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Abstract: The active-matrix technology incorporates a transistor to exert precise control over each
pixel within a pixel array, eliminating the issue of crosstalk between neighboring pixels that is
prevalent in the passive-matrix approach. Consequently, the active-matrix method facilitates the
realization of high-resolution arrays, and this inherent advantage has propelled its widespread
adoption, not only in display applications but also in diverse sensor arrays from lab to industry. In this
comprehensive review, we delve into instances of active-matrix arrays utilizing thin-film transistors
(TFTs) that leverage emerging materials such as organic semiconductors, metal oxide semiconductors,
two-dimensional materials, and carbon nanotubes (CNTs). Our examination encompasses a broad
classification of active-matrix research into two main categories: (i) displays and (ii) sensors. We not
only assess the performance of TFTs based on emerging materials within the active-matrix framework,
but also explore the evolving trends and directions in active-matrix-based displays and sensors.
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1. Introduction

Thin-film transistors (TFTs), based on field-effect transistors (FETs), are manufac-
tured through a bottom–up process that involves the systematic stacking of layers. This
bottom–up approach bestows significant process advantages, offering a considerable level
of flexibility in structural design and material selection, thereby providing TFTs with a
highly versatile platform. This design flexibility allows TFTs to extend beyond display
backplanes [1–3] into various device areas, including digital and analog circuits [4–9] and
image sensors [10–12]. In particular, many studies have been carried out recently to apply
emerging materials such as organics [13–17], metal-oxide semiconductors [18–21], two-
dimensional (2D) materials [22–24], and carbon nanotubes (CNTs) [25–28], rather than Si,
as TFT channels.

While demonstrations have often been limited to the unit device level, proving prac-
tical device feasibility requires expanding to array scale. These array types are broadly
categorized as passive-matrix [29,30] and active-matrix [31,32]. The passive-matrix takes
the form of a crossbar array and has the advantage of a simple structure and low manufac-
turing cost. However, resolution improvement is constrained by crosstalk issues between
adjacent pixels in the passive-matrix [32]. On the other hand, active-matrix, with a TFT in
each pixel enabling independent pixel operation, avoids crosstalk and can achieve higher
resolution [33]. This has led to the adoption of active-matrix not only in displays but also
in various sensors, including photodetectors [34–36] and pressure sensors [37–39], etc.

In this review, we highlight research outcomes on active-matrix-based displays and
various sensors, focusing particularly on studies implementing active-matrix with TFTs
based on emerging materials. Furthermore, we revisit the specific purposes served by each
sensor and explore the technologies they use. This review explains the interest of the use
of the active-matrix approach across diverse applications and investigates its potential for
expanding practicality from lab to industry.
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2. Thin-Film Transistors and Active-Matrix Array

TFTs are mainly fabricated in a bottom–up process, unlike Si-based metal-oxide-
semiconductor field-effect transistors (MOSFETs), which are manufactured in a top-down
process [40]. A bottom–up process-based TFT is not only free in terms of designing device
structure but also has excellent substrate compatibility [41–43]. In addition, a TFT can be
implemented based on various processes such as spin coating [44,45], inkjet printing [46,47],
photolithography [48,49], and thermal evaporation [50,51]. Through considerable effort,
large-area processes have also become possible. Securing large-area process technology
has enabled development beyond the characteristic evaluation at the unit device level
to TFT-based system levels, such as digital and analog circuits, including active-matrix
arrays. In particular, active matrices can be applied to various applications and offer many
advantages. The active-matrix array is a method originally used for addressing the pixels
in the display. Unlike the passive-matrix, which is a crossbar array that crosses horizontally
and vertically, the active-matrix array contains one transistor per unit pixel. In the active-
matrix, pixels are selected by controlling the on/off of the TFT. The very low off current of
the TFT prevents the crosstalk issues that are problematic in the passive-matrix. This leads
the active-matrix array to be used in various ways, such as sensor arrays and displays.

As mentioned earlier, the active-matrix array was initially adopted as an addressing
method for displays and was later used to drive sensor arrays beyond displays. The driving
methods of a sensor array and a display are not significantly different. A display converts
electrical signals within the system into light. On the other hand, in a sensor array, the
opposite process is achieved by converting information such as light and temperature into
electrical signals through sensor devices and processing them in the internal system. In
other words, both the display and the sensor array are the same up to the point of selecting
a specific column through a switching transistor, and the only difference is the direction of
signal transmission through the data line.

The implementation of an active-matrix array allows for the expression and sensing
of more information, such as displaying a specific image or sensing the distribution of
temperature or pressure. These unique features of the active-matrix array contribute to the
ongoing development of advanced display and sensor systems.

3. Active-Matrix-Based Displays
3.1. Liquid Crystal Display (LCD)

A liquid crystal display (LCD) is one of the types of displays and is currently used
in most televisions and monitors. The working principle is to control the amount of light
transmitted by controlling the arrangement of liquid crystals located between two polarizers
through voltage. To express color, color filters corresponding to red, green, and blue are
used. Additionally, there are LCDs that are driven by using a reflector instead of a backlight
to reflect external light. Cong et al. demonstrated an active-matrix polymer-dispersed
liquid crystal (PDLC) seven-segment display using CNT TFT [52]. They utilized PDLC,
formed by embedding micro-sized liquid crystals into a polymer matrix, and controlled the
transparent or opaque state based on the refractive index difference between the polymer
matrix and the liquid crystal, depending on the applied voltage (Figure 1a,b). The proposed
PDLC display has a structure in which two ITO electrodes are sandwiched above and
below the liquid crystal (Figure 1c). Figure 1d illustrates a CNT TFT-based backplane for
driving a seven-segment display. The fabricated PDLC display demonstrated the ability
to clearly distinguish light transmittance in the visible light region based on the voltage
applied to both ends of the PDLC. Building on this capability, they successfully displayed
numerical information by selectively controlling the liquid crystal of each pixel through
CNT TFT.
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tion of displaying the numbers “1”, “2”, and “3” on blue, green, and red backgrounds, respectively, 
by selectively making pixels transparent (adapted from [52] with permission from American Chem-
ical Society). 
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Peng et al. developed a driving circuit for an 8 × 8 active-matrix LED based on organic 
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ually alleviating the roughness by forming screen-printed silver and parylene-C as the 
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Figure 1. Active-matrix array-based liquid crystal display. (a) Transparent and (b) opaque states of
PDLC pixels depending on whether or not voltage is applied to the electrode. (c) Cross-sectional
view of a unit pixel of a PDLC display driven by CNT-TFT. (d) Optical image of the CNT-TFT-
based back panel before PDLC integration and SEM image of the CNT-TFT. (e) Transmittance for
wavelengths in transparent and opaque states depending on whether voltage is applied. (f) Demon-
stration of displaying the numbers “1”, “2”, and “3” on blue, green, and red backgrounds, respec-
tively, by selectively making pixels transparent (adapted from [52] with permission from American
Chemical Society).

3.2. Light-Emitting Diode (LED)

Unlike LCD, light-emitting diode does not require a backlight and the pixels emit light
on their own; so, the pixels can be turned off completely, making real darkness possible. In
addition, since there is no need for layers such as backlights and polarizers, as required
in LCD, it is possible to implement thinner displays. These light-emitting diodes (LEDs)
are divided into organic LED (OLED) [53–57], micro- LED (µ-LED) [58,59], and quantum
dots LED (QLED) [60,61], depending on the materials used, and each is being actively
researched and developed by several researchers. In particular, many attempts to apply
emerging materials such as organic, oxide semiconductor, and 2D materials as backplanes
have been reported.

Peng et al. developed a driving circuit for an 8 × 8 active-matrix LED based on
organic TFTs (OTFTs) on paper [62]. They utilized paper with high roughness as a substrate,
gradually alleviating the roughness by forming screen-printed silver and parylene-C as
the gate electrode and gate dielectric. The reduced surface roughness led to the successful
implementation of an 8 × 8 organic transistor array with a 100% yield (Figure 2a,b). Finally,
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they integrated LEDs into the array and demonstrated the display of character information
by controlling the active-matrix LEDs with the proposed organic transistor array (Figure 2c).
This highlights the feasibility of implementing functional circuits, such as active-matrix
arrays, using organic semiconductors even on rough substrates like paper.
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Figure 2. Active-matrix array-based light emitting diodes. (a) Cross-sectional view of a unit pixel of
an OTFT-based active-matrix driver integrated with an LED. (b) Circuit scheme constructed to drive
the array and (c) demonstration of display of text images (adapted from [62] with permission from
Springer Nature). (d) Cross-sectional schematic diagram of a TFT-µ-LED pixel integrated through flip
chip bonding (adapted from [63] with permission from John Wiley and Sons). (e) Driving a flexible
OLED display based on a backplane circuit composed of MoS2 attached to a human wrist (adapted
from [64] with permission from American Association for the Advancement of Science). (f) Four
different configurations to compare the characteristics of each combination of QLED structure and
CNT TFT type (adapted from [65] with permission from John Wiley and Sons).

Um et al. developed an active-matrix LED display by integrating GaN µ-LEDs with an
amorphous indium-gallium-zinc-oxide (a-IGZO) TFT backplane [63]. First, they fabricated
the a-IGZO TFT backplane and GaN µ-LED pixel array on glass and sapphire substrates,



Electronics 2024, 13, 241 5 of 21

respectively. Subsequently, they completed the implementation of a 128 × 384 µ-LED
array display by integrating the GaN µ-LED on the sapphire substrate into the a-IGZO
TFT backplane through flip chip bonding (Figure 2d). The flip chip bonding process
was conducted below 100 ◦C, ensuring no deterioration in the characteristics of the TFT
backplane, and consequently, text and portrait images were successfully displayed on
the display.

Choi et al. attempted to configure the backplane of the OLED display with MoS2
TFT [64]. They optimized the characteristics of MoS2 TFT before applying it as a driving TFT.
The top and bottom of the MoS2 channel were encapsulated with Al2O3, resulting in high
on-current and low hysteresis characteristics. The introduction of the Al2O3 layer reduced
the charge trap density at the interface, contributing to improved electrical properties.
Using MoS2 with enhanced characteristics, they implemented an OLED display on a
flexible polymer substrate. The positive threshold voltage of the MoS2 TFT reduced power
consumption as it did not require a separate voltage to turn off the pixel. They demonstrated
real-time control of text images by attaching a flexible OLED display with the manufactured
MoS2 backplane to a wrist (Figure 2e).

Baek et al. implemented a CNT TFT-based active-matrix QLED display [65]. In
particular, to investigate the optimum design for a high-performance QLED array, they
compared the characteristics of a total of four types of QLED arrays according to the type
of driving TFT (p- or n-type) and the connection configuration between QLED and the
driving transistor (conventional QLED or inverted QLED) (Figure 2f). They passivated
Si3N4 on p-type CNT TFT to prepare n-type CNT TFT. The conversion of CNT TFT to n-type
operation through Si3N4 passivation is because the positive fixed charge in Si3N4 causes n-
type doping and protects it from atmospheric oxygen and water, which cause p-type doping
effects [65,66]. Subsequently, the distinction between conventional QLED and inverted
QLED was defined based on whether the upper Al and lower ITO electrodes served as
cathode/anode or anode/cathode, respectively. At this point, depending on whether
ITO, the bottom electrode of QLED, is in contact with the drain or source of the driving
transistor, the cases were classified into four structures: (i) drain contact with the bottom
anode (DCBA), (ii) source contact with the bottom cathode (SCBC), (iii) drain contact with
the bottom cathode (DCBC), and (iv) source contact with the bottom anode (SCBA). As a
result of comparing the electrical and optical characteristics of the four structures, when
the QLED was connected to the source of the driving TFT (SCBC, SCBA), it showed poorer
performance than when connected to the drain. This is because the voltage between the
gate and source, which determines the drain current, is reduced due to the voltage drop
occurring at the QLED. Therefore, when applying a p-type or n-type TFT as a driving TFT,
it is advantageous to adopt the DCBA and DCBC structures. Based on this, they ultimately
produced a 5 × 5 QLED array with p-type and n-type CNT TFTs as driving TFTs and
demonstrated real-time display of character images.

3.3. Light-Emitting Electrochemical Cell (LEC)

Unlike OLED, which requires additional layers such as an electron injection layer
and an electron transport layer in addition to the light-emitting layer, a light-emitting
electrochemical cell (LEC) has a simple structure consisting of a light-emitting layer and
two metal electrodes [67–70]. This simple structure is a great advantage, especially when
implementing stretchable light-emitting devices. In order to provide elasticity to existing
OLEDs, elasticity must be imparted to all layers, including the electron and hole injection
layers as well as the light-emitting layer. However, in the case of LEC, only the light-
emitting layer needs to be elastic; therefore, the process’ difficulty is low.

Liu et al. utilized the advantages of LEC to implement an organic-based stretchable
active-matrix organic LEC (OLEC) array [71]. They first fabricated a stretchable active-
matrix TFT array to drive a stretchable OLEC array. They mixed a crosslinker containing
flexible polydimethysiloxane into conjugated polymers to prevent the semiconductor layer
from delamination from the perfluorinated elastomer used as the gate dielectric when
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the TFT is stretched (Figure 3a). At this time, the introduced crosslinker strengthened the
bond between the two layers by crosslinking the conjugated polymers and the elastomeric
dielectric layer during the annealing process, thereby preventing delamination of the semi-
conductor layer when stretching. Based on this, they successfully fabricated a stretchable
TFT array (Figure 3b,c). Then, OLEC was integrated on the TFT array (Figure 3d), and it
was demonstrated that OLEC could be driven through OTFT both without twisting and
with twisting (Figure 3e,f).
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Figure 3. Active-matrix array-based light emitting electrochemical cell. (a) Cross-linking process with
the dielectric layer through a cross-linker mixed in the semiconductor conjugated polymer to prevent
the semiconductor layer from delamination the gate dielectric under stretching. (b) Photograph of
a fully stretchable OTFT active-matrix array. (c) Strain testing from 0% to 100% of the stretchable
transistor array. (d) Schematic diagram of vertical integration of active-matrix OTFT array and LEC
array. Demonstration of operation of an active matrix OLEC array (e) with and (f) without twisting,
respectively (adapted from [71] with permission from Springer Nature).

4. Active-Matrix-Based Sensors

Unlike displays that process internal electrical signals to output visual information,
sensors play a crucial role by receiving information about specific external elements and
converting it into corresponding electrical signals. Sensors are categorized based on the
detection target, ranging from particles like photons [72–75] and gases [76–78] to external
physical changes such as pressure [37,79,80], strain [81–83], and temperature [83,84]. The
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development of these various sensors can provide many benefits to humans, such as
preventing accidents from occurring caused by harmful elements such as toxic gases and
ultraviolet, and enabling an accurate evaluation of the strength of products produced at
manufacturing sites. Furthermore, by mimicking human sense organs such as vision and
touch, sensors can contribute to the ongoing development of artificial intelligence and
robotics, paving the way for innovative technologies in the future.

4.1. Photosensors

Photosensors are devices that convert optical signals into electrical signals and can per-
form the function of vision among the human senses. In addition, photosensors can be man-
ufactured by targeting visible light [12,34,85], ultraviolet [86–88], and infrared [35,89,90]
depending on the purpose. In particular, it is interesting that the presence or absence of
light irradiation that humans cannot see, such as ultraviolet and infrared, can be detected
through the photosensor.

Takahashi et al. achieved an imager capable of detecting visible light by monolith-
ically integrating a CNT-based backplane with organic photodiodes [91]. They utilized
PI substrates to take advantage of the material advantages of CNT, regioregular poly(3-
hexylthiophene) (P3HT), and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) in both
TFTs and photodiodes. This approach resulted in the successful demonstration of a visible
light imager with flexibility. Moreover, they integrated a Gd2O2S/Tb scintillator film,
capable of converting X-rays into green light, into the visible light imager (Figure 4a,b). The
introduction of the Gd2O2S/Tb scintillator film facilitated X-ray detection without causing
damage to the organic active layer of the photodiode (Figure 4c).

X-rays possess strong energy and can be harmful to the human body, necessitating
their detection for safety. In contrast, near-infrared (NIR), like X-rays, is invisible to
humans but has very weak energy and is not harmful to the human body. Detection
of NIR is significant as it can be utilized in various applications, including temperature
measurement, near-field communication, and medical fields. In medical applications, the
deep penetration characteristics of NIR enable measurements such as heart rate and oxygen
saturation. Li et al. employed solution-processed In2O3 to construct the backplane of a
NIR sensor array [89]. Additionally, they integrated solution-processed In2O3, known
for its high electron mobility, into an NIR-responsive hybrid phototransistor along with
an organic bulk heterojunction (Figure 4d). PTB7-Th and BTPV-4F were used as donor
and acceptor materials, respectively, for the organic bulk heterojunction. Among the
two materials, BTPV-4F is responsible for the actual absorption of NIR, while PTB7-Th is
intended to improve the separation of electron–hole pairs through a built-in electric field
generated by the formation of an organic bulk heterojunction. Finally, they manufactured
a 16 × 16 hybrid NIR sensor array based on unit pixels in the form of one transistor–one
phototransistor and successfully detected the NIR irradiation area.

The detection of a specific wavelength band, such as X-ray or NIR, is determined by
the intended use of the sensor [92]. To imitate human vision, the sensor must be designed to
target the visible light region, and each pixel should have the ability to distinguish between
red, green, and blue light. Kim et al. introduced CdSe quantum dots as the active layer of a
phototransistor on top of an a-IGZO transistor as a method to implement a color-selective
imaging function. They initially demonstrated photodetector arrays with phototransistors
capable of detecting red, green, and blue light, respectively, arranged in the lateral direction.
Subsequently, to enhance the resolution, they attempted to vertically stack the quantum
dots responsible for red, green, and blue. By investigating the photoresponse characteristics
according to the stacking order of the red, green, and blue quantum dots, it was shown
that stacking them from the bottom is the optimal structure. Based on this, they finally
implemented color-selective photodetection at the same region by integrating an a-IGZO
TFT-based backplane and a phototransistor with vertically stacked quantum dots.
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Figure 4. Active-matrix array-based photosensors. (a) Flexible imager integrated with a GOS film
that converts X-rays into green light and (b) a cross-sectional view of one pixel. (c) Spatial mapping
via an X-ray imager for irradiation of a circular X-ray source (adapted from [91] with permission from
American Chemical Society). (d) Illustration of a hybrid phototransistor structure for NIR detection.
(e) Scheme image in which the phototransistor array is irradiated with NIR and the corresponding
(f) normalized photocurrent mapping of the phototransistor array (adapted from [89] with permission
from American Chemical Society). (g) Schematic diagram of the structure of the vertically stacked
QD/a-IGZO phototransistor and (h) transfer curve when irradiated with red, green, and blue light
(adapted from [92] with permission from John Wiley and Sons). (i) A 10 × 10 active-matrix array
based on an all-organic flexible photosensor, and (j) schematic of transmission mode-based PPG
sensing and (k) measured pulse response (adapted from [93] with permission from Springer Nature).

The primary function of a photosensor is to detect light, but when its light-sensing
properties are utilized, it can be actively employed in medical applications, such as for
measuring a person’s heart rate and oxygen saturation. Ruiz-Preciado et al. fabricated
a highly flexible all-organic photosensor array by integrating organic photodiodes and
OTFTs through an inkjet-printing process [93]. They demonstrated photoplethysmogra-
phy (PPG) measurement by directing a red LED onto a finger and observing the pulsat-
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ing blood flow through the current response in the photosensor array generated by the
transmitted light.

4.2. Gas Sensor

Gas sensors are widely applied as devices that detect the presence of target gas in a
specific space. In particular, measuring oxygen concentration or detecting harmful gases
can inform people in the area of danger early and help them evacuate. Therefore, it is
important for gas sensors to detect even minute levels of concentration quickly. Kim et al.
demonstrated NO2 gas detection using a two-step grown MoS2 TFT-based gas sensor
array (Figure 5a) [94]. Here, the two-step growing method proceeds with a sputtering step
followed by a thermal sulfurization step. For both the switching TFT and the sensing TFT,
two-step grown MoS2 was applied as a channel, but the switching TFT was passivated with
a SiO2 layer to prevent reaction with gas (Figure 5b). In the case of the sensing TFT, the
drain current decreased as the concentration of NO2 gas increased (Figure 5c). This means
that NO2 gas increases the resistance of the MoS2 channel, and when the concentration
of each NO2 gas was 128 ppm, the resistance increased by about 60% compared to the
initial resistance (Figure 5d). The reason why MoS2 TFT was able to react to NO2 is because
two-step grown MoS2 has a poly-crystalline structure and many grain boundaries. In fact,
for this reason, defects are intentionally formed to improve reactivity to gas.
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Figure 5. Active-matrix array-based gas sensor. (a) Image of MoS2-based 7 × 6 active-matrix gas
sensor, and (b) circuit schematic diagram and image consisting of switching TFT and sensing TFT.
(c) Change in transfer curve of MoS2 TFT according to NO2 concentration. (d) Comparison of
responses of nine MoS2 gas sensors to the same NO2 concentration (adapted from [94] with permission
from Springer Nature).

Unlike photosensors and pressure sensors, gas sensors have not yet been implemented
at the array level in many cases. This may be because, unlike other sensors that can obtain
meaningful information by detecting specific image information or pressure distribution,
gas sensors only need to detect the presence and concentration level of a specific gas.
Therefore, if expanded in the direction of simultaneously detecting two or more different
gases rather than just one specific gas, a gas sensor array could also be attractive.
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4.3. Pressure Sensors

Shin et al. implemented a pressure sensor array based on graphene FET with air-
dielectric [95]. They used two plastic panels connected by elastic joints as a substrate and
created source/drain patterns and gate patterns on each panel. Afterward, by folding
the elastic joint to the boundary, the two panels were completely overlapped and the FET
structure was completed. At this time, the thickness of the air-dielectric corresponding
to the gap between the graphene and the top gate is determined by the thickness of
the elastomeric partition spacers. Therefore, the thickness of the air-dielectric and the
pressure are inversely proportional, and as the pressure increases, the thickness of the
gate dielectric of the graphene FET decreases. This means that an increase in pressure
induces the capacitance of the gate dielectric, ultimately leading to an increase in the
current of the graphene FET. Additionally, they successfully demonstrated a transparent
pressure sensor array by introducing Ag NWs as electrodes (Figure 6a–c). However, the
proposed graphene FET-based pressure sensor has limitations due to high off current; so,
for low-power operation, the addition of FETs or other alternatives was needed to select
each cell.

Jang et al. replaced graphene with MoS2, a well-known 2D semiconductor, as the
channel layer to address the high-off-current issue, a drawback in existing graphene FET-
based pressure sensors [96]. Although MoS2 has a two-dimensional structure, it differs
from graphene in having a band gap suitable for a semiconductor channel. Notably, MoS2
exhibits the ability to control electrical and optical properties depending on the number
of layers. In the case of monolayer MoS2, it possesses a direct band gap and outstand-
ing optical properties. By incorporating monolayer MoS2, which exhibits both excellent
electrical and optical properties, into the pressure sensor, they successfully developed a
pressure sensor array with low power consumption. Moreover, they leveraged the opti-
cal properties of monolayer MoS2 to enhance pressure sensitivity further by introducing
mechanoluminescent materials that emit visible light when compression or friction force is
applied (Figure 6d). Through this approach, when pressure is applied to the MoS2-based
pressure sensor, not only does the dielectric thickness decrease, but the additional effect of
excess carriers being created in MoS2 by the emission of mechanoluminescent materials is
introduced. This results in an increased amount of change in current for the same pressure
(Figure 6e).

Among the existing pressure sensor types, in addition to the previously mentioned
FET-type, many piezoresistive pressure sensors have been reported. The piezoresistive type
offers the advantage of not only having a simple structure but also exhibiting high pressure
sensitivity and enabling continuous sensing. Zhao et al. developed a pressure sensor
utilizing a 64 × 64 CNT TFT-based backplane and a piezoresistive film (PRF) blended with
CNT and thermoplastic polyurethane (TPU) elastomer (Figure 6f,g) [97]. Before the full-
scale demonstration, they conducted a comprehensive investigation into the characteristics
of the pressure sensor. The sensor demonstrated faster response times, with rising and
falling times of 5 ms and 3 ms, respectively, compared to existing PRF-based pressure
sensors. Additionally, the proposed pressure sensor exhibited excellent sensitivity and
spatial resolution. Notably, it was demonstrated that the sensor could detect even the
footprint of an artificial honeybee weighing 6.7 g, as illustrated in Figure 6h.

The high sensitivity of the pressure sensor allows it to detect even minute changes
in pressure; so, it can also be applied to biosignal monitoring applications with weak
signal strength. Karner-Petritz et al. implemented a pressure sensor array, utilizing a
poly(vinylidene fluoride: trifluoroethylene) (P(VDF:TrFE))-based ferroelectric transducer
and a DNTT-based OTFT for each pixel [98]. They fabricated an organic-based pressure
sensor array on a 1 um thick parylene substrate (Figure 6i). The ultra-flexible properties
of the parylene substrate allow the pressure sensor array to be attached to uneven human
skin. Exploiting this flexibility, they measured pulse waves using pressure sensors aligned
with the direction of blood flow (Figure 6j). Moreover, they demonstrated the extraction of
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pulse wave velocity and blood pressure by analyzing the time difference at the peak point
of the pulse wave from sensors spaced apart from each other.
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Figure 6. Active-matrix array-based pressure sensors. (a) Image of transparent pressure sensor based
on air-dielectric graphene transistors. (b) Transfer curve of air-dielectric graphene transistors under
various pressures and (c) measurement of change in drain current in response to real-time pressure
change (adapted from [95] with permission from Springer Nature). (d) Illustration of MoS2-based
pressure sensor array with integrated phosphor particles with mechanoluminescence behavior.
(e) Comparison of drain current change of MoS2-based pressure sensor for pressure with and
without phosphor particles (adapted from [96] with permission from American Chemical Society).
(f) 64 × 64 active-matrix pressure sensor array composed of CNT TFTs and (g) cross-sectional
schematic of unit pixels constituting the active-matrix pressure sensor array. (h) Current map-
ping through sensed pressure when an artificial bee is placed on a pressure sensor array (adapted
from [97] with permission from American Chemical Society). (i) Schematic diagram of a pressure
sensor array in which each pixel consists of a P(VDF:TrFE) ferroelectric transducer and DNTT OTFT.
(j) Demonstration of pulse wave measurement by attaching a ferroelectric pressure sensor array to
human skin (adapted from [98] with permission from John Wiley and Sons).

Efforts persist in enhancing the performance of diverse pressure sensors, with en-
deavors directed towards incorporating additional features, including transparency. The
pursuit of high-performance pressure sensors holds significance as it can pave the way for
the creation of bio-health devices characterized by low latency and high precision. Such
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devices enable the monitoring of vital biological indicators like blood pressure and heart
rate, contributing to advancements in healthcare technology.

4.4. Strain Sensors

Sun et al. fabricated an active-matrix strain sensor array by integrating a P(VDF-TrFE)-
based piezoelectric nanogenerator (NG) and a graphene FET [99]. The bottom electrode
of the piezoelectric NG and the gate electrode of the graphene FET are connected with
patterned graphene (Figure 7a). Additionally, the conductivity of the graphene FET is
determined by the potential of the graphene gate electrode through the electrolyte. As
a result of evaluating the characteristics of the proposed strain sensor, they showed that
when strain is applied to the device, the conductivity of the graphene FET is modulated as
a piezoelectric potential is generated due to the alignment of the dipole in the PVDF that
constitutes the piezoelectric NG. They further expanded the sensor to a 4 × 4 array based
on piezopotential-gated graphene FETs and visualized the distribution of strain applied to
the substrate.

In the context of strain sensors, being devices designed to measure externally ap-
plied stress, they operate in an environment where the components can be susceptible
to damage through repetitive measurements. Consequently, there is a need for research
aimed at enhancing the reliability of strain sensors to facilitate continuous sensing. Oh et al.
introduced a semiconductor thin film with self-healing properties, offering insights into
addressing reliability issues in strain sensors [100]. They employed a semiconductor thin
film comprising a mixture of DPP-TVT-PDCA and PDMS-PDCA-Fe elastomer, determining
through an examination of carrier mobility at various mixing ratios that the optimal ratio
was 1:5. The self-healing properties of the proposed semiconductor thin film mixed with
DPP-TVT-PDCA and PDMS-PDCA-Fe elastomer result from the presence of abundant
dynamic metal–ligand coordination bonds [101]. Finally, they fabricated a 5 × 5 strain
sensor array and performed additional passivation to prevent device malfunction due to
human sweat, showing that the electrical characteristics remained stable even after 15 h
after dropping artificial sweat on the sensor array. After verifying the stability aspects,
including the self-healing properties, they successfully visualized the distribution of strain
by mapping the current of the sensors that make up the array when the center of the
5 × 5 strain sensor array was pierced with a plastic tip (Figure 7c–e).

As mentioned earlier, in order to improve the reliability and durability of the strain
sensor, it is necessary to not only ensure stability to the semiconductor layer but also
consider the stress in the interconnection between the components that make up the device.
Li et al. investigated the stress distribution throughout the strain sensor through simulation
when a horizontally increasing strain was applied to a resistive strain sensor consisting of
an elastic sensitive region and two electrodes at both ends (Figure 7f) [102]. A noticeable
stress peak occurred at the interface between the elastic-sensitive region and the electrode,
which means that in the strain sensor of the aforementioned structure, the junction between
the electrode and the elastic-sensitive region is an unstable element with a high possibility
of malfunction. Hence, they introduced an additional interconnected layer to mitigate stress
at the contact area while preserving the strain sensing characteristics. Consequently, it was
confirmed that the peak stress in the strain sensor was reduced by more than threefold
(Figure 7g). Based on this, they introduced a CB-PDMS/Ecoflex interconnected layer into
a strain sensor with Ag NW embedded in PDMS elastomer and Ag paste as the sensitive
region and electrode, respectively, and secured stability at the contact area. Finally, by
integrating a strain sensor into the flexible active-matrix OLED display, they could sense the
distribution of strain according to the bending of the display and through this, implemented
an interactive surface (Figure 7h).

Zhao et al. developed a multi-modal sensor capable of simultaneously detecting both
strain and relative humidity [103]. They applied and integrated graphene and MoS2 to
sense strain and relative humidity, respectively. Even though the two sensing functions
were performed simultaneously, mutual interference was avoided because graphene was
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insensitive to humidity and, conversely, MoS2 had a negligible response to humidity. They
attached the proposed multimodal sensor to a mask to measure human breathing frequency,
conducting measurements both before and after exercise. During this process, they could
extract the breathing frequency by analyzing the cycle in which the peak of resistance
changes for the measured strain and humidity occurred. Additionally, it was possible to
observe changes in humidity attributed to exhalation. Consequently, while enhancing the
performance of sensors such as sensitivity and response time is crucial, expanding the
capability to sense multiple elements within the same area represents a direction for further
advancement in the sensor field.
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the output current of each pixel comprising the strain sensor array when an external strain is
applied (adapted from [99] with permission from John Wiley and Sons). (c) A photograph of a self-
healable semiconducting polymer-based active-matrix strain sensor being poked with a plastic tip to
evaluate its properties, and (d) the normalized on current of the strain sensor array at that time and
(e) strain mapping obtained through simulation (adapted from [100] with permission from American
Association for the Advancement of Science). When applying a horizontally increasing strain to a
resistive strain sensor consisting of an elastic sensitive region and two electrodes at either end, stress
distribution in the sensor region (f) with and (g) without an interconnection layer. (h) Mapping of
strain distribution through resistance change according to bending operation after integrating the
strain sensor with the display (adapted from [102] with permission from John Wiley and Sons). (i) A
photo showing the insertion of a sensor capable of simultaneously measuring strain and humidity
into a mask to monitor human breathing frequency, intensity, and RH. Changes in resistance over
time of (j) strain-sensitive graphene and (k) humidity-sensitive MoS2 caused by human respiration
before and after exercise (adapted from [103] with permission from John Wiley and Sons).

4.5. Temperature Sensors

Hong et al. constructed a temperature sensor array based on a CNT TFT back-
plane [104]. The temperature sensor array consists of a total of four layers, exclud-
ing Ecoflex, which is used as a flexible substrate. The CNT TFT and temperature sen-
sor are positioned on the first and fourth layers, respectively, starting from the bottom
(Figure 8a). The gate and source lines for array configuration are located on the second and
third layers. Notably, the gate and source lines are constructed using Galinstan, ensuring
that the electrical characteristics remain stable even when the Ecoflex board is deformed.
Moreover, electrochemically synthesized polyaniline nanofiber film was employed as the
temperature sensor channel and had a resistance sensitivity of 1.0% ◦C−1 in the range
from 15 to 45 ◦C (Figure 8b). Subsequently, following the integration of the temperature
sensor with the CNT TFT, a linear change in current corresponding to temperature was
observed (Figure 8c). This enabled the calculation of the temperature based on the change
in drain current when a finger contacted the 5 × 5 temperature sensor array. Remark-
ably, the calculated temperature value closely matched the measurement obtained with an
infrared thermometer.

Ren et al. implemented a temperature sensor array consisting of a DNTT TFT and
a pentacene/Ag NPs thermistor in a 16 × 16 array (Figure 8d) [105]. The constructed
temperature sensor array demonstrated the ability to detect temperatures in the range of
20 to 100 ◦C, achieving a temperature resolution of 0.4 ◦C. In the case of the DNTT TFT,
the change in electrical characteristics in the relevant temperature range was negligible.
Instead, only the resistance of the pentacene/Ag NPs thermistor exhibited a sensitive
response to temperature. To validate the practicality of the temperature sensor, they
placed a 2 cm × 2 cm Peltier heater on the sensor, inducing a temperature change. They
successfully performed 2D temperature mapping using the temperature sensor array
(Figure 8e). Moreover, by utilizing the flexible properties of poly(ethylene naphthalate)
(PEN) used as a substrate, they demonstrated the measurement of body temperature by
attaching the sensor to a person’s forehead.

The two previous temperature sensor arrays were implemented by integrating a ther-
mistor with a resistance change sensitive to temperature on a TFT-based backplane that
is insensitive to temperature change. In addition, the focus was on implementing a tem-
perature sensor and demonstrating the measurement of the temperature distribution of an
object or body temperature. Furthermore, Kim et al. proposed a flexible temperature sensor
array designed for low-power operation [106]. To achieve a temperature sensor capable
of low-power operation, they used a voltage range corresponding to the subthreshold
region of the transistor because the subthreshold region is located near 0 V, which naturally
leads to low power consumption. In addition, the characteristic that transport of carriers
in the subthreshold region is mainly achieved by temperature-sensitive diffusion could
serve as an opportunity to sense temperature at the subthreshold region. The implemented
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subthreshold transistor-based temperature sensor operated stably even under strain of
up to 100%, and its sensitivity to temperature was recorded at a very high 9.4% ◦C−1.
Additionally, they successfully measured the surface temperature of a cold or hot spherical
metal ball using the proposed temperature sensor (Figure 8f–h).
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Figure 8. Active-matrix array-based temperature sensors. (a) Schematic diagram of a polyaniline
nanofiber temperature sensor array with CNT TFT backplane consisting of a total of four layers.
(b) Change in the normalized resistance of polyaniline nanofiber-based temperature sensor according
to temperature. (c) Change in the normalized drain current of the sensor after integration of the
CNT TFT and temperature sensor (adapted from [104] with permission from John Wiley and Sons).
(d) Circuit diagram and device structure of the unit temperature sensor constituting the flexible
temperature sensor array. (e) Schematic diagram of heated temperature distribution measurement
and 2D temperature mapping via Peltier heater located on top of the temperature sensor array
(adapted from [105] with permission from John Wiley and Sons). (f) Scheme image of measuring the
surface temperature of a metal ball using a stretchable temperature sensor array. Three-dimensional
mapping through the distribution of normalized drain current extracted from the temperature sensor
when the metal ball is (g) cold and (h) hot, respectively (adapted from [106] with permission from
John Wiley and Sons).

5. Summary

In this review, we reported on studies that implemented an active-matrix array using
TFTs based on emerging materials such as organic semiconductors, metal oxide semi-
conductors, 2D materials, and CNTs (Tables 1 and 2). The versatility of the TFT-based
active-matrix, which can overcome resolution limitations due to crosstalk issues in the
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passive-matrix, became the reason for introducing the active-matrix not only in displays
but also in various sensors. In addition, TFTs based on the bottom–up process offer a
high degree of design flexibility, allowing for freedom in material and structure selection
during production. The freedom of choice regarding design parameters allows TFTs to be
manufactured not only on rigid substrates such as silicon and glass, but also on flexible
substrates based on paper and polymers. As a result, many attempts have been reported to
provide flexibility and stretchability to active-matrix-based displays and various sensors.
In particular, the flexible and stretchable sensor array produced allows for close contact
with surfaces that are not flat, such as human skin. This is used in healthcare to measure
biological signals by minimizing the gap between the sensor and the surface to which it is
attached. It enables precise measurements in the monitoring system.

Table 1. Previous research on active-matrix array-based displays.

Application Transistor Materials Emission Materials Wavelength Band Quantum Efficiency Array Scale Ref.

LCD CNT - - - 5 × 5 [52]
micro-LED DNTT micro-LED module White - 8 × 8 [62]
micro-LED a-IGZO GaN 456 nm - 384 × 128 [63]

OLED MoS2 Alq3/C545T - - 6 × 6 [64]

QDLED CNT CdSe/CdxZn1−xSe/ZnS
QDs 609 nm 19.1% 5 × 5 [65]

OLEC PII2T SY/ionic elastomer - - 5 × 5 [71]

Table 2. Previous research on various sensor arrays based on active-matrix.

Sensor Type Transistor Materials Sensor Materials Sensitivity |Operating Voltage| Array Scale Ref.

Photo CNT P3HT:PCBM 0.15 AW−1 5 V 18 × 18 [91]
Photo In2O3 PTB7-Th/BTPV-4F 1393 AW−1 10 V 16 × 16 [89]
Photo a-IGZO CdS QD, CdSe QD 5.2 × 103 AW−1 15 V 12 × 12 [92]
Photo DPP-DTT P3HT-IDTBR 0.356 AW−1 10 V 10 × 10 [93]
Gas MoS2 MoS2 - 10 V 7 × 6 [94]

Pressure Graphene Graphene 2.05 × 10−4 kPa−1 30 V 12 × 12 [95]
Pressure MoS2 MoS2 0.045 Mpa−1 60 V 20 × 20 [96]
Pressure CNT MWCNTs/TPU composite 385 kPa−1 3 V 64 × 64 [97]
Pressure DNTT P(VDF:TrFE) 0.12 nC N−1 3 V 12 × 12 [98]

Strain Graphene P(VDF:TrFE) Gauge factor (GF): 69 1 V 4 × 4 [99]
Strain DPP-PDCA-PDMS DPP-PDCA-PDMS GF: 5.75 × 105 60 V 5 × 5 [100]
Strain - AgNWs - - 4 × 9 [102]
Strain MoS2 Graphene GF: 412 5 V 10 × 10 [103]

Temperature CNT polyaniline nanofiber 1.0% ◦C −1 10 V 5 × 5 [104]
Temperature a-IGZO Mxene - 4 V 16 × 16 [105]
Temperature DPPT-TT DPPT-TT 9% ◦C−1 1 V 5 × 5 [106]

There are many advantages to active-matrix using emerging-material-based TFTs, and
the following matters need to be considered for further development to reach industrializa-
tion in the future. (i) Although it is important to improve the performance of TFTs based
on emerging materials integrated into the active-matrix, it is necessary to secure reliability
through continuous research and evaluation of operation stability that can maintain stable
characteristics in various surrounding environments. (ii) In the case of active-matrix sen-
sors, development is needed to detect two or more factors within the same area. This will be
important in the development of gas sensors capable of detecting and identifying multiple
gases, especially in the field of gas sensors that are less scalable to array scale. (iii) In
addition, in order to advance to the industrialization stage, technology for manufacturing
a high-resolution active-matrix array must be secured through improvements in the fine
process level to improve the integration of TFTs based on emerging materials. As has been
the case so far, the development of emerging-material-based TFT and active-matrix-based
displays and sensors will continue to be implemented by many researchers, and it is clear
that it will have a beneficial impact on our lives in the future.
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