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Abstract: In the field of airborne aerial imaging, image stitching is often used to expand the field
of view. Registration is the foundation of aerial image stitching and directly affects its success and
quality. This article develops a fast binary image registration method based on the characteristics of
airborne aerial imaging. This method first integrates aircraft parameters and calculates the ground
range of the image for coarse registration. Then, based on the characteristics of FAST (Features
from Accelerated Segment Test), a new sampling method, named Weighted Angular Diffusion
Radial Sampling (WADRS), and matching method are designed. The method proposed in this
article can achieve fast registration while ensuring registration accuracy, with a running speed that is
approximately four times faster than SURF (Speed Up Robust Features). Additionally, there is no
need to manually select any control points before registration. The results indicate that the proposed
method can effectively complete remote sensing image registration from different perspectives.

Keywords: UAV; image registration; geographic information; image mosaic; localization

1. Introduction

Aerial remote sensing images have the outstanding advantages of being quick to
obtain and flexible to use, and they have wide applications in environmental monitoring,
situation awareness, geographic information system construction, and other fields [1–3].
However, due to the size limitations of aerial camera sensors, there is often a trade-off
between the field-of-view range and the ground resolution. The commonly used technical
approach is to continuously acquire images, ensuring a certain overlap rate of the area of
interest, and then synthesize them into a large-scale panoramic image using image stitching
technology. Here, registration plays a decisive role in aerial image stitching, and directly
affects its success and quality [4]. Due to the poor stability of UAVs and their vulnerability
to interference from the external environment and other factors, airborne aerial images
often have problems such as changes in brightness, geometric distortion, atmospheric
turbulence, and motion blur; therefore, it is necessary to design a stable and effective image
registration method that has good robustness and invariance against lighting, distortion,
blur, etc. [5–7]. At the same time, aerial image stitching requires a lot of time, so the speed
and efficiency of the registration method should also be considered [7]. Conventional
image stitching methods require a large amount of computation. The constraints on the
weight and volume of airborne equipment are strong, and the hardware computing power
is limited. At the same time, there are requirements for real-time performance, so it is
necessary to minimize the computational load as much as possible. In addition, existing
software, such as OpenCV, requires accessing various libraries, and there are also many
issues when porting to embedded systems. Although rapid image registration technology
has undergone decades of development, there are still few targeted studies in the field of
airborne aviation imaging, so it is of great significance to develop a high-precision fast
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registration method for these remote sensing images. In this paper, a binary fast registration
method based on fused information is proposed to realize real-time registration of aerial
remote sensing images.

Image registration methods can be divided into region-based methods, feature-based
methods, and hybrid-model-based methods. Feature-based methods are the most widely
used due to their high robustness. Among them, the SURF algorithm is an improved version
of the SIFT (Scale Invariant Features Transform) algorithm; it has a better registration effect
and improves the detection speed of feature points [8,9]. However, when processing large-
scale remote sensing images, its calculation time can reach the order of minutes, so reducing
the calculation requirements is a very urgent task in aerial image processing [10,11].

Harris’ algorithm has received recognition because of its high detection and repetition
rates, but it is more sensitive to changes in the angle of the image, and some improved
algorithms have since appeared, such as the Shi–Tomasi corner detection algorithm [12,13].
Due to the requirement for fast processing in these algorithms, Rosten et al. proposed the
FAST feature point detection algorithm, which is very quick because it does not involve
complex operations such as scale and gradient. [14]. However, it is not directional or
scale-invariant.

At the same time, in terms of the matching strategy, binary-based registration methods
are fast and have easy hardware implementation. In recent years, researchers have proposed
many binary image descriptor-based methods to solve the problem of remote sensing
image registration. Michael Calonder et al. proposed BRIEF: Binary Robust Independent
Elementary Features [15]. The BRIEF descriptor uses a binary string as the descriptor vector,
but because its sampling mode is solidified and has no principal direction, large angular
rotation has a great impact on matching. Ethan Rublee et al. proposed the ORB (Oriented
FAST and Rotated BRIEF) algorithm [16]. They added directionality to FAST feature points,
gave the feature points rotational invariance, and proposed a pyramid construction method
to solve scale invariance. The BRISK algorithm (Binary Robust Invariant Scalable Keypoints)
proposes a circular sampling mode that calculates the contrast of brightness to form a
binary descriptor string. It has good rotational invariance, scale invariance, and better
robustness. Its cassette descriptors are typically calculated an order of magnitude faster
than SURF [17]. However, BRISK reduces the number of sample points at the expense of
matching quality, limiting its application scenarios. Liang H et al. treated all feature points
as a whole and generated a new binary descriptor with high accuracy and robustness for
multi-sensor remote sensing images [18]. Fuzhen et al. proposed an improved directional
FAST and rotational BRIEF random sampling consistency (ORB-RANSAC) algorithm,
which significantly increases the number of detected feature points and distributes more
uniformly than the traditional ORB algorithm, but it has poor applicability to remote
sensing images with geometric deformation [19].

Image processing based on deep learning has been widely applied in various fields,
including remote sensing image registration [20–22]. These methods use deep learning to
construct various network models to learn feature representations from different images,
thus achieving automatic image registration [21,22]. However, the effectiveness of image
registration is related to specific application scenarios. The deep learning-based method
performs well in terms of accuracy in certain specific applications. However, due to the
significant changes in types of landscape in the flight path of aircraft, such as urban areas,
villages, fields, and deserts, deep learning requires a large number of different types of
sample libraries, which is difficult in airborne aviation applications, resulting in poor
robustness of deep learning. Additionally, due to strong constraints on the weight and
volume of airborne equipment, hardware computing power is limited, and processing
efficiency is not ideal. Therefore, the application of deep learning in airborne image
registration is relatively limited.

The point-based feature-based approach can be divided into three steps: feature
extraction, feature description, and feature matching. In practical applications, after feature
matching is completed, it is necessary to calculate the transformation relationship between
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the two images according to the successfully matched feature points and map the image
to be registered to the coordinate system of the reference image. In the classical method,
in order to make the transformation model more accurate and the success rate higher, it
is often necessary to extract as many feature points as possible. For example, solving the
model parameters for affine transformations requires at least three pairs of points with the
same name in two images. If the feature points extracted in the image to be registered need
to be described and matched one by one with the feature points in the reference image in a
certain order, then the calculation is heavy.

Various other classical methods often do not work well in practical applications due
to a lack of relevance.

First of all, their operating speeds do not meet real-time processing requirements.
Algorithms with high registration success rates tend to be computationally intensive,
while methods that run quickly are usually prone to registration failure because they are
oversimplified.

Secondly, as airborne images are often captured with the line of sight tilted to the
ground, there is a perspective projection effect on the ground coverage area of the image,
presenting an irregular quadrilateral shape. The specific shape is affected by the direction
of the optical axis, as shown in Figure 1.
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Figure 1. Illustration of perspective projection.

As a result, images taken at different times often exhibit significant geometric distor-
tions. In addition, due to the different imaging times of image sequences, the brightness,
gradient, and other characteristics of the same object and its background in different images
exhibit differences under the influence of atmospheric disturbances or aircraft vibrations.
That is why images with a large rotation transformation (RT) are difficult to register. The
global geometric deformation caused by great RT and significant differences in local ap-
pearance caused by different imaging mechanisms must be dealt with [22]. Many directly
neighborhood-based algorithms may result in significant differences in descriptors due
to inconsistent neighborhood features, leading to mismatches. For example, in the two
images taken as depicted in Figure 1, due to the significant difference in inclination angles
and the significant changes in neighborhood features caused by perspective effects, a pair
of SURF descriptors with the same name extracted from the two images have significant
differences and cannot be matched, as shown in Figure 2.
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Therefore, in response to the above issues, this article uses binary description as the
basis and combines information such as drone flight parameters to complete remote sensing
image registration, which not only ensures fast registration but also has high accuracy. By
using a coordinate transformation method for image mapping, the computational burden
of registration can be effectively reduced. This article then improves the FAST extraction
process and combines it with a Gaussian kernel angle diffusion template to generate a
sampling template, constructing a new binary descriptor. This method can effectively
reduce the environmental impact under airborne conditions, improve the registration
success rate, and ensure computational efficiency. Additionally, there is no need to man-
ually select any control points before registration. The results of this study indicate that
the proposed method can effectively complete remote sensing image registration from
different perspectives.

2. Theory and Methods

The challenges typically faced by image registration include grayscale differences,
rotation, scaling, and translation. Another issue that must be addressed in image registra-
tion for airborne image stitching applications is the perspective effect caused by changes
in perspective, which manifests as geometric distortions of objects in the image and in-
consistent distortion parameters as a result of different perspectives. At the same time,
it is necessary to consider the image processing speed. In order to ensure the speed and
improve the success rate of image registration, this article specifically designs a fast reg-
istration method based on coarse-to-fine fused data. This method combines the position,
heading, attitude, imaging parameters, and angle information of the imaging system of the
carrier to complete coarse registration, reducing the computational complexity required for
image registration. Then, this method takes the previous image as the reference image and,
within the set error tolerance, uses a binary matching method for the overlapping areas to
improve operational efficiency, perform accurate registration calculations, and optimize
the parameters of the image transformation model. This method can achieve rapid image
registration in airborne embedded systems, providing a reference for subsequent stitching
processing. The approximate framework is shown in Figure 3.
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2.1. Preprocessing and Rough Registration Based on Geographic Information

In the field of airborne image processing, timeliness is one of researchers’ key concerns.
When performing image stitching, due to significant fluctuations in the flight speed, ground
coverage, and scene illumination of Unmanned Aerial Vehicles (UAVs) and other aircraft,
the overlap range of sequence images also changes during stitching. For airborne image
stitching, only the overlapping areas between two images are necessary for the registration
calculation. It is a waste of time to perform image feature extraction and matching on
non-overlapping areas. To solve the above problems, the method of geographic location
mapping can be used to calculate the geographic positions of the image center and the four
vertices of the image. This calculation process typically requires a low level of computation,
and through this relatively small amount of geographic location mapping, three obvious
advantages can be obtained. For one, it can determine the overlapping area between
two images, avoid extracting feature points in non-overlapping areas, and save a large
amount of computation power. Secondly, it can ensure that the image to be registered has
unified geometric parameters, ensuring that the actual ground scene corresponding to the
neighborhood of the feature points is consistent. In addition, the true north direction of the
image can also be determined, thereby unifying the direction of feature point descriptors
in advance. In the subsequent feature point-matching process, there is no need to set the
main direction.

During flight, the aerial imaging system is mounted on the base of an aircraft, such as
a UAV, and the image is the projection of the target area on the image sensor, located in
the camera coordinate system. The actual position that usually needs to be calculated is
the coordinates of the ground, such as the WGS-84 coordinate system used by GPS, which
includes three coordinate values: longitude L, latitude M, and altitude H.

In the process of converting the target from the camera coordinate system (system C)
to the geodetic coordinate system (system G), the use of an intermediate coordinate system
is required to assist in completing coordinate conversion, which is also a prerequisite for the
localization calculation. Usually, the number of intermediate process coordinate systems
needs to comprehensively consider the localization requirements, the main equipment
integrated with the carrier and its installation location, the structure and installation method
of the aviation optoelectronic platform, etc. This article establishes four intermediate process
coordinate systems, namely platform coordinate system P, UAV body coordinate system
B, UAV geographic coordinate system V, and an Earth-centered Earth-fixed coordinate
system (ECEF; system E).



Electronics 2023, 12, 4475 6 of 20

The core process of the target localization method adopted by this paper is shown in
Figure 4.
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Figure 4. Localization process.

Since the purpose of image registration is not to obtain the longitude and latitude
of the target area, but to map the image to a reference coordinate system that does not
move with the carrier, it only needs to be converted to the ECFF coordinate system. This
coordinate system is already based on the geocentric coordinate system, which can meet
the needs of image mapping and avoid complex iterative operations during the conver-
sion to the geodetic coordinate system. Therefore, the four vertices and center points of
the image can be transformed into the ECFF coordinate system through homogeneous
coordinate transformation.

The homogeneous coordinates of a target in the camera coordinate system are

[xc yc zc 1]T = [u v f 1]T (1)

where u and v are the target’s coordinates in the image (in pixels), and f is the current focal
length of the camera. Usually, when the UAV detects a target, the photoelectric platform
will lock the detected target in the center of the field of view (FOV) with multiple pixels,
and then the target is in the center of the image. When an error inside the camera coordinate
system is ignored, the homogeneous coordinates of the target can be expressed as [0 0 f 1]T .
The camera carrier is a photoelectric platform, which outputs information on angles a
and e between the line of sight (LOS) and the zero positions of two platform angles and
measures the target distance R through a laser range finder. Since the platform uses a polar
coordinate system, the below coordinate transformation is needed:

[xp yp zp 1]T = R×Qpc[0 0 f 1]T (2)

where Qpc is the conversion matrix from the camera coordinate system C to the platform
coordinate system P.

Qpc =


cos a 0 sin a 0

0 1 0 0
− sin a 0 cos a 0

0 0 0 1




1 0 0 0
0 cos e − sin e 0
0 sin e cos e 0
0 0 0 1

 (3)

The other conversion processes are similar. Through the above process, the geographic
positions of the image center and the four vertices of the image can be mapped to the
ECEF coordinate system based on their geographic positions using only us-level operations,
as shown in Figure 5. In the subsequent process, the previous frame image can be used
as a reference, and the next frame image to be registered can also be mapped to the
coordinate system.
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Under a unified coordinate system, the scale between the two images is also unified,
which means that the problem of scaling between the two images can be roughly solved
and the overlapping area can be determined by the intersecting area, as shown in Figure 6.
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However, due to the influence of transmission errors, measurement errors, and other
errors, the results usually have m-level errors. The corresponding errors on the image are
usually more than 5 pixels, but generally do not exceed 200, as shown in Figure 7. From the
figure, it can be seen that there is obvious misalignment in the images after simple overlap.
The error needs to be corrected through pixel-level image registration methods.
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After coarse registration of images is performed through geographic location mapping,
a pixel-level image registration method needs to be adopted to optimize the scale and shift
parameters for the subsequent stitching process. At this point, feature point extraction, fea-
ture point description, and matching require improvements to meet real-time requirements
due to their high computational complexity.
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2.2. FAST Feature Point Detection Method

At present, the fastest feature point detection method is FAST. The basic idea of
this method is to construct a circular ring with any pixel in the image as the center. By
comparing the grayscale value of the center point with the grayscale value of 16 pixels
on the ring, the feature point can be determined. When the grayscale value of the center
point is always greater than or less than the grayscale value of 9 consecutive pixels on the
ring, it is determined that the center point is a feature point. Then, through non-maximum
suppression, the final set of feature points extracted by the FAST detection method can
be obtained.

By default, this method compares and detects 16 surrounding pixels, and there are
also detection methods for 12 or 9 neighboring pixels, as shown in Figure 8. It can be seen
that the sampling radius decreases sequentially, corresponding to 3 pixels, 2 pixels, and
1 pixel, respectively.
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Although the principle of the FAST feature point detection method is relatively simple,
in-depth analysis can reveal that the current description methods for FAST feature points are
often not thorough enough in analyzing the relationship between pixels and neighborhoods,
and the feature points detected by this method cannot be simply identified as corner points.
As shown in Figure 9, when there are 16 consecutive points that meet the conditions, they
may be blob points; when there are 14 consecutive points that meet the conditions, they
may be the endpoints of the line feature; and when there are 11 consecutive points that meet
the conditions, they correspond to a more ideal right-angle position. Based on experience,
this is often associated with relatively stable and reliable features, such as smaller targets,
linear objects, building edges, etc. It is obvious that neighborhood points that continuously
meet the conditions represent different types of targets, and in common research work,
violent matching is often used without distinguishing these surrogate feature points, which
wastes a lot of computational resources.
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2.3. Improvements in FAST Feature Point Detection Method

The key steps of image registration include feature detection, the generation of feature
descriptors, and key point matching. After feature point extraction is completed, it is
necessary to construct a descriptor for the feature point so that it has specificity relative to
all other feature points in the image; on the other hand, this description method also needs
to ensure that the corresponding point of the same name has similarity to another image in
order to ensure that the pair of points can form a corresponding relationship between the
two images.

For binary feature point descriptors, there are only two forms: 0 and 1. Therefore, the
selected sampling method has become one of the key factors determining the effectiveness
of descriptors. For example, the BRIEF algorithm and ORB algorithm heavily rely on
sampling templates. The BRISK algorithm adopts a relatively fixed sampling mode, but
requires secondary sampling after determining the main direction, resulting in a slightly
larger computational load. Meanwhile, these description methods do not use information
from the extraction process, resulting in a waste of computing resources.

Therefore, even though the current registration method to extract feature points
based on FAST is relatively fast, there is still room for improvement. After studying
the relationship between FAST feature points and neighborhoods, this article has made
specific improvements.

Firstly, when describing and matching feature points, FAST feature points are clearly
divided into “bright feature points” and “dark feature points” to represent the relationship
between feature points and their neighbors, and the extraction process is recorded. The
basis for this improvement is that for homologous aerial images, feature points will not
undergo light–dark reversal within a small time interval. Although there may be changes
in brightness, the relative relationship will not undergo fundamental changes. Based on
the above settings, this article designs a new feature description method. Firstly, a 16-bit
binary description vector was added to record the grayscale relationship between the point
and its neighborhood, and the accumulation and differentiation of these 16 bits were used
to distinguish between the set of bright feature points {B} and the set of dark feature points
{D}. This is because, when comparing brightness, if there are 9 consecutive points with
grayscale values greater than the threshold of P points, it is proven that P points are dark
points. The number of “1” in these 16-bit description vectors should be ≥9, that is, the sum
of each bit should be ≥9. Conversely, if the number of 0 values is greater than 9, the sum of
each bit should be less than 7, and the extracted feature points are bright points. Based on
this, a total of four feature point sets, {B1}, {B2}, {D1}, and {D2}, can be obtained from the
two images. When performing feature point matching, the corresponding feature points
can be taken for calculation.

Secondly, based on the number of consecutive neighborhood points that meet the
conditions, blob points, lines, and corner points can be distinguished. For FAST with a
radius of 3 pixels, if the difference between the 16 detection points and the center point
during the extraction process meets the threshold, i.e., all 0 or all 1, it represents that the
center point is the extreme value of the region. However, due to advancements in modern
sensor technology, the number of pixels in a single image is often over one million, and it is
rare for a small object to occupy only one pixel in airborne images. This is reflected in the
image array, where at least one point in the surrounding 8 pixels has a small difference in
its grayscale, as shown in Figure 10. It can be seen that an object with a very small actual
size occupies two brighter pixels in the image, and four adjacent pixels are also bright.
Therefore, for suspected blob points, another FAST detection is performed with a radius of
1. When at least 1 of the surrounding 8 points does not meet the threshold for its grayscale
difference, the possibility of the point being noisy can be ruled out, and it can be recognized
as a blob point; otherwise, it can be determined to be noisy and removed. When there are
13–15 consecutive points that meet the conditions among the 16 points, it can be considered
that the endpoints of some approximately linear objects have been detected. When 9–12 out
of 16 points meet the conditions, they can be temporarily designated as corner points. It
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is worth noting that the preliminarily determined feature points require non-maximum
suppression to reduce feature point clustering.
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However, after constructing a 16-bit descriptor for feature points based on the extrac-
tion process, it still cannot meet the requirement of specificity in the matching process; that
is, it cannot guarantee the uniqueness of the description vector for thousands of feature
points, so it is necessary to increase the description dimension.

Due to the use of a circular neighborhood for sampling testing during feature point
extraction, this method introduces a polar coordinate system description method. The
method generates a sampling template based on an angle diffusion model and a circular
neighborhood, which divides the circumference of a feature point into several regions
according to the angle. Weighted variable region sampling is then performed on the sector
neighborhood of the feature point to generate a feature point descriptor. This is referred to
as the Weighted Angular Diffusion Radial Sampling (WADRS) method in this article. This
model can to some extent solve the feature changes in sequence images caused by frequent
changes in external conditions.

The specific methods are as follows:
Firstly, based on the size of the sampling template, the range normalization is set to

±0.5 for the X and Y matrices; for example, when the template is n × n,

(x, y) ∈ 1
n
[−(n− 1)/2, (n− 1)/2] (4)

where n is set to 21.
This matrix corresponds to an angle matrix θ, where the elements of the matrix θ are

θ = arctan(y/x) (5)

When the sampling angle is α, the difference between sine and cosine is calculated
separately, i.e., {

ds = sin θ cos α− cos θ sin α
dc = cos θ cos α + sin θ sin α

(6)

and at this point, the angular distance is

dθ = |arctan(ds/dc)| (7)

Then, the angle diffusion model of the Gaussian kernel can be obtained:

f (θ) = exp(− (dθ)2

2σθ
2 ) (8)

Here, σθ = π/(k · σdθ).
The circumference is evenly divided into 2 × K sampling intervals, and σdθ is the ratio

of the angular interval between filter orientations and the standard deviation of the angular
Gaussian function used to construct filters in the frequency plane.
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The sampling template obtained from this is shown in Figure 11a, with a size of 21 × 21
and a sampling angle of 22.5◦. Different colors represent different weights. This means
that the circumference is divided into 16 angle intervals, corresponding to the 16 sampling
directions during FAST feature point extraction. The weight values of each position within
the sampling angle are shown in Figure 11b.
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Figure 11. The sampling template: (a) A sampling template in the plane. (b) Corresponding 3D
sampling template with weights.

Based on the premise that the target occupies multiple pixels as described earlier, the
7 × 7 neighborhood with a radius of 3 centered on the feature point is no longer sampled,
but is instead sampled radially outward. The center of the circle (feature point, red point P
in Figure 12) is divided outward into m small sampling intervals based on different radii,
and the values of the sampling template are used as weights for weighted and normalized
brightness testing, as shown in Figure 12.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 21 
 

 

Here, / ( )dkθ θσ π σ= ⋅  

The circumference is evenly divided into 2 × K sampling intervals, and dθσ  is the 
ratio of the angular interval between filter orientations and the standard deviation of the 
angular Gaussian function used to construct filters in the frequency plane. 

The sampling template obtained from this is shown in Figure 11a, with a size of 21 × 
21 and a sampling angle of 22.5°. Different colors represent different weights. This means 
that the circumference is divided into 16 angle intervals, corresponding to the 16 sampling 
directions during FAST feature point extraction. The weight values of each position within 
the sampling angle are shown in Figure 11b. 

  
(a) (b) 

Figure 11. The sampling template: (a) A sampling template in the plane. (b) Corresponding 3D sam-
pling template with weights. 

Based on the premise that the target occupies multiple pixels as described earlier, the 
7 × 7 neighborhood with a radius of 3 centered on the feature point is no longer sampled, 
but is instead sampled radially outward. The center of the circle (feature point, red point 
P in Figure 12) is divided outward into m small sampling intervals based on different 
radii, and the values of the sampling template are used as weights for weighted and nor-
malized brightness testing, as shown in Figure 12. 

 
Figure 12. Illustrations of sampling intervals. 

The value of the small sampling interval centered on P1 is Ip1 

1 1

1

,
p1

P P

P

i i
I R w R

i
w R

I w
I

w
∈ ∈

∈

⋅
=




 (9) 

Figure 12. Illustrations of sampling intervals.

The value of the small sampling interval centered on P1 is Ip1

Ip1 =

∑
I∈RP1,w∈RP1

Ii · wi

∑
w∈RP1

wi
(9)

Here, wi is the value of the sampling template in the 3 × 3 neighborhood where point
P1 is located. That is, when point P1 is taken as the center of the small sampling interval, the
brightness values of 9 pixels in its 3 × 3 area are multiplied and summed with the sampling
template, and then normalized. The obtained IP1 can be compared with the brightness
Ip of feature point P, thus obtaining a binary comparison result. By extrapolating along
the radial direction in sequence, an l-bit binary descriptor can be obtained. It should be
noted that when the sampling angle changes, interpolation methods need to be used to
resolve the situation where the sampling interval is not at the center of the pixel. According
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to different needs, simple rounding can be used to form a sampling template to accelerate
the calculation speed, as shown in Figure 13. In addition, due to the independence of
each sampling interval, 16 angle intervals can be simultaneously sampled through parallel
computing to improve the speed of descriptor construction.
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Based on this, the feature point description method designed in this article is as follows:
firstly, a 16-bit circular neighborhood feature S is added, and 7 brightness test results within
16 angle intervals are recorded in binary form. Therefore, the descriptor for each feature
point is a 128-bit binary vector.

As the images are mapped using geographic information, the directions in the two
images are largely consistent. Due to the size of the sampling template, the angular error in
the geographic information is not sufficient to cause sampling errors.

2.4. Matching of Feature Point Descriptors

Due to the small error in the calculation results of geographic information, the search
range can be defined based on the position of feature points in the ECEF coordinate
system before descriptor matching is performed. Usually, during the matching stage of
feature point binary descriptors, Hamming distance is used to evaluate the similarity
between descriptors.

The Hamming distance represents the number of different bits corresponding to two
code strings of the same length. XOR is performed on two strings and the number of results
is counted as 1. The number of 1 represents the Hamming distance between two strings.
The calculation formula is shown in Equation (10).

DH(x, y) =
k−1

∑
i=0

k−1

∑
j=0 j 6=i

aij (10)

Based on the modification of FAST in this article, when matching feature points in
two images, there is no need for brute-force matching, but a tree search method is used
instead to improve efficiency. Firstly, based on whether the feature points come from {D} or
{B}, they are assigned to the corresponding subset and then further divided into smaller
subsets based on the absolute value of the ring neighborhood feature S. In theory, when
calculating the Hamming distances of the circular neighborhood features S1 and S2 from
two feature points in two images, the two feature points with the smallest distance are most
likely to be points with the same name. Therefore, sorting can be based on the Hamming
distance between S vectors first. Usually, due to perspective projection in aerial images, the
change in neighborhood features does not exceed one quadrant, so the Hamming distance
between S vectors usually does not exceed 4. Due to using only a 16-bit S vector for the
initial sorting, the filtering speed is fast and the efficiency is high. When the Hamming
distance of the S vector meets the condition, the Hamming distance between the remaining
16 × 7 bits is calculated to complete the matching.

The relative position relationship of feature points can be determined based on geo-
graphic information, so it can eliminate mismatched points that are significantly out of the
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tolerance range more effectively than the Random Sample Consensus (RANSAC) method,
thereby ensuring the accuracy of registration.

After feature point matching is completed, an accurate image transformation model
can be calculated to complete image registration, laying a solid foundation for subsequent
processing processes such as stitching and fusion. However, it is worth noting that if the
imaging distance is not far enough and there are objects with significant height differences
in the image, the projection directions of taller objects in the two images may be inconsistent
due to parallax. Therefore, it is necessary to find ways to eliminate stitching marks during
the subsequent stitching process.

3. Experiments
3.1. Image Pairs and Conditions

In this section, we will compare our method with the SURF, Harris, BRISK, and ORB
algorithms. The SURF algorithm is widely used due to its balanced accuracy and speed;
Harris is a classic corner-based registration method; and BRISK and ORB are mature binary
registration methods. These comparison methods were all implemented in MATLAB for
easy display and comparison.

The image pairs used in the experiment are aerial images obtained during actual
flight, which inevitably involves changes in perspective. The differences in the images
include changes in brightness, translation, rotation, scaling, geometric distortion caused by
perspective, and cloud and mist occlusion, as shown in Figure 14.
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The only significant differences in the first set of images are scale and translation.
However, since this is an actual captured image, rather than one obtained by scaling and
translating an image, the actual pixel features also differ. The second group of images
has significant differences in perspective and brightness. The third, fourth, and fifth
groups of images also exhibit significant angle rotation and movement, which can easily
cause changes in the neighborhood features of feature points. The sixth group of images
is obstructed by clouds and mist, which can easily cause changes in the neighborhood
features of feature points.

3.2. Results

We calculated the registration time (T), number of extracted feature points (N1, N2),
number of original matched point pairs (Mo), number of correct matching point pairs (Mc),
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and pixel error (RMSE). The Effective Correct Matching Rate (ECMR) is important in our
model because if there are too many incorrect matches, it will require more computing
resources. The calculation of the projection transformation model requires four or more sets
of correctly matching point pairs. Therefore, when calculating the effective accuracy, we
first subtract 4, and then divide the number of correct matching point pairs by the number
of matching point pairs, i.e., (Mc − 4)/(Mo − 4). Due to the small number of correct point
pairs in the comparison algorithm, the threshold of the comparison algorithm was appro-
priately adjusted in the experiment (such as when a certain method fails), but the algorithm
proposed in this article did not manually change its parameters. Nevertheless, the number
of correct point pairs compared to algorithms was not satisfactory. The experimental results
will be presented in groups below.

3.2.1. The First Group

In this group of experiments, the BRISK algorithm failed during the registration
process due to an insufficient number of successful point pairs. In this article, we overlap
two images and demonstrate the local details of various methods at the seams of the two
images, as shown in Figure 15. Due to the large coverage of the image, it is not easy
to observe misalignment. Therefore, in the overlapping image, four red boxes are used
to select the seams for local magnification, in order to facilitate the observation of pixel
misalignment. On the right are four local enlarged images corresponding to each method.
Subjectively, it can be seen that the ORB algorithm has the greatest misalignment.
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Table 1. Statistical information for the first group.

Method T (ms) N1 N2 Mo Mc RMSE ECMR (%)

SURF 122.58 504 329 53 42 0.96 77.55
Harris 255.09 55 52 4 4 1.50 -
BRISK 404.89 224 255 1 1 (Failed) -
ORB 25.58 247 274 37 16 2.18 36.36

Proposed 21.32 97 145 47 45 0.95 95.35
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3.2.2. The Second Group

In this group of experiments, the BRISK algorithm and the ORB algorithm failed
during the registration process due to an insufficient number of successful point pairs. The
local details of various methods are shown in Figure 16 and the statistical information is
shown in Table 2. In the overlapping image, three red boxes are used to select the seams
for local magnification, in order to facilitate the observation of pixel misalignment. On the
right are three local enlarged images corresponding to each method. Subjectively, it can be
seen that the Harris algorithm has the greatest misalignment.
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Table 2. Statistical information for the second group.

Method T (ms) N1 N2 Mo Mc RMSE ECMR (%)

SURF 115.48 111 176 39 15 0.74 31.43
Harris 330.4 920 816 12 8 0.97 50
BRISK 96.71 228 240 0 0 (Failed) -
ORB 19.9 151 351 25 0 (Failed) -

Proposed 22.8 127 152 21 16 0.81 70.59

3.2.3. The Third Group

In this group of experiments, the Harris, BRISK, and ORB algorithms failed during
the registration process due to an insufficient number of successful point pairs. The local
details of various methods are shown in Figure 17 and the statistical information is shown
in Table 3. In the overlapping image, three red boxes are used to select the seams for local
magnification, in order to facilitate the observation of pixel misalignment. On the right
are three local enlarged images corresponding to the corresponding algorithm. Due to the
insufficient number of correctly matched point pairs, the SURF algorithm’s transformation
model has significant misalignment in the third region.
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Table 3. Statistical information for the third group.

Method T (ms) N1 N2 Mo Mc RMSE ECMR (%)

SURF 122.15 482 309 38 8 4.7 11.76
Harris 435.1 415 564 5 3 (Failed) -
BRISK 424.22 771 503 2 0 (Failed) -
ORB 43.34 209 152 28 0 (Failed) -

Proposed 36.75 237 285 18 12 1.13 57.14

3.2.4. The Fourth Group

In this group of experiments, the BRISK algorithm and the ORB algorithm failed
during the registration process due to an insufficient number of successful point pairs. The
local details of various methods are shown in Figure 18 and the statistical information is
shown in Table 4. In the overlapping image, three red boxes are used to select the seams
for local magnification, in order to facilitate the observation of pixel misalignment. On the
right are three local enlarged images corresponding to each algorithm. Subjectively, there is
no obvious difference between the three methods.
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Table 4. Statistical information for the fourth group.

Method T (ms) N1 N2 Mo Mc RMSE ECMR (%)

SURF 94.75 486 226 67 37 0.98 52.38
Harris 274.17 1440 1208 54 37 1.17 66
BRISK 376.85 591 323 3 0 (Failed) -
ORB 27.76 214 121 15 0 (Failed) -

Proposed 23.95 193 104 54 44 1.13 80

3.2.5. The Fifth Group

In this group of experiments, the Harris algorithm and the BRISK algorithm failed
during the registration process due to an insufficient number of successful point pairs. The
local details of various methods are shown in Figure 19 and the statistical information is
shown in Table 5. In the overlapping image, three red boxes are used to select the seams
for local magnification, in order to facilitate the observation of pixel misalignment. On the
right are three local enlarged images corresponding to each algorithm. Subjectively, it can
be seen that the ORB algorithm has the greatest misalignment.
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Table 5. Statistical information for the fifth group.

Method T (ms) N1 N2 Mo Mc RMSE ECMR (%)

SURF 95.75 88 130 7 5 1.21 33.33
Harris 419.07 243 36 2 2 (Failed) -
BRISK 385.3 225 237 2 2 (Failed) -
ORB 24.89 252 215 35 6 2.19 6.45

Proposed 21.87 42 54 28 16 0.89 50

3.2.6. The Sixth Group

In this group of experiments, the BRISK algorithm failed during the registration pro-
cess due to an insufficient number of successful point pairs. The local details of various
methods are shown in Figure 20, and the statistical information is shown in Table 6. In the
overlapping image, three red boxes are used to select the seams for local magnification in
order to facilitate the observation of pixel misalignment. On the right are three local en-
larged images corresponding to each algorithm. Subjectively, there is no obvious difference
between the four methods.
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Table 6. Statistical information for the sixth group.

Method T (ms) N1 N2 Mo Mc RMSE ECMR (%)

SURF 346.26 168 443 21 12 1.03 47.06
Harris 432.51 1075 1172 16 9 1.07 41.67
BRISK 112.29 324 463 4 2 (Failed) -
ORB 94.91 366 545 18 6 1.37 14.29

Proposed 45.76 186 341 46 29 1.05 59.52

4. Discussion

Based on the above comparative experiments, several obvious facts can be seen:

1. The images taken at different times can be considered as “non homologous” or
“multimodal” images to some extent due to changes in external conditions. The actual
aerial images obtained from this flight are different from those of experiments using
simulated images. Although various registration methods extract more feature points,
the actual success rate is not high. In some cases, registration failure may occur, so
effective feature points are crucial for successful registration.

2. The accuracies of the Harris, BRISK, and ORB algorithms in airborne image processing
are not ideal, and image translation and brightness changes, as well as thin cloud
cover, are likely to occur. However, the success rate is lower for large angle differences.

3. The method proposed in this article is comparable to SURF in terms of registration
accuracy and overall accuracy, but is about four times faster than SURF.

Due to the limitations of the processing scope, the method proposed in this paper
can avoid some useless calculations and usually achieved a better speed than ORB. At the
same time, this method has a high accuracy and can ensure successful image registration
without human intervention. This is very important in remote sensing applications for
ensuring the timeliness of image processing. Some classic methods have low accuracy
when processing real acquired remote sensing images, which may be due to ideal usage
conditions or validation using simulated images. This is because, when obtaining remote
sensing images, the imaging system is constantly affected by changes in external conditions,
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resulting in more uncertain factors. Understanding how to improve the robustness of
methods is one potential direction for future research.

5. Conclusions

This article proposes a fast image registration method that integrates aircraft parame-
ters with a new sampling and matching method to achieve coarse-to-fine image registration.
Firstly, based on the parameters of the aircraft, a coordinate transformation method was
used to achieve rough image matching, which limits the scope of image processing and
reduces computational complexity. Then, by analyzing the characteristics of the FAST
feature point extraction process, a novel weighted angle diffusion radial sampling method
was designed to construct a binary descriptor for the feature points. At the same time, the
brightness comparison results of the FAST extraction process were used to add a feature to
the feature points, which can be used to sort the feature points to reduce computational
complexity. Afterwards, feature point matching was performed based on limited over-
lapping area information. The method designed in this article has a high success rate at
processing relatively complex aerial images, and does not require control points, and so can
provide a foundation for subsequent processing requirements such as image stitching. In
the future, we can consider introducing this approach into deep learning and establishing a
new network model to further improve the accuracy and success rate of image registration.
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