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Abstract: The study of lateral steering control for Automated Driving Systems identifies new control
solutions more often than new control problems. This is likely due to the maturity of the field. To
prevent repeating efforts toward solving already-solved problems, what is needed is a cohesive
way of evaluating all developed controllers under a wide variety of environmental conditions. This
work serves as a step in this direction. Four controllers are tested on five maneuvers representing
highways and collision avoidance trajectories. Each controller and maneuver combination is repeated
on five sets of environmental conditions or Operational Design Domains (ODDs). The design of
these ODDs ensures the translation of these experimental results to real-world applications. The
commercial software, CarSim 2020, is extended with Simulink models of the environment, sensor
dynamics, and state estimation performances to perform highly repeatable and realistic evaluations
of each controller. The results of this work demonstrate that most of the combinations of maneuvers
and ODDs have existing cheap controllers that achieve satisfactorily safe performance. Therefore,
this field’s research efforts should be directed toward finding new control problems in lateral path
tracking rather than proposing new controllers for ODDs that are already solved.

Keywords: automated driving systems; steering control; operational design domain; robust control;
parameter varying control; collision avoidance; lane keeping

1. Introduction

The vision of cars that can drive themselves (now called Automated Driving Systems)
has been a dream of science fiction since the 1950s [1]. They are thought to be capable of
greatly improving road safety and efficiency [2]. A key enabling technology is the control of
the steering wheel to safely perform driving tasks. We term this technology lateral motion
control. When lateral motion control is constrained to only modify the direction of the
front wheels of the vehicle, we call this front steering control. A benefit to constraining
lateral motion control to this type of actuation is that this actuation is quite prevalent across
passenger vehicles. Therefore, the research on this technology is readily applicable to many
passenger vehicles.

The design of a front steering controller that tracks some path or trajectory has been a
heavily researched topic since the 1950s [1]. Before the late 1990s, most controllers focused
on speeds lower than typical highway driving [3]. One notable exception is [4], which
developed a steering controller for a 1965 Plymouth Sedan. Various controllers were tested
in wet and dry road conditions between 50 and 80 mph. However, their success was
mostly limited to low-curvature roads. Also around that time, the US Department of
Transportation’s Intelligent Transportation Systems program began researching Automated
Highway Systems. However, such efforts were not limited to just the United States.
An overview of the advances during this time is found in [2].

Due to the maturity of this research area, it is not surprising that consumers have
access to automated steering systems. In 2021, 50% of new vehicle models offer sustained
Lane Keeping Assistance, which commonly uses some form of lateral steering control [5].
Insight into the control techniques used by these systems is not publicly available, except for
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Comma.ai’s open-source Openpilot [6]. This system uses a Deep Neural Network to extract
a future waypoint directly from a forward-facing camera. This waypoint is used in separate
Longitudinal and Lateral Model Predictive Control-based local planners to generate a
reference path. A steering controller then tracks the reference path using a PID feedback
control law with a feed-forward controller.

With knowledge of only one commercially deployed controller, very little can be said
about these Lane Keeping Assistance systems. In particular, it is difficult to investigate their
safety. However, their existence proves that many companies feel they can achieve safe
automated steering at highway speeds. The natural question to ask is: what are their limita-
tions? This question is close to the heart of this work: determining under which conditions
lateral front steering controllers fail to meet pre-specified performance requirements.

To understand the limitations of the commercially available steering controllers (such
as Lane Keep Assist), we can use the terms and definitions from [7,8] to discuss their
limitations. We begin by pointing out that the systems analyzed in [5] are examples of
Active Safety Systems and not Automated Driving Systems (ADS). The Lane Keep Assist
investigated in [5] requires an attentive driver capable of interrupting the controller quickly
after any issue occurs. This requirement significantly increases the level of acceptable
risk in the design of a lateral steering controller. This suggests that the lateral steering
controller can fail in some Operational Design Domains (ODDs). If true, this suggests
that the problem of designing a sufficiently safe lateral controller for operation in some
ODDs is still unsolved. However, it is not possible to say under which ODDs, if any, these
controllers will fail. This conclusion is further qualified by the observation that there is not
enough information to show that the front steering controller is the cause of the limited
ODD. For instance, the perception system (i.e., a forward-looking camera), and not the
steering controller, may be the cause of the limited ODD. Therefore, there must be efforts
dedicated towards evaluating these Active Safety Systems in a wide variety of ODDs to
understand their limitations and the cause of those limitations. After that, research and
development efforts can be more efficiently allocated.

Active Safety Systems are not the only types of systems that would benefit from such an
effort. When the steering controller is designed for an ADS, the system cannot be designed
with the assumption that a human can take over. To simplify this problem, constraints are
often imposed on the ODD. This typically takes the form of isolating geographic regions
where the ADS is allowed to operate (geofencing). Robo-taxi companies Cruise and Waymo
use this strategy. Both companies have deployed or are testing ADSs in cities such as Las
Vegas, Nevada; Phoenix, Arizona; Houston, Texas; and San Francisco, California. The lack
of cities that experience adverse weather throughout the year suggests that modern ADSs
cannot yet be safely deployed in adverse weather or road conditions. While this is due,
in part, to the degraded sensor performances in adverse weather conditions [9], another
reason for this may be that controlling the vehicle in these conditions is more challenging.

Despite decades of research on lateral steering controllers, the question of how well
they perform in various ODDs remains insufficiently answered. A major cost of not
sufficiently answering this question is that only a subset of the US population will be able to
experience the safety and economic benefits of ADS. The current deployment of robo-taxis
focuses on the most profitable and easiest ODDs. These ODDs consist of densely populated
areas with good weather throughout the year. Examples are found in the deployment
locations of Cruise and Waymo in 2023. Populations that live outside these domains will
not benefit from the technology until safe operation can be sustained for enough of the year
to provide a profitable business. Therefore, it is of paramount importance to focus attention
on studying the performance of steering controllers in a wide variety of ODDs, not just the
ones that are most easily driven.

At a high level, this work seeks to answer the question of what the limitations of
modern lateral steering controllers are. This question is motivated by the desire to have
a single lateral steering control architecture that is capable of achieving useful and pre-
specified performance requirements across a variety of ODDs. The framing of this question
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requires the answer to be dependent on the ODD, which will help the steering control
research community to focus more directly on challenging ODDs.

Through a proper choice of steering controllers and ODDs, experimental analysis
will indicate combinations of maneuvers and ODDs where steering controllers need to
be improved and where they currently meet requirements. In particular, we partition
requirements into three types: safety, comfort, and security. This study focuses only on
safety requirements, which is considered as the steering controller’s ability to keep the
vehicle within some pre-defined path error. This study does not treat requirements relating
to the comfort of passengers (this will be the subject of further research). This study also
does not treat the case in which adversaries are attempting to influence the performance of
the controllers, which we call security requirements. This final set of requirements is rather
new and emerging [10].

The steering control literature is vast, so a small sample of steering control algorithms
is selected, as will be explained in Section 2.1. The controllers are chosen in an attempt
to provide information on what will be the most successful future direction of research.
To compare these controllers, several maneuvers and environmental conditions are devel-
oped in Section 2.5. Together, they constitute samples of existing ODDs that need to be
solved to achieve SAE Level 5 driving [8]. To compare each controller on the same ODDs in
a highly repeatable manner, CarSim 2020 is extended with various models as explained in
Section 2.3. This simulation realistically captures the most significant phenomena in high-
way driving. It combines models of the environment and its associated disturbances with a
high-fidelity vehicle model that captures tire–road interactions and powertrain dynamics.
To compare each controller objectively, several metrics are proposed in Section 2.6. Finally,
the results are presented and discussed in Section 3.

Research similar to this study can be found in [11,12], which uses a single lane change
and a double lane change maneuver to evaluate a set of lateral motion controllers. They
study the performance under nominal, model discrepancies, low friction, and sensor noise
disturbances. However, both references use a low-fidelity simulator (not yet validated)
to evaluate each controller. This choice greatly diminishes the reliability of their results.
However, it comes with the benefit that they are able to run many simulations very quickly,
enabling Monte Carlo studies, which is suitable for their comparison of controllers.

The results presented in this work build upon and greatly extend those of [11,12].
The extension is so great that several arguments can be proposed as a result of the ob-
servations detailed in Section 3. These arguments can be further supported by the work
of [11,12]. When compared to these references, our work approaches controller comparison
more systematically, rigorously, and practically. This is achieved mainly by introducing a
set of ODDs. Model discrepancies are inherently captured because CarSim 2020 is used
to simulate the vehicle dynamics while a dynamic bicycle car model is used to design the
controllers. Sensor noises are included by appropriate simulation of sensors and fusion
algorithms. Furthermore, a larger variety of maneuvers are used to evaluate each controller.
Finally, the controllers studied in this work are wholly different from the ones studied
in [11,12] (except for the Linear Quadratic Regulator).

The main contribution of this work is the systematic investigation of controllers in
realistic ODDs. Through this investigation, various other contributions are made. A signifi-
cant result of this work is to show that simple linear and nonlinear controllers can achieve
sufficient performance in many ODDs without requiring special retuning for each ODD.
A secondary contribution of this work is that it shows the extent to which collision avoid-
ance maneuvers can be used to predict performance on highway trajectories. For instance,
the performance of a steering controller in a modified version of ISO 3888’s [13] double lane
change (commonly known as the Moose Test) will be compared to the performance of that
same controller on an existing highway. Altogether, these contributions are preliminary
work toward a standardized method of comparing steering controllers. It also serves to
provide evidence for promising research directions focused on developing a robust steering
controller that meets performance requirements in all ODDs.
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2. Materials and Methods
2.1. Controller Selection

The previous section briefly discussed the history and size of the literature on steering
controllers. It is common in survey papers to group controllers based on the model that
they use and the type of control methodology, such as kinematic, dynamic, nonlinear, linear,
and online-optimal [11,12,14–16]. Controllers that are developed based on the geometry
of the control task rather than the dynamics of the vehicle are insufficient for high-speed
operation, where inertial effects are significant [11,14,15].

A similar conclusion is drawn for kinematic controllers, but not without contro-
versy [17,18]. Controllers that use kinematic models have found success when used in
Model Predictive Control (MPC) techniques, often with additional algebraic terms to com-
pensate for tire dynamics or inertial effects [17–20]. The drawback of using MPC, or any
online optimization-based method, is the high computation cost. Most applications miti-
gate this with simplified models, hence the kinematic model’s popularity. However, even
when using simplified models, their computational effort is often greater than controllers
implemented using filters. This computational cost may not be necessary to achieve robust
performance on highways. To show this, we constrain the controllers considered in this
investigation to “cheap” controllers. “Cheap” refers to controllers that do not use large
amounts of computational resources (both processor time and memory).

To further explain this definition, we may consider online (implicit) Model Predictive
Control such as in [18]. This controller requires the computer onboard the vehicle to solve
a quadratic program every time step. The number of iterations is not fixed, so there is
no guarantee that the optimal solution will be reached within the duration of the time
step. In this way, there is often a need for a fast CPU that can reliably reach the optimal
solution before the next time step (with more time for secondary computation tasks like
communication). However, it is possible to stop the solver after a set number of iterations
and use the resulting sub-optimal solution. Doing so can sacrifice constraint violations and
performance. In practice, this is not always the case [18]. There also exists explicit MPC
implementations that shift the high computation time to high memory consumption (which
is sometimes preferable) [21]. In [22], an explicit MPC controller is developed using the
same model formulation described later in Section 2.1.3. Both forms of MPC are considered
expensive controllers since they require either high computation time or memory usage.
Further discussion on this is presented in Section 2.2.

By contrast, the Linear Quadratic Regulator (LQR), presented in Section 2.1.3, com-
putes the steering angle by multiplying a 1-by-4 vector with a 4-by-1 vector. The small
number of calculations therefore classifies this controller as cheap. Further discussion of
each controller’s requirements on computational resources is discussed in Section 2.2. This
aspect of cheap control poses a central hypothesis of this investigation: satisfactory control
performance is achievable without online optimal techniques for some practical ODDs.

To achieve highway driving, the steering controller must ensure stability and safe
performance at high speeds. Therefore, when selecting controllers from the literature to
compare against, control implementations that have been demonstrated at high velocities
are preferred over controllers that have been tested at low velocities. Some controllers that
have been tested in both high and low velocities will also be considered.

It is well known that the vehicle’s dynamics vary significantly with longitudinal
velocity [3,4,23]. How to properly handle this has been the source of research since the
1970s. In the 1980s, several control solutions were based on controllers scheduled on
the vehicle’s longitudinal velocity [24,25]. The main argument is that gain scheduling
the controller on velocity is required to meet tight performance requirements across the
velocity range of the vehicle. Conversely, in the 1990s, arguments were made that a single
LTI controller, properly designed using robust control techniques, is capable of achieving
sufficient performance [26–28]. The argument made in these works is that a single LTI
controller is simpler than a gain-scheduled one, and yet performance requirements can
still be met. However, what happens when more is asked of the lateral motion controller?
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The arguments in favor of a single, robust controller is centralized around lane keeping
control. If the driving task is made more complex, then the controller’s requirements
become more challenging to meet. This has been the motivation to combine robust control
techniques with LPV techniques. The combination of these approaches is well developed
in [29–35]. The application of one of these control techniques to path following control
is well executed in [36]. Further comparison of LPV controllers is carried out in [37].
A recent overview of LPV and adaptive techniques more generally can be found in [38].
The argument presented by these works is that with increased performance requirements,
LPV control is necessary. Moving to robust LPV methods increases the mathematical
complexity of the control synthesis over LTI robust methods. It also increases the online
computation time and memory consumption over that of LTI controllers because the LPV
dynamic output feedback controller must be stored, and the gains must be computed at
each time-step. However, it might be possible to reduce this increase in computation time
by turning to Event-triggered control (also called aperiodic control) [39]. Such a technique
increases the mathematical complexity of the control synthesis, but with added benefit
of reducing online compute resources. Ref. [40] shows this benefit with a comparison of
various control techniques.

This discussion therefore proposes additional preferences on the controllers selected
for investigation. In addition to considering controllers validated on real-world systems,
preference will be given to techniques that have low mathematical complexity, low calibra-
tion effort, small online compute requirements, and good safety performance. To investigate
if an LTI controller is capable of achieving similar performance as LPV controllers, an LTI
controller will also be considered in this comparison.

Most nonlinear controllers are designed to operate at various speeds even if their
tuning parameters need to be scheduled with velocity [15,23,41]. Some linear controllers,
such as PID and LQR, are easily extended to parameter-varying control at the cost of
additional compute resources and complexity.

The following three controllers are selected from the controllers surveyed in [11,14–16].
Each is chosen because (1) they do not require online optimization, (2) they have been
demonstrated on full-scale vehicles at high speeds, and (3) they are either already scheduled
with velocity or are easily extended to schedule with velocity.

1. Nonlinear Feedback and Feed-forward control (FDBK + FFW) [23];
2. Target and Control Driver Model (TandC) [41];
3. Discrete-Time Infinite-Horizon Linear Quadratic Regulator (LQR). (Formally, this

acronym should be DTLQR or dLQR, but since there is no other LQR formulation to
differentiate from, LQR is used instead) [42].

A fourth controller will also be included in this comparison, which is a parameter-
varying extension of the Youla Parameterization technique with Interpolation Condi-
tions [43]. Although not yet available in the literature, the design of this controller will be
the subject of a future publication. This interpolation technique (without the LPV extension)
has shown success in various automotive applications: [44–46].

2.1.1. Nonlinear Feedback and Feed-Forward Control

The first controller, shown in Figure 1, is an example of a nonlinear controller. It
uses a nonlinear feed-forward controller with proportional feedback. This controller is
experimentally validated on an Audi TTS in racing conditions [23]. Several other papers
extend this methodology to drifting maneuvers and a wide variety of road surfaces [47–49].
The feed-forward utilizes a Fiala tire model to predict the required steering angle, δFFW ,
and steady-state body-slip angle, βss, from the reference curvature, κre f . Note that this com-
putation occurs in the feedforward controller and is not the result of a separate estimator.
The feedback law for the system shown in Figure 1 is given by Equation (1), where kp is
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the feedback gain, e is the lateral error at c.g., xLA is the look-ahead distance, and ∆ψ is the
yaw error at the center of gravity.

δFB = −kp(e + xLA(∆ψ + βss)) (1)

FDBK Vehicle

FFW

yre f , ψre f +

βss

e, ∆ψ

κre f , Ux
δFFW

+
δFB + y, ψ

−

Figure 1. FDBK + FFW control diagram.

There are two tuning parameters: the look-ahead distance and the controller gain.
The closed-loop pole locations are given by the eigenvalues of Equation (2).

A =


0 Ux 0 Ux
0 0 1 0

−akpC f
Iz

−akpxLAC f
Iz

−(a2C f +b2Cr)

Ux Iz

bCr−aC f
Iz

−kpC f
mUx

−kpxLAC f
mUx

bCr−aC f

mU2
x
− 1

−(C f +Cr)

mUx

 (2)

The original form of this controller (using constant gains) was found to be insufficient
across the wide range of velocities at which the vehicle can operate. Therefore, the gains are
scheduled with longitudinal velocity to achieve improved performance across all velocities.
It was observed that the dominant poles of the closed-loop system move with respect to
both control parameters. With this knowledge, an optimization routine, Algorithm 1, is
created that achieves desirable natural frequencies, ωthresh, and damping ratios, ζthresh,
of the most dominant poles.

Algorithm 1 FDBK + FFW Gain Optimization Routine

for each Ux do
ζ ← 0
xLA ← 0
while min(ζ) ≤ ζthresh do

xLA ← xLA + δxLA
kp ← 0
while min(ωn) ≤ ωthresh do

kp ← kp + δkp

Compute min(ζ)
Compute min(ωn)

end while
end while

end for

Algorithm 1 describes a search over a grid of values of kp and xLA that move the
closed-loop dominant poles close to the desired pole locations. The density of the grid
is determined by the magnitudes of δxLA and δkp . The fact that the dominant pole’s ζ is
sensitive to xLA and the pole’s ωn is sensitive to kp is exploited in the nested while loops.
The resulting dominant poles of the closed loop system will therefore not have exactly
the same values as the desirable pole locations. The distance between the poles and their
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desired locations can be decreased by making the grid more dense, but at the cost of
increasing computation.

It was found that if the desired closed-loop poles were held constant throughout the
velocity range, the resulting gains were large, resulting in large actuator effort. To keep the
gains low, the routine’s hyperparameters, ωthresh and ζthresh, are scheduled with longitudi-
nal velocity, Ux. The result is that the closed loop system’s dominant pole locations are also
scheduled with longitudinal velocity.

To tune the hyperparameters, simulations are run on the single and double lane
change trajectories under nominal and realistic conditions. These conditions are explained
in Section 2.5. The resulting gains are shown in Figure 2.

(a) (b)
Figure 2. FDBK + FFW gains with respect to velocity. (a) FDBK + FFW kp. (b) FDBK+FFW xLA.

2.1.2. Target and Control Driver Model

The second controller is an example of driver model-based controllers [50]. This
particular controller is one of the most mature and experimentally validated controllers
in the literature. It has been tested extensively on an articulated bus, and extended with
various fault tolerant systems [41,51]. It also has been experimentally validated on a sedan
at moderate speeds [52]. However, in [52], the original formulation is modified by replacing
the feedback integral controller with a Youla–Kucera parameterized controller. This enabled
the controller to be adapted online to the type of maneuver the vehicle was performing
(either lane change or lane keeping). Such extensions show promise in improving the base
performance of this controller. If this controller shows good results, there would be good
motivation to focus research on controllers of this form.

The original controller can be implemented in several ways. The version implemented
in this study is given in Equation (3) [50].

δt = kp

∫ t

0
(ψre f − ψveh)dt

ψre f = atan(
Yre f −Yveh

Xre f − Xveh
) + asin(

xLA
2R

)

R =
Ux

ψ̇veh

xLA = kLAUx

(3)

where the variables are defined in Table 1.
The T&C controller has only two gains to tune: the look-ahead gain, kLA, and the

controller gain, kp, which must be scheduled with longitudinal velocity to ensure stability
across the vehicle’s velocity range. Similar to the FDBK + FFW controller, these gains
are tuned offline using a simple grid search optimization technique. However, the result-
ing closed-loop pole locations exhibit more coupled dependence on kLA and kp than the
FDBK + FFW controller. To overcome this, Algorithm 2 computes the closed-loop poles and
the corresponding disk margin [53] (a robust version of classical gain and phase margins
that considers combinations of both gain and phase margins) over a grid of gains [53].
Then, using a cost function, the optimal gains are selected. This approach is covered in
Algorithm 2. The resulting gains are shown in Figure 3.
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Algorithm 2 T&C Gain Optimization Routine

for each Ux do
Compute ζ for all kp and kLA
Remove all kp and kLA where ζ ≤ ζthresh

ckp ←
kp−min(kp)

max(kp)−min(kp)

ckLA ←
kLA−min(kLA)

max(kLA)−min(kLA)

cDM ← compute disk margin (skew parameter set to 0)
(kp, kLA)← argmin(Wkp ckp + WkLA ckLA + WDMcDM)

end for

Table 1. T&C control law variables.

Variable Name Unit

δt Steering angle at time t radian
ψveh Vehicle yaw angle radian
ψre f Reference yaw angle radian
Yre f Global Y coordinate of reference point m
Yveh Global Y coordinate of the vehicle’s c.g. m
Xre f Global X coordinate of the reference point m
Xveh Global X coordinate of the vehicle’s c.g. m
Ux Vehicle’s longitudinal velocity m/s

ψ̇veh Vehicle’s yaw rate rad/s
xLA Look-ahead distance m
R Vehicle’s instantaneous radius of curvature m

kLA Look-ahead gain
kp Controller gain

(a) (b)
Figure 3. T&C gains with respect to velocity. (a) T&C kp. (b) T&C xLA.

The hyperparameters, Wkp , WkLA , WDM are weights on the controller gain, look-ahead
gain, and disk margin, respectively. These hyperparameters are tuned in the same way as
the Algorithm 1’s hyperparameters.

The trajectory of the optimal controller gain with respect to velocity closely resembles
the one computed in [54], indicating that this routine is similar to the one developed by the
authors of the T&C driver model.

2.1.3. Linear Quadratic Regulator
The third controller is the well-known Linear Quadratic Regulator (LQR), which is

used to represent LTI controllers. The controller is developed using the error state model
from [42], which is reproduced for completeness in Equation (5).

ẋ = Ax + B1δ + B2ψ̇des (4)

d
dt


e1
ė1
e2
ė2

 =


0 1 0 0

0 −C f +Cr
mUx

C f +Cr
m

−aC f +bCr
mUx

0 0 0 1

0 − aC f−bCr
IzUx

aC f−bCr
Iz

− a2C f +b2Cr
IzUx




e1
ė1
e2
ė2

+


0
C f
m
0

aC f
Iz

δ +


0

− aC f−bCr
mUx

−Ux

0

− a2C f +b2Cr
IzUx

ψ̇des (5)

ψ̇des =
Ux

R



Electronics 2024, 13, 1908 9 of 28

where the variables are defined the same as in previous sections. In particular, e1 is the
lateral position error [m] and e2 is the yaw orientation error [rad]. This model defines the
control input to the bicycle car as the front steer angle and the exogenous input as the
desired yaw rate. In [42], the desired yaw rate is considered a measurable disturbance that
is rejected with a feed-forward controller. This is considered a disturbance because the
states are formulated as error states and therefore ψ̇des should not be allowed to drive the
states away from zero.

The LQR method produces a state feedback controller, which requires access to all of
the states of the model. In all controllers, this work assumes access to e1 and e2, but not
necessarily ė1 and ė2. However, this is relatively easily solved by using a digital filter that
differentiates each measured state and low passes the output at a suitably high frequency
to reduce noise. The ability to access e1 and e2 is explained further in Section 2.3.

The design of this LQR controller is well explained in [42] except that this study uses
the discrete-time version since the controller is sampled during simulation. The LQR
cost function provides five tuning parameters: a weighting on each state and the steering
angle. One may begin with Bryson’s Rule [55]; however, simulation results on the single
and double lane change maneuvers showed significant actuator effort. So the R value
was increased iteratively until the actuator effort was brought to a more acceptable level,
R = 500. Due to this large value, the system’s performance is not very sensitive to
the weighting matrix on the states, Q. So to simplify the tuning effort, it is set as the
identity matrix.

A final tuning option is the choice of constant velocity when computing the state
feedback gains. Through further simulations, it was found that better performance is
achieved when the set velocity is equal to or greater than the testing velocity. Therefore,
the longitudinal velocity is set as 30 m/s. While this set velocity is higher than any velocity
used in this study, it is chosen because it is the reasonable upper bound of the vehicle’s
operating range and provides good performance at all velocities.

This choice of tuning is further motivated by an analysis of the disk margins when
the system operates at velocities other than 30 m/s. To perform this analysis, the disk
margin is computed (with the skew parameter set to 0) considering input and output
disturbances [53]. The plant used in this analysis is frozen at a velocity ranging between
5 and 30 m/s. The resulting disk margin values, shown in Figure 4, represents the maxi-
mum radius of the symmetric disk in the complex plane that contains stable disturbances.
The results show that robustness increases as the system’s velocity decreases. Therefore,
the closed-loop system becomes more robustly stable at lower velocities, motivating the
decision to tune the controller at the highest feasible velocity rather than some other
lower velocity. However, the cost of improved robustness is decreased performance at
lower velocities.

Figure 4. Multiloop symmetric disk margin for LQR controller across velocity range.
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2.1.4. Linear Parameter Varying Youla Controller

One significant control technique not represented by these three is the frequency-
based approach. To address this, we use a control methodology that is a Linear Parameter-
Varying (LPV) extension of the Youla Parameterization Interpolation methods from [43].
The development of this control methodology will be addressed in a later publication.
This controller uses the error state model from [42], where the longitudinal velocity is the
scheduling parameter, and a look-ahead distance is used to compute the model’s output.
This look-ahead distance has been the subject of research for decades and is well known to
be very beneficial in steering control at high speeds because it compensates for the system’s
phase lag [1,3,4,56]. This technique is similar to the LPV Coprime factorization used in [52],
except where [52] uses Coprime factorization, this technique uses Interpolation Conditions
to ensure internal stability.

Interpolation Conditions require the Complementary Sensitivity Transfer Function,
T(s) to equal a specific value when evaluated at a pole or zero. Similarly, these conditions
can be presented as conditions on the Sensitivity Transfer Function, S(s), with the relation
T(s) + S(s) = 1. This method allows the control designer to derive conditions that permit
a wide variety of transfer functions that guarantee internal stability. Refer to [43] for
more discussion.

The Interpolation Conditions are as follows [43]:

T(p) = 1 S(p) = 0 (6)

and
dk

dsk T(p) = 0
dk

dsk S(p) = 0 (7)

where
1 ≤ k ≤ αi − 1

where, p are the locations of unstable poles of the plant and αi is the multiplicity of the ith
unstable pole. By treating Ux as a frozen parameter, the plant (the transfer function from δ f
to y) is given by

P(Ux) =
b0(Ux)s2 + b1(Ux)s + b2(Ux)

a0(Ux)s4 + a1(Ux)s3 + a2(Ux)s2 (8)

where the coefficients, bi, ai are functions of Ux. Two poles are always at the origin.
For understeer vehicles, the other two poles are stable. The two zeros are also stable for the
vehicle used in this study.

We can study the relationship between the number of poles and zeros required by the
Interpolation Conditions for this plant by assuming

T(s) =
(τ1s + 1)M

(τ2s + 1)N (9)

The condition T(0) = 1 is automatically satisfied. The condition dT
ds (0) = 0 (which

comes from the pole at the origin having a multiplicity of 2) requires M = N τ2
τ1

. To ensure
the system is realizable, M ≤ N. Also, M and N must be integers. Therefore, there must
be at least 1 pole and therefore at least 1 zero. Furthermore, the number of poles and
zeros influence the location of the poles and zeros. Further constraints can be derived by
requiring the Youla parameter Q(s) to be proper.
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However, this choice of T(s) is mostly useful for analysis purposes and does not allow
much flexibility in tuning. To overcome this challenge, a new form of T(s) is proposed in
Equation (10).

T(s) =
k (s τ1 + 1)

(s τ2 + 1)D2(s)D1(s)

D1(s) = ω2
n2 + 2 ζ2 ωn2 s + s2

D2(s) = ω2
n1 + 2 ζ1 ωn1 s + s2

(10)

where Equation (11) guarantees internal stability.

k = ω2
n1ω2

n2

τ1 = τ2 + 2
ζ1

ωn1
+ 2

ζ2

ωn2

(11)

This new form provides a zero to meet the condition dT
ds (0) = 0. The two pairs

of second-order poles provide both tuning parameters as well as ensure that the Youla
Parameter, Q(s) is proper. The additional pole provides flexibility in shaping the high-
frequency responses of T(s) and Q(s).

Having selected a suitable T(s) the controller transfer function can then be computed.
This is similar to the model-matching problem [57–59]. The difference is that in the model-
matching problem the reference model transfer function is unconstrained, whereas in this
technique the reference model transfer function is constrained by the Interpolation Conditions.

The closed-loop system is fully determined by ωn1, ζ1, ωn2, ζ2, and τ2. The chal-
lenge is to set these parameters to achieve robust performance and limited actuator effort.
To overcome this problem, the parameters are tuned to approximate an analogous H-infinity
loop-shaping control problem. This analogous problem is solved for the LTI plant at velocity
intervals of 5 m/s for 5–40 m/s. The process is explained in Algorithm 3. The nomenclature
used is as follows: Q(s, Ux) is the Youla Parameter transfer function from reference signal r
to actuator input u, P(s, Ux) is the plant transfer function, and T(s, Ux) is the complemen-
tary sensitivity transfer function from r to output y. Each transfer function is also a function
of Ux. TH∞ , in particular, is a function of Ux because the weighting filters used in the
loop-shaping problem were also parameterized by Ux to allow the closed-loop bandwidth
to increase with increasing velocity. This flexibility allows for an improved balance of the
performance–robustness trade-off throughout the system’s velocity range.

Algorithm 3 LPV Youla Tuning Routine

Require: |Q(s, Ux)|∞ = | ur |∞ < −10 dB
for each Ux do

Compute P(s, Ux)
Compute TH∞(s, Ux) as solution to H-infinity loop shaping problem
(ωn1, ζ1, ωn2, ζ2, τ2)← T(s) ≈ TH∞(s, Ux)

end for

The last step in the algorithm is to approximate TH∞(s, Ux) with T(s) by setting the
poles of T(s) close to the dominant poles of TH∞(s, Ux). This achieves a low system order
while balancing sensitivity requirements and actuator constraints. In effect, it is a low-order
approximation of the H-infinity solution.

The result of this tuning routine is that at velocities above 20 m/s, the parameters
varied very little. To simplify tuning, T(s) is held constant for velocities above 20 m/s.
However, even though the reference model transfer function does not change when the
velocity is above 20 m/s, the computed controller still varies because the plant varies.
The resulting bode plots of the gang of four, T(s), S(s), Q(s), and PS(s), are shown in
Figure 5. Here, S(s) is the sensitivity transfer function, and PS(s) is the product of S(s) with
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P(s). Figure 5 shows the frequency response of each transfer function as velocity increases
in the range 5–40 m/s, represented as the transition from white to black colored lines.

Figure 5. LPV Youla gang of four.

Several observations are worth noting.

• The bandwidth of T(s) increases as velocity increases.
• |S(s)|∞ remains less than 5 dB.
• |Q(s)|∞ remains close to −10 dB until higher velocities are reached (≈20 m/s). Af-

ter that, as velocity increases, |Q(s)|∞ decreases. This is a direct result of setting T(s)
constant for velocities above 20 m/s.

• PS(s) has a rather large DC gain that increases with velocity.
• |PS(s)|∞ increases as velocity increases.

These observations suggest that this controller will be robust to parameter variations,
require less actuator effort as velocity increases, but suffer from actuator disturbances such
as bump steer and unmodeled steering actuator effects. The tuning of the design can be
adjusted to mitigate these effects at the cost of reduced tracking performance. This is the
fundamental trade-off between robustness and performance. Furthermore, it is worth
noting that the look-ahead error response to curvature is captured by S(s). Therefore, this
closed-loop system should reject the reference path’s curvature when its frequency content
is below 2–3 rad/s. However, when this frequency content is high, the system cannot
reject this.

2.2. Computational Comparison

The cheapness of each controller relates to the amount of computer resources each
controller requires when implemented on a physical system. Chiefly, this work is concerned
with the CPU usage and the memory consumption. All controllers are simulated at a
sampling rate of 50 Hz. This update frequency is easily achievable by most real-time
systems, especially since each controller has small computational requirements.

The FDBK + FFW controller requires enough memory to store three 1D lookup tables.
Two are for the front and rear inverse tire models. The size of these lookup tables can be
very small (<25 elements) before closed-loop performance is effected. The third is for the
scheduled parameter-varying gain kp in Equation (1). The size of this table depends on the
number of gains the design requires. A total of 36 gains was found to provide sufficient
performance. This controller requires very little computational power, since it multiplies
and adds a series of double precision values and performs lookup table operations.

The T&C controller requires enough memory to store two 1D lookup tables and the
state of the 1D integrator. One table for the look-ahead distance xLA, and one table for
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the integral feedback gain kp in Equation (3). Each of these tables use only 8 elements.
The computational load is also quite low. All that is needed is to compute Equation (3) as
well as to perform the numerical integration.

The LQR controller is the cheapest controller considered since it needs to only store
the feedforward gain and the feedback gain. The computational load is also very small,
since it needs only to compute the feedforward command by multiplication of two scalars
and the feedback command by multiplication of two vectors.

The LPV Youla controller requires slightly more memory than the other controllers,
since it is an LPV dynamic output feedback controller. This means that there must be
enough memory to store the numerator and denominator of each digital filter (there are
8 filters in this design) and the digital filter states. However, this memory requirement
is still small because the resulting controller is of order 5. In total, there are 2 2D lookup
tables. One is for the digital filter numerator coefficients, and one is for the denominator
coefficients. The computational cost is very small since all that is required is to perform
digital filtering and the lookup operation. There are also a wide variety of other methods
that can be employed to implement this controller such as using the discrete state space
model instead of the digital filter. This would require more and larger lookup tables,
but they should not be prohibitively large. Finally, the unique formulation of this controller
permits the derivation of a function of each digital filter coefficient as a function of the
vehicle velocity Ux, allowing for lookup tables to be avoided altogether.

Altogether, these four controllers are cheap when compared to more expensive con-
trollers such as MPC. By comparison, the explicit MPC (a computationally efficient version
of MPC) developed in [22] required nearly 0.52 s in Simulink to compute a suitable actuator
command. By contrast, it takes Matlab 2021b less than 0.01 s to perform 1000 evaluations of
a lookup table with 100 elements in it (Windows PC with Ryzen 5 CPU). It takes Matlab less
than 0.01 s to perform 1000 matrix multiplications between two vectors with 100 elements.
These simple computation experiments greatly overestimate the amount of time required
to compute new control actions for the selected controllers. Furthermore, [60] developed
an explicit MPC using a four-state system, resulting in almost 5000 polyhedral regions.
Each region needs to be stored in memory. The selected controllers need only store small
(<100 elements) lookup tables in memory. While it is true that there are techniques to greatly
reduce the memory and computation of explicit MPC [61], they still do not approach the
computation efficiency of the controllers studied here.

2.3. Simulation

The simulator used to evaluate each controller is summarized in Figure 6.

Figure 6. High-level overview of simulator architecture.

The selection of the vehicle to model has a significant impact on the results of this study.
Many of the chosen controllers have already been demonstrated on high-performance
sedan-like vehicles [23,47,52,62]. Furthermore, according to data collected on vehicle model
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sales in the US in 2023 [63], 15 of the top 20 best-selling vehicle models are either pickup
trucks and SUVs (including smaller hatchbacks). Only 5 of the top 20 best-selling vehicle
models are sedans. When totalling the number of sales for the top 20 sold models [63],
sedans account for approximately less than 20%. Furthermore, the current vehicle models
operated by robotaxi companies (Waymo, Cruise, and Motional) are SUV vehicles (Jaguar
I-Pace, Chevy Bolt, and Ioniq 5, respectively). Therefore, by simulating an SUV, this study
(1) differentiates itself from what has been done before, (2) uses the most popular vehicle
type sold in the US, and (3) is very practical and useful for the ADS industry.

Finally, before moving on, it is worth noting that by selecting an SUV model, the control
task is made more challenging. The performance requirements are tighter since the vehicle
is larger. Furthermore, it is generally true that SUVs are less maneuverable than smaller
sedans. Therefore, it is predicted that the controllers under study would perform even
greater than what is shown subsequently. However, this prediction is made with little
empirical study and should be considered appropriately.

The vehicle model in Figure 6 models an SUV that comes with the commercial software
CarSim 2020. This vehicle is a full sized SUV equipped with Electronic Stability Control
and Antilock Braking System. The front suspension is independent and the rear suspension
is a solid axle. The powertrain model is specified to 250 kW with a 7 speed automatic
transmission and four-wheel drive. Each tire is modeled using CarSim’s internal table
model with simple camber and relaxation length for a 265/70 R17 tire. The inputs to the
CarSim model are steering wheel torque, throttle percentage, and brake pressure. Two
low-level PID controllers are developed in Simulink to abstract the interface. The first
PID controller tracks a reference steering wheel angle by commanding a steering wheel
torque. The second PID controller tracks a desired velocity using a combination of throttle
percentage and brake pressure. To separate the two commands, the output of the second
PID controller is split into positive and negative components. When positive, throttle
percentage is commanded. When negative, brake pressure is commanded.

The CarSim model also supports road friction inputs for each tire–road interface, verti-
cal displacement for each tire, and external wind magnitude and direction. These inputs
constitute the Environment Model’s interface with the vehicle model. These Environment
Models will be explained further in Section 2.5.

In addition to the vehicle and environmental models, sensor models and an Inertial
Navigation System (INS) algorithm are implemented. This is shown in Figure 6 as consum-
ing the output of the vehicle model. The three sensors that are modeled are the Inertial
Measurement Unit (IMU), Wheel Speed Sensor (WSS), and the Global Positioning System
(GPS). The IMU provides accelerations and angular rotations at 200 Hz. The WSS provides
longitudinal velocity at 200 Hz. The GPS provides position, orientation, and velocity in the
global coordinate frame at 2 Hz. The Extended Kalman Filter (EKF) proposed in [64] fuses
these three signals to improve localization at 200 Hz. The algorithm developed in [64] fuses
more sensors than those modeled here, so those update steps are not used. This algorithm
validates the previous assumption that the controller has access to e1 and e2.

The simulation supports two different modes of operation for the sensor models and
EKF: Real-Time Kinematic (RTK) GPS-based INS and Differential GPS (DGPS)-based INS.
The parameters of the sensor models and EKF are tuned to match the RTK INS performance
and the DGPS INS performance of the AsteRx-i3 D Pro + from Septentrio. When in RTK
mode, the EKF provides global positions approximately 6–8 cm within the ground truth
(root mean square). When in DGPS mode, the EKF provides global position accuracies of
approximately 10–20 cm (root mean square).

Before moving on from the sensor models, it is worth noting a phenomenon that
is also modeled: jumps in position estimates. The GPS model provides the EKF with
measurements at a drastically different update rate and accuracy than the predictions
using the IMU measurements. The IMU and WSS measurements are used by the particle
mass model to estimate position of the ego vehicle at 200 Hz. This is the so-called model
update step. The noise in each sensor is integrated in this step such that there is drift in the
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position update. Then, at 2 Hz, the GPS provides high-precision position information in
the so-called measurement update step. Tuning the gains of the EKF is therefore a balance
between trusting the measurements and the model estimations. If the model updates are
trusted too much, the drift in the model updates can be large. Then, when the measurement
update step occurs, the estimate jumps to a more accurate estimate. If the model updates
are trusted too little, the estimation quality deteriorates until a measurement update occurs.
Therefore, a balance is struck in the EKF tuning between smoothness and variance. In the
RTK configuration, this balance is easy to achieve, but in the DGPS configuration, jumps
ranging between 10 and 40 cm must be tolerated to ensure acceptable performance levels.

In addition to modeling the sensors, the output of the EKF is delayed by a value that
is sampled from a Gaussian distribution. This is to model the delay associated with the
processing time of various sensor information, which varies stochastically. With a proper
estimate of the mean of this delay, its effects can be mitigated by forward extrapolating
the signals, as is done in [64]. However, in this work, we assume the delay is unknown
and normally distributed, so it is not accounted for in the design process of the EKF or the
design of the lateral or longitudinal controllers.

As Figure 6 shows, the control architecture uses decoupled lateral and longitudinal
controllers. Typical Automated Driving System software architectures require perception
modules and planner modules [2,6,14,51,54]. However, since neither of these modules
are the subject of our current study, their contribution is eliminated by assuming static
trajectories. These trajectories are provided to both the longitudinal and lateral controllers.
The full path (the trajectory without the time parameter) is provided to the lateral controller.
The distance along the path and the time associated with each waypoint are given to the
longitudinal controller. In this way, the longitudinal controller’s task is to position the
vehicle along the path exactly where the trajectory desires. The lateral controller’s task is to
keep the vehicle as close to the path as possible.

This separation of lateral and longitudinal dynamics has significant impacts on the
overall control of the system, especially when operating on low-friction surfaces or at the
limits of tire saturation. The primary reason for using this separation is that it must be
imposed when implementing a lateral steering controller. All of the controllers investigated
in this work control only lateral and yaw vehicle dynamics. This choice is motivated by
the successes realized in [47–49]. These works present empirical proof that it is possible
to design a lateral motion controller that achieves good performance in a wide range
of tasks and ODDs without explicitly considering longitudinal dynamics. In particular,
their steering controllers sustain large body-slip angles when drifting, good performance
when driving at the limits of handling, and achieve good performance in reduced road
friction [48,49].

2.4. Reference Generation

The goal of this work is to experimentally evaluate each controller in rural roads and
highways across a variety of environmental conditions. This necessitates the generation of
references that represent driving on typical highways and rural roads. However, driving
on typical roads includes a variety of maneuvers that must be safely completed such as
lane keeping, lane changing, overtaking, and collision avoidance.

Lane keeping maneuvers are captured in this work by using two existing sections of
highways in California: CA-17 and I-15; both of these are collected from OpenStreetMap [65].
These sections are selected because they are the locations of a large number of vehicle colli-
sions every year in California. To capture lane changing and overtaking maneuvers another
trajectory, called "S Road", is manually created to present higher-than-normal curvatures.
This maneuver is generated by first creating a high-curvature road. Then, an overtaking
maneuver is manually created on this high-curvature road. The result is an aggressive
highway maneuver.

Collision avoidance maneuvers are quite different from these three trajectories. Col-
lision avoidance maneuvers are typically composed of a series of very high, but short-
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duration, peaks in road curvature. The single lane change (SLC) and double lane change
(DLC) maneuvers are commonly used in the literature to test the performance of steering
controllers [14,15,66]. Both names come from the number of lanes crossed during an abrupt
overtaking maneuver. They are specified by ISO 3888 [67]. While the design of the single
and double lane changes is motivated by actual driving, it is not clear how well they predict
steering controller performance on actual highways. The inclusion of actual highway
trajectories allows for the direct study of this question.

ISO 3888 specifies the SLC and DLC tests to be conducted with an expert driver,
whose task is to enter the test at a high speed and keep the vehicle within a bounded
area. When this test is performed by an ADS, the local planner must determine a path that
keeps the vehicle within the bounded area. Because this investigation is not focused on
trajectory generation or optimization, the trajectory is generated offline and held static for
all controllers and ODDs.

The trajectories are generated in two steps: (1) the generation of a two-dimensional, C2

continuous path, and (2) the assignment of a velocity profile to the path. A C2 continuous
path is one whose zeroth, first, and second derivatives are continuous. This provides a
smooth reference that can be followed with low error. To generate the path, a cubic spline,
parameterized by the cumulative chord length [68], interpolates the waypoints extracted from
the OpenStreetMap data. This allows for any amount of spatial sampling of the path (i.e., the
path is composed of waypoints that are spaced 0.1 m from each other along the path). For the
collision avoidance paths, the waypoints are initially centered between each cone in the ISO
specification. Then, a cubic smoothing spline interpolation algorithm [69] is used to adjust
the waypoints so that they generate a smoother path. This step is iterated by increasing the
desired smoothness of the spline until the path is approximately the vehicle’s track width
away from the nearest cone. Finally, the same method used for the highway maneuvers is
applied to generate the final trajectory. The SLC and DLC paths are shown in Figure 7a,b. The
crosses indicate the cone locations specified by the associated standard.

(a) (b)
Figure 7. Collision avoidance paths. (a) Top-down view of the single lane change path. (b) Top-down
view of the double lane change path.

The specifications of the five trajectories used in this study are listed in Table 2.
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Table 2. Trajectory specifications.

Name
Maximum Absolute

Curvature [1/m]
Average Absolute
Curvature [1/m] Path Length [m]

Single lane change
(SLC) 0.033 0.006 210 *

Double lane change
(DLC) 0.015 0.002 424 *

CA-17 0.007 0.001 13,825
I-15 0.003 6× 10−4 9924

S Road 0.008 0.003 1609
*: The straight portion of the route adjusts to provide enough space to get up to speed.

2.4.1. Dynamic Feasibility

Dynamic feasibility is often a requirement imposed on trajectories generated by a
planner. When a reference is dynamically feasible, the system, under perfect control, is
capable of tracking the references with zero error. To explain this further, consider a vehicle
driven manually for some duration. Now assume the pose of the vehicle is recorded
perfectly for the duration of the test. The recorded poses constitute a dynamically feasible
trajectory because the trajectory of poses has been performed already.

However, in practice, this trajectory generation method is impractical, so a model is
used to generate the trajectories. In this sense, the generated trajectories are dynamically
feasible according to the model used for generation. A path that is dynamically feasible
according to a bicycle car model is not guaranteed to be dynamically feasible with the
physical car because of the modeling errors in the bicycle car. Therefore, dynamic feasibility
is closely related to modeling discrepancies.

Having defined these concepts, the trajectories in Table 2 are dynamically feasible
according to the chord-length-parameterized cubic spline model. However, this is not
a very accurate model of the vehicle. This is made worse when the road conditions
vary because the velocity profile is generated on assumptions of maximum lateral and
longitudinal accelerations.

One option to address this is to replace the cubic spline model with a higher-fidelity
model such as a bicycle car and explicitly include road conditions such as road friction.
A simpler method is to limit the maximum velocity on the path according to steady-state
analysis of velocity, lateral accleration, curvature, and road friction. By lowering the
maximum velocity quadratically with the lowered road friction, the resulting tire forces
may not exceed the reduced saturation limit. However, the velocities should not be lowered
too much to the point where the maneuvers no longer capture their designed intention.

To determine how much to lower the maximum velocity of the maneuvers, we can
derive the relationship between the vehicle’s longitudinal velocity, Ux, and the road–tire
static friction coefficient, µ, as is shown in Equation (12). This relationship attempts to
guarantee that the references remain dynamically feasible even when the road friction is
diminished. The success of this approach is looked at more closely in Section 3.

Fy = may

Fy = mgµ

ay = κU2
x

Ux =

√
gµ

κ

(12)

where κ is the road’s curvature and g is Earth’s gravity constant. This relationship can now
be used to determine a safe velocity for each maneuver at different values of µ.
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2.4.2. Reference Extraction

There are several ways to pass the generated trajectory to the lateral and longitudinal
controllers. One way to pass the trajectory to the lateral controller is to discard the temporal
information and treat the trajectory as a path. However, now the challenge is to determine
which waypoint on the path to use as a reference. This is solved with a closest-point algo-
rithm. This comes at the cost of additional computing and, more significantly, introduces
the pose estimator’s dynamics and noise into the reference. By using a closest-point algo-
rithm, the reference becomes a function of the current pose estimate, therefore forwarding
noise from the sensors and estimation algorithms to the references. If this noise occurs in
the same frequency range as the controller, no feedback controllers can mitigate this noise
because it is in the reference, not the feedback.

Further expanding on the lateral controller, once the steering angle is computed, it is
typically passed to a low-level steering controller, sometimes referred to as a smart actuator.
This is the motivation for the PID controller developed in Simulink to track a desired steer
angle by providing a torque request to CarSim 2020. While some lateral controllers consider
steering actuator dynamics [36], we assume the dynamics are unknown. The reason for this
is that it is often the case that Automated Driving Systems are developed on an existing
vehicle with its own low-level steering actuator controllers. Depending on the Original
Equipment Manufacturer, these controllers can be difficult to obtain information on or
to model accurately. To account for this, each controller is tuned to account for actuator
constraints indirectly. This is part of the reason for the hyperparameter tuning of each
controller. This more closely resembles a realistic control development task when the
control developers are given a system and not given full information on the system.

To control the longitudinal dynamics, a cascade controller is developed. The outer
loop controller tracks the time-scheduled distance along the path. The outer loop controller
provides a target velocity that is then tracked by the inner loop controller, which uses
the throttle and brake pedals. Both the inner and outer controllers are PID controllers for
simplicity. Sometimes, the single and double lane change tests specify that the throttle
should not be used once entering the lane change (known as an off-throttle test). However,
in this investigation, the longitudinal controller will be used to maintain proper longitudinal
position, allowing these tests to be completed using the throttle or brakes (if needed).

2.5. ODD Definitions

Having defined the trajectories and control architecture, the next step is to define
the test conditions. By selecting specific parameters of the disturbance models, we can
create numerous ODDs. Table 3 defines disturbance parameters for 5 ODDs. The first
ODD is called nominal and is where the feedback is without noise or delay, the friction is
maximal, there is no wind, and the vertical road noise is minimal. The goal of this domain
is to provide an upper bound on performance. All controllers should perform well in
this domain.

Table 3. Operational Design Domain (ODD) Specifications.

Nominal Realistic Rural Rainstorm Blizzard

Noise level A A C A D
Wind speed [m/s] N/A 0 5 13.4 13.4

Friction 1.0 1.0 1.0 0.7 0.4
Feedback Perfect RTK DGPS RTK RTK

Speed adjustment [%] 0 0 0 −16 −37

The second ODD is realistic. It uses minimal vertical road noise, minimal wind (but
with gusts), maximal friction, and feedback provided by the Extended Kalman Filter tuned
to match Real-Time Kinematic Inertial Navigation System (RTK INS) performance levels.
It also includes stochastic feedback delay as previously described. All ODDs, except for
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Nominal, use feedback delay with a mean of 60 ms with a standard deviation of 10 ms.
Altogether, the Realistic ODD simulates a well-maintained road in ideal weather conditions.

The third ODD, Rural, is identical to the second except that the vertical road noise is
increased and so is the wind speed. This simulates a moderately maintained road with
moderate to high wind speeds. It also uses degraded feedback performance. This is
reasonable since RTK requires a ground station, and some rural roads might be outside the
range of that ground station.

The fourth ODD, Rainstorm, simulates driving in a rainstorm on a moderately-
maintained road. The last ODD uses the highest vertical road noise, high wind speed,
and the lowest road friction to simulate driving in a blizzard.

2.6. Metrics

The motivating question behind this study is the following: under which conditions
do these controllers perform insufficiently? This is most simply answered by setting a
maximum value of acceptable lateral error. However, since the position is estimated with
an Inertial Navigation System, there are two possible definitions of lateral error. Both
definitions are visualized in Figure 8 with the double-sided arrows. The estimated lateral
error, shown in the red double-sided arrow, is the projection of the distance between the
estimated vehicle pose (grey triangle) and the estimated closest point (red dot) onto a
unit vector that is both normal to the reference path and intersects the estimated vehicle’s
position. The estimated closest point and the true closest point (purple dot) are not the
same because the estimated closest point must be computed online with the estimated
vehicle pose. The true lateral error, shown with the double-sided purple arrow, is defined
the same as the estimated lateral error, except it uses the true vehicle pose (black triangle)
and the true closest point.

Figure 8. Visualization of true and estimated lateral error definitions.

As the INS error decreases, the distance between the estimated and true closest points
decreases. It is also worth noting, that these differences are independent of the vehicle’s
yaw angle.

Having specified the two forms of lateral error, we can now provide a maximum value
of acceptable true lateral error based on the lane and vehicle’s widths. However, such a
deterministic requirement oversimplifies the uncertainty in everyday driving. To mitigate
this, we reframe the question as a probabilistic one: how often do the controllers’ true
lateral errors exceed some deterministic limit? Therefore, we propose a new metric:

Pf =


∑N

n=1(|errlat,n| > ϵlat)

N
, if |errlat,n| ≤ errthresh

1, otherwise
(13)

where ϵlat = (wlane − wveh)/2, wlane is the width of a lane (3.6 m), wveh is the track width
of the vehicle (1.725 m), Pf is the probability of failure, ϵlat is the maximum acceptable
lateral error, errlat are the samples of the true lateral error, N is the number of samples,
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(|errlat,n| > ϵlat) denotes a translation between the logical output to an integer (true maps to
1, false maps to 0), and errthresh is a threshold of lateral error, beyond which, the simulation
is canceled and determined as incomplete. Using errthresh reduces the amount of compute
time needed to simulate all combinations. Tuning this value requires finding a balance
between reducing simulation time and capturing all successful simulations. It was found
that a value of 2 m establishes an acceptable balance.

True lateral error is used in this definition instead of estimated lateral error because
it includes the INS performance. A reasonable question to ask is if the INS performance
changes between each controller. The simulation results in Figure 9 show that the INS
performance is relatively consistent across controllers. The reader will notice that the INS
performance for collision avoidance maneuvers varies more. This is because they are much
shorter durations (the data during the speeding up portion is removed) and so the variance
is higher. The absent bars in Figure 9 are the result of the controller achieving a probability
of failure of 1 during some point in the maneuver. This is discussed further in Section 3.

In addition to quantifying the level of sufficient performance, there is still the need
to quantify each controller’s relative performance and relative robustness. For relative
performance, we use the root mean square (L2 norm) to capture the average performance
of each controller, respectively. Finally, to quantify robustness we may compare the change
in these scalar metrics between each ODD.

Figure 9. INS performance across all ODDs.

3. Results and Discussion

One hundred experiments are simulated to analyze the performance of all four con-
trollers on all five maneuvers across five ODDs. The large number of experiments is not
amenable to presenting plots of each experiment. So instead, summary statistics are pre-
sented in this section’s figures. However, a plot of various signals versus simulation time is
useful to demonstrate each controller’s performance.

The simulation results for the DLC maneuver in the Realistic ODD are presented
in Figure 10. The first plot shows the true lateral error (True Lat. Err.). By comparison,
the LQR and LPV Youla controllers achieve the lowest tracking error. The second plot
shows the lateral acceleration (Lat. Acc.), which is useful in evaluating how close the
vehicle is to its physical limit. The plot shows that all of the controllers command the
vehicle to a peak lateral acceleration greater than 4 m/s2. All controllers, except LPV Youla,
reach as high as 8 m/s2. The third plot shows the steering angle measured at the tire.
By comparison, the LPV Youla controller uses the lowest amount of actuator effort (as
measured by maximum absolute steering angle). The LQR controller uses the greatest
amount of actuator effort.
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The maximum lateral acceleration experienced in each maneuver is useful when
quantifying how hard the vehicle is being pushed to its physical limits. Table 4 presents
the minimum of all controller’s maximum absolute lateral accelerations for each maneuver
and ODD. The presented values show that many of the maneuvers (especially the “S”
maneuver) are very aggressive. The resulting average performance of each controller will
be shown in the following subsection.

Table 4. Minimum of all controllers’ maximum absolute lateral acceleration (m/s2).

ODD Name CA17 S I15 SLC DLC

Nominal 3.91 6.91 3.19 3.62 5.05
Realistic 4.10 8.60 3.59 5.80 5.35

Rural 5.92 8.29 4.57 5.78 6.06
Rainstorm 2.95 5.22 2.54 3.24 3.94
Blizzard 2.88 4.08 2.75 3.21 2.99

Figure 10. Simulation results for DLC maneuver in realistic ODD.

The next set of results to consider are the probabilities of failure, Pf , for each controller,
which is shown in Figure 11. We begin with these results because they directly answer
the core question of this work: which Operational Design Domain (ODD) has an existing
control solution? For an ODD to be considered solved, there must exist at least one
controller that achieves a Pf = 0 for all maneuvers.

Figure 11 shows that all of the ODDs have at least one controller that achieves a Pf = 0
for all maneuvers. This suggests that there are controllers that provide a solution to all
ODDs. The ODD with the most frequent nonzero probability of failure is the Rural ODD.
The reason this ODD is so difficult is because precise control is required to achieve Pf = 0,
and this is challenging when the INS uses DGPS. The DGPS configuration of the simulation
almost doubles the lateral INS error. This results in a smaller budget of acceptable error for
the lateral controller. Also, as the INS error increases, the dynamics of the INS play a more
significant role.
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Figure 11. Probability of failure across all ODDs.

Before proceeding to discuss Figures 12 and 13 it is necessary to explain the cause of
the controllers that achieve Pf = 1. This is summarized in Table 5.

Figure 12. True lateral error (RMS) across all ODDs.

Table 5. Cause of Failures in Experiments.

Controller(s) Route(s) ODD(s) Cause

T&C I15 Rural Lateral error oscillations
exceed threshold

FDBK + FFW S Nominal,
Realistic, Rural Lateral error exceeds threshold

FDBK + FFW I15 Rural Lateral error exceeds threshold
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Figure 13. Change in true lateral error (RMS) with respect to Nominal.

Most controllers have zero or low Pf in the Rainstorm and Blizzard ODDs. Since this
result is contrary to the typical belief that controlling a car is more difficult in rainy and
snow conditions than in dry conditions, it suggests that the method of modifying the trajec-
tories to ensure dynamic feasibility is overly conservative. In other words, the assumed
relationship between µ and Ux results in improving the dynamic feasibility so much so that
achievable performance is also improved. These results show there are likely additional
variables that affect the controller performance. Such a conclusion has been demonstrated
for real-world vehicles [70].

Furthermore, the ODD specifications in Table 3 would benefit from more environ-
mental variables. One oversimplification is that the INS performance is the same for
Realistic, Rainstorm, and Blizzard ODDs. In reality, INS performance can deteriorate in
severe weather conditions. Assuming that the accuracy of the RTK-INS degrades to that of
DGPS is difficult to validate. Further work is needed to determine how to degrade the INS
performance to better simulate adverse weather conditions.

The results of this work demonstrate that it is feasible to find one controller capable of
achieving safe performance in a wide variety of ODDs for a wide variety of driving tasks.
The methods used in this work represent another step towards such a set of benchmarks
with which all steering controllers can be evaluated.

3.1. Relative Performance

Figure 12 shows the RMS value of the true lateral error for all controllers, maneuvers,
and ODDs. Again, the absent bars correspond to the controllers that achieved Pf = 1. It
is worth emphasizing here that the LQR and FDBK + FFW controllers use a feedforward
controller, while the LPV Youla and T&C controllers do not.

The controller that tends to have the lowest average lateral error across all maneuvers
and ODDs is the LPV Youla controller. The LQR controller tends to achieve the second
lowest lateral error. Finally, the FDBK + FFW and T&C controllers tend to be the worst-
performing controllers.

The difference in performances of the same controller between the collision avoidance
maneuvers (SLC and DLC) and the highway maneuvers suggests that using collision
avoidance to validate a controller does not guarantee the controller’s generalizability to
other tasks. If a controller is developed for both highway lane-keeping tasks and collision
avoidance tasks, it should be tested on both types of paths.

The maximum absolute true lateral error of each controller is not shown because the
trends between controllers, maneuvers, and ODDs are the same. Furthermore, Figure 11
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also presents information related to the maximum absolute performance of each controller.
So, its inclusion does not add any additional information to the reader.

3.2. Relative Robustness

Figure 13 shows the change in true lateral error RMS for each ODD with respect to the
Nominal ODD. While it is expected that the changes should be positive (the performance
deteriorates), Figure 13 shows that some controllers improve in average performance
with respect to the Nominal ODD. This is because of the previously mentioned velocity
modifications to each maneuver for each ODD. This figure more clearly shows that the
strategy used to modify the maneuver’s velocity is overly conservative.

Figure 13 most clearly shows each controller’s robustness with respect to the environ-
mental conditions. The small changes observed in the Realistic ODD results show that
all controllers are relatively robust against RTK feedback errors, system delays, and small
wind gusts. The general increase in lateral error for the Rural ODD show that all controllers
suffer in performance when the feedback error is increased, and when the road surface
quality is decreased. For highway maneuvers, it appears that the LQR controller changes
the least. However, the results differ for the collision avoidance maneuvers, where the
T&C controller degrades the least in performance. FDBK + FFW suffers the most in the
Rural ODD. This is likely because this controller uses only a proportional feedback gain
and relies heavily on its feedforward controller. The closed loop performance is therefore
more fragile than the other more intricate feedback controllers.

The results for the Rainstorm and Blizzard ODD show that most controllers can reject
high winds and diminished road friction. The T&C controller improves the most in the
Rainstorm and Rural ODDs.

4. Conclusions

This work uses a custom, high-fidelity simulator to evaluate four controllers on
five maneuvers in five ODDs. By framing this comparison with ODDs, environmental
disturbances can be grouped to form simulations of realistic scenarios. Through the
combination of all five maneuvers and the five ODDs, 25 unique scenarios are used to
evaluate if a controller can achieve pre-defined performance requirements. The reference
trajectories are designed to represent a wide range of possible maneuvers, including lane-
keeping, overtaking on a highly curved road, and abrupt collision avoidance maneuvers.

The results in Figures 11–13 show that all of the five ODDs considered have controllers
capable of achieving a pre-defined performance requirement. More significantly, all of
these controllers require incredibly low computational power. This suggests that more
computationally heavy controllers, such as Model Predictive Control, are not needed to
solve these ODDs.

The claims in this work are rather significant, so before concluding, it is necessary to
qualify the results. A large number of assumptions were made in this work that simplified
these ODDs into simpler (and solvable) problems. The assumptions that may have the
most significant influence on these results are as follows:

1. Vehicle model and performance requirements: This work used a very simple method
to derive lateral performance requirements for controller development. However,
there exist several factors that this simple method neglects [71]. Specifically, the choice
of vehicle significantly impacts these results. This work uses a full-size SUV, whose
track width is 1.7 m, which is a rather wide passenger vehicle. If a smaller vehicle,
such as a sedan (typically around 1.5 to 1.6 m track width), were used in this study,
the required maximum lateral error would have increased. Conversely, if a larger
vehicle, such as a commercial truck, were used, the maximum lateral error would
have decreased.

2. Stochastic disturbances: One simulation was performed per controller, route, and ODD
combination. The underlying assumption is that this simulation represents the worst
case in that condition, which is a rather significant oversimplification. In the future,
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the simulator’s real-time factor can be improved and a Monte Carlo experiment can be
used to evaluate the worst-case, average, and best-case performance of each controller.
In this sense, it makes sense to redefine the probability of failure accordingly.

3. Longitudinal control: The longitudinal control performance is not considered in this
work. However, the longitudinal controller must also meet pre-defined performance
requirements.

4. Reliable sensors: Section 2.3 described a system architecture that uses an EKF to
fuse information from a GPS, IMU, and Wheel Speed Sensor. Therefore, the results
presented in this work rely on the assumption that each of these sensors are available.
For IMUs and Wheel Speed Sensors, this is not too great an assumption. However,
assuming GPS is available is more significant. This is partly the motivation for
introducing the Rural ODD, in which the RTK-GPS is assumed unavailable, but DGPS
is available. More investigation is needed by the research community to develop
robust, multi-modal localization techniques that can provide quality feedback to the
controller in GPS-denied areas.

5. Simplified road disturbances: The vertical road disturbances are modeled as colored
noise according to ISO 8608 [13]. This neglects potholes and other sudden road
jumps. These types of disturbances might present destabilizing conditions that are
not captured in this work.

6. Adverse weather conditions assumed to be uniform: The adverse weather condi-
tions (Rainstorm and Blizzard ODDs) assume the road friction is uniform (with the
addition of colored noise). In reality, puddles and ice patches can exist that cause
large and sudden changes in friction. Furthermore, the simulation is incapable of
simulating hydroplaning. All of these disturbances greatly complicate simulating
adverse weather conditions.

The outcome of this work is to suggest that there exist many solutions to control the
front steering actuator of an Automated Driving System (ADS) to follow a wide variety of
maneuvers under a wide variety of conditions within a safe margin (as determined by the
requirements derivation). The key qualifier in this statement is the use of “safe margin”.
This is to say that if safety is the only concern, then there are several solutions that are
satisfactory. However, safety is rarely the only interest. Specifically, comfort is often a
secondary performance requirement.

Comfort has not been addressed in this work. This investigation was primarily
concerned with evaluating the safety of various controllers in different ODDs. The result has
been that the ODDs under study can be considered solved by some of the controllers present
in the literature. However, the resulting performances may not be comfortable enough
for passengers (or for component lifetime). For normal highway driving, comfort is very
important. Further work on lateral steering controllers should be focused on evaluating
the comfort of various controllers on various ODDs. Only after a comfortable and safe
performance is achieved can an ODD be truly considered as solved by the literature.

In addition to considering comfort, further work in this area should be directed away
from developing new, more complex controllers for lane-keeping in ideal weather condi-
tions. Instead, more focus should be given to understanding and modeling the significant
disturbances that make driving in adverse road conditions challenging and dangerous.
This will require significant on-vehicle testing in adverse weather conditions. Additionally,
more effort should be spent on developing longitudinal and lateral control architectures
capable of achieving specified joint performances derived from safety requirements. Again,
this will require a combination of simulation and real-world testing to validate results.
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