rate
of 100%, while the random strategy and FirstFit strategy both begin to decline when the
number of concurrent tasks reaches a certain value, as shown in Figure 12. In constellation
2 with 72 satellite scenarios, Figure 13 shows the three offloading strategies of energy cost.
It is obvious that the joint optimization offloading strategy has the lowest energy costs,
and the first fit strategy only considered the calculation of energy cost, and ignored the
optimal choice of the path, causing the total energy cost at the highest levels. Figure 14
shows the load balancing costs of the three offloading strategies under 72 satellites. The
joint optimization strategy has the lowest load cost because the load balancing level is
an important optimization item in the joint optimization. The first fit strategy greedily
selects the satellite node with the most remaining resources each time, which also has a
certain load balancing effect. The random strategy does not consider the load between
satellite resources, and the load balancing cost is the highest. From the simulation results
of Figure 15, we know that the joint cost of the joint optimization strategy is the lowest
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in the three whole constellation offloading strategies, and the joint cost of the random
strategy is higher than the first fit strategy. This is because the weight coefficient β of
the objective function is set to 5, which causes load balancing to affect their joint cost.
However, no matter how β changes, the cost of the joint optimization strategy will remain
the lowest. Finally, we reviewed the five offloading strategies, including access satellite
offloading, neighbor satellite offloading, random offloading, first fit offloading and joint
offloading, as shown in Figure 16. Compared with other offloading strategies, the joint
optimization strategy of the whole LEO constellation has the best performance, and the
joint optimization strategy not only considers the energy consumption generated by the
computation, but also considers the transmission path energy loss and the load balancing
between the satellites. Furthermore, we can tune β to adjust the trade-off between energy
cost and load balancing cost.

Figure 8. The maximum utilization of satellites computing resources in different LEO constella-
tion sizes.

Figure 9. Satellite computing resource utilization varies with number of tasks in constellation 2 with
72 satellites.
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Figure 10. Task response rate varies with number of tasks in constellation 3 with 144 satellites.

Figure 11. Satellite computing resource utilization of the three offloading strategies varies with the
number of tasks in the whole constellation offloading scenario.

Figure 12. Task response rate of the three offloading strategies varies with the number of tasks in the
whole constellation offloading scenario.



Electronics 2022, 11, 2024 16 of 18

Figure 13. Energy cost of the three offloading strategies varies with the number of tasks in the whole
constellation offloading scenario.

Figure 14. Load balance cost of the three offloading strategies varies with the number of tasks in the
whole constellation offloading scenario.

Figure 15. Joint optimization cost of the three offloading strategies varies with the number of tasks in
the whole constellation offloading scenario.
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Figure 16. Joint optimization cost of all offloading strategies varies with the number of tasks.

6. Conclusions

In this paper, we proposed the concept of the LEO constellation edge cloud net-
work (LEO-ECN), established the system model of LEO-ECN, and gave the offloading
mechanism of LEO-ECN. In this model, the computational offloading problem of energy
consumption and load balancing combined optimization is studied from the system point
of view. Especially for energy consumption modeling, considering the characteristics of
multi-hop network of low orbit constellation, the energy consumption cost model com-
bining computing and network is given, and the load balance of the whole constellation
computing resources is also considered. Finally, we solved the problems, and conducted a
series of simulation experiments. In different constellation scales, the proposed offloading
strategy was compared with access satellite offloading, neighbor satellite offloading, ran-
dom offloading and first fit offloading. The experimental results showed that our proposed
offloading strategy has higher satellite resource utilization and better performance.
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6G 6th Generation Mobile Networks
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ADMM Alternating Direction Method of Multipliers
TDMA Time Division Multiple Access
MEC Mobile Edge Computing
CPU Central Processing Unit
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