
Citation: Liang, Y. Fairness-Aware

Dynamic Ride-Hailing Matching

Based on Reinforcement Learning.

Electronics 2024, 13, 775. https://

doi.org/10.3390/electronics13040775

Academic Editors: Peiying Zhang,

Haotong Cao and Keping Yu

Received: 22 January 2024

Revised: 8 February 2024

Accepted: 14 February 2024

Published: 16 February 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Fairness-Aware Dynamic Ride-Hailing Matching Based on
Reinforcement Learning
Yuan Liang 1,2

1 School of Information Engineering, Suqian University, Suqian 223800, China; liangyuan120@buaa.edu.cn
2 Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology,

Guilin 541004, China

Abstract: The core issue in ridesharing is designing reasonable algorithms to match drivers and pas-
sengers. The ridesharing matching problem, influenced by various constraints such as weather, traffic,
and supply–demand dynamics in real-world scenarios, requires optimization of multiple objectives
like total platform revenue and passenger waiting time. Due to its complexity in terms of constraints
and optimization goals, the ridesharing matching problem becomes a central issue in the field of
mobile transportation. However, the existing research lacks exploration into the fairness of driver
income, and some algorithms are not practically applicable in the industrial context. To address these
shortcomings, we have developed a fairness-oriented dynamic matching algorithm for ridesharing,
effectively optimizing overall platform efficiency (expected total driver income) and income fairness
among drivers (entropy of weighted amortization fairness information between drivers). Firstly, we
introduced a temporal dependency of matching outcomes on subsequent matches in the scenario setup
and used reinforcement learning to predict these temporal dependencies, overcoming the limitation
of traditional matching algorithms that rely solely on historical data and current circumstances for
order allocation. Then, we implemented a series of optimization solutions, including the introduction
of a time window matching model, pruning operations, and metric representation adjustments, to
enhance the algorithm’s adaptability and scalability for large datasets. These solutions also ensure the
algorithm’s efficiency. Finally, experiments conducted on real datasets demonstrate that our fairness-
oriented algorithm based on reinforcement learning achieves improvements of 81.4%, 28.5%, and 79.7%
over traditional algorithms in terms of fairness, platform utility, and matching efficiency, respectively.

Keywords: fairness aware; ride-hailing matching; reinforcement learning; time window matching
model; bipartite matching

1. Introduction

With the rise of mobile internet and improvement in economic levels, more and more
people are opting for ride-hailing services to address their transportation needs. In 2020,
the daily average order volume on the Didi (https://www.didiglobal.com/ (accessed
on 1 February 2024)) platform reached 500 million orders per day. Didi is a prominent
mobile transportation platform offering a wide array of ride-hailing services to millions of
users across Asia, Latin America, and Australia, providing services including taxi hailing,
private car hailing, social ridesharing, and bike sharing. The platform utilizes sophisticated
mobile technology to connect passengers with drivers, offering a convenient, fast, and safe
way to navigate urban environments. By integrating various forms of transportation
services into a single platform, Didi aims to optimize urban transit systems and promote
a shift towards more sustainable mobility solutions. Eventually, the drivers complete the
customers’ requests offline. Therefore, allocating these tasks to drivers in a reasonable,
scientific, and effective manner is a challenging issue for ride-hailing platforms.

Take Didi as an example. The platform initially adopted a driver bidding model
for task allocation. However, this design gave drivers more autonomy, leading to a low

Electronics 2024, 13, 775. https://doi.org/10.3390/electronics13040775 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13040775
https://doi.org/10.3390/electronics13040775
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6313-1097
https://www.didiglobal.com/
https://doi.org/10.3390/electronics13040775
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13040775?type=check_update&version=1

Electronics 2024, 13, 775 2 of 24

response rate for orders going to remote areas or for short distances, failing to guarantee
user benefits. To improve the order response rate, Didi launched its Express car service in
2015, changing the task allocation model from driver bidding to platform-based algorithmic
dispatch. This significantly improved the order response rate. However, in this scenario,
the design of the algorithm affects the matching results. Assigning “lucrative orders” based
on driver ratings often leads to a “winner-takes-all” phenomenon—drivers may put in the
same working hours but end up with vastly different earnings, failing to meet the fairness
needs at the driver level.

We find that, based on the dispatch model, effectively matching drivers and passengers
affects the platform’s transaction efficiency, the quality of user experience, and the drivers’
willingness to work and faces three main challenges:

(1) Difficulty in balancing multiple benefits: Common-order matching strategies often
use greedy algorithms, such as nearest assignment and first come, first served. These
principles single-mindedly focus on the passenger’s perspective to achieve quality
control and fair allocation. However, the results heavily depend on random factors
such as the current spatial distribution and the timing of order arrivals, lacking
effective protection mechanisms for drivers’ interests. Therefore, effectively balancing
the interests of drivers, passengers, and the platform is a primary core issue;

(2) Difficulty in assessing future earnings: The current dynamic matching algorithms for
ride-hailing services complete a new match between incoming orders and available
drivers every two seconds. Even when considering balancing drivers’ earnings and
prioritizing large orders for drivers with lower earnings for the day, such strategies
are still based on historical experience and current situations. They overlook the
driver’s subsequent spatial location and whether their service period can continue to
be profitable, failing to effectively assess future situations. Thus, effectively evaluating
the future earnings of drivers and then balancing the order distribution to achieve
fairness in driver earnings are other core issues;

(3) Difficulty in designing a fair mechanism: Due to factors such as platform scoring,
service time zones, and random elements, drivers may receive drastically different
earnings despite putting in the same work hours and intensity. However, the existing
research lacks assessment and protection of fairness. Therefore, designing reasonable
constraints and fairness protection mechanisms is also a crucial core issue.

Additionally, traditional ride-hailing matching focuses on static scenarios, which do
not align with real-world situations. However, in dynamic scenarios, if every order is
matched immediately upon arrival, the matching results will overly depend on random
factors like the order arrival sequence, which presents certain limitations. To achieve the
best possible outcomes over a larger scope and improve matching efficiency while ensuring
real-time performance, we adopt a time window matching model. Therefore, we design a
system where, every two seconds, incoming orders and available drivers are combined into
a large bipartite graph, and we aim to maximize the sum of the weights of the matching
edges in this graph. However, reasonably designing the edge weights to effectively balance
indicators like driver earnings and total platform revenue is also a challenging aspect of
our research.

In line with practical application needs, we assume that our scenario has three charac-
teristics: drivers’ statuses change constantly as orders arrive anytime and anywhere; drivers
have a certain probability of rejecting orders; and the platform performs a match every
two seconds. Considering the core aspects of our research and the predefined scenario, we
address the issue of fairness-aware dynamic ride-hailing matching based on reinforcement
learning (FMRL). First, we model drivers and passengers as nodes of a bipartite graph
based on data uploaded by users and drivers, generating the bipartite graph through edge
weight calculation and pruning algorithms. Then, we introduce reinforcement mechanisms
and event window matching algorithms in the edge weight design, making it adaptive
and overcoming the shortsightedness of traditional methods. Next, we generate matching
results using bipartite graph matching algorithms like the KM algorithm. Finally, we

Electronics 2024, 13, 775 3 of 24

verify the effectiveness of the proposed method through experiments on real datasets.
In summary, the main contributions of this paper are as follows:

• This paper introduces the temporal dependence of matching results on subsequent
matches by employing reinforcement learning methods to predict this dependence.
FMRL overcomes the shortsightedness inherent in traditional matching algorithms;

• A series of optimization schemes, including time window matching models, prun-
ing operations, and adjustment of indicator representations, are introduced. These
enhancements significantly increase the algorithm’s adaptability and scalability to
large datasets;

• Through conducting experiments on ride-hailing matching algorithms, it is demon-
strated that the fairness distribution algorithm based on reinforcement learning
achieves substantial improvements over traditional algorithms. Specifically, enhance-
ments of 81.4% in fairness, 28.5% in platform utility, and 79.7% in matching efficiency
are observed.

Section 1 is the introduction; Section 2 reviews related work; Section 3 defines the
problem and algorithm evaluation criteria; Section 4 discusses the methods; Section 5
presents the experiments; and the conclusion is arranged in Section 6.

2. Related Work

We divide the related work into two categories: ride-hailing matching algorithms and
fairness mechanism design.

2.1. Ride-Hailing Matching Algorithms

In this paper, drivers are regarded as crowdsourced workers, and orders are seen
as spatiotemporal crowdsourcing tasks. Therefore, the matching in ride hailing essen-
tially belongs to task allocation in the field of spatiotemporal crowdsourcing. Didi and
Uber (https://www.uber.com/ (accessed on 1 February 2024)), as typical applications
of spatiotemporal crowdsourcing in the field of ride hailing, have matching algorithms
whose optimization is crucial for enhancing user experience, optimizing platform revenue,
and ensuring fair earnings for drivers.

Traditional ride-hailing matching algorithms often rely on linear programming methods [1],
designing multiple constraints, and determining optimization objectives without considering
the dynamic nature of scenarios. Linear programming can yield optimal solutions for modeled
problems, but, in real, dynamic scenarios, drivers and passengers join and leave the platform at
any time and place, and the platform must respond in real time to passenger requests, making it
impossible to design effective algorithms for a global optimal solution. Moreover, the constraints
of ride-hailing matching problems are variable, and the optimization objectives are diverse.
Reasonable and complex linear programming models often have too high a complexity to be
computationally effective.

Therefore, the current research often involves designing efficient approximate algo-
rithms to solve the ride-hailing order matching problem. The most basic idea of approxi-
mate algorithms is based on real-time allocation using a greedy approach, meaning, when
an order arrives, the matching occurs immediately based on the current optimal strategy for
driver–passenger pairing. However, matching based solely on one-sided supply often has
temporal limitations and high computational complexity. To balance real-time user needs,
algorithmic approximation ratios, and computational resource consumption, fixed time
window online matching methods are often used in practice [2]—performing a match every
fixed period. In the modeling of the matching problem, the current research often involves
designing approximate algorithms based on bipartite graph matching [3]. The main idea is
to abstract drivers and passengers as nodes in a bipartite graph [4–6], design edge weights
to contain multidimensional information like spatiotemporal aspects, order cancellation
rates, and expected earnings, and then use bipartite graph matching algorithms like the
KM algorithm to find the maximum match.

https://www.uber.com/

Electronics 2024, 13, 775 4 of 24

Additionally, ride-hailing matching algorithms adopt methods such as the Distance-
Based Greedy Algorithm (DG), Earnings-Ratio-Based Greedy algorithm (ERG), Integer
Linear Programming (ILP) [7], and Reassignment (REA) [8]. The Distance-Based Greedy
Algorithm assigns tasks to the driver nearest to the order’s starting point. The Earnings-
Ratio-Based Greedy Algorithm ranks drivers in descending order based on a weighted
amortization fairness index and orders in descending order of earnings ratio, then matches
them sequentially to ensure driver fairness. Linear programming [7,9] transforms into an
integer programming problem, taking passenger fairness as the optimization objective
with constraints considering driver income fairness. The Reassignment algorithm [8,10]
first calculates the allocation results based on order response rate and fairness and then
adjusts based on these two allocation results, balancing between response rate and fairness.

However, in ride-hailing matching scenarios, the previous research [7,8,11–13] on
dual-objective optimization for total platform revenue and driver income fairness has
the following limitations: (1) It overlooks the impact of existing arrangements on future
spatiotemporal distribution and matching situations. Many current algorithms set applica-
tion scenarios that overly exceed the settings of actual scenarios, neglecting many details.
Moreover, the driver’s location and service status depend on the matching situation in
previous time sequences. This dependency can affect the overall revenue and fairness of
driver earnings from the matching results, making it difficult to verify the effectiveness
of the algorithm in real scenarios. (2) Linear programming is a classic approach to solv-
ing this optimization problem. However, to balance total platform revenue and fairness
among drivers’ incomes, ride-hailing matching is a dual-objective optimization problem.
The computational complexity of linear programming algorithms is too high, making them
unsuitable for expansion to real-world, large-scale data scenarios.

2.2. Fairness Mechanism Design

In addressing fairness mechanism design issues in dynamic ride-hailing matching
algorithms, the existing research suffers from a narrow perspective and lacks individual
measurement indicators [14–17]. Firstly, the current studies mainly optimize algorithms
from the perspective of passengers or platforms, such as maximizing platform revenue
or minimizing passenger waiting time, with fewer studies considering the perspective of
drivers. Secondly, many allocation algorithms aim to optimize single global indicators such
as maximizing total revenue [3,18,19], minimizing travel costs [4,20], or reducing passenger
waiting times [21], failing to effectively balance the interests of all parties.

Recently, Refs. [7,8,22,23] have started to explore balancing objectives like driver
income during the task allocation process. As future scenarios are unpredictable, algorithms
allocate orders based only on historical data and current situations. To balance the income
disparity among drivers, the Earnings-Ratio-Based Greedy Algorithm tends to assign high-
value orders to lower-income drivers. However, this approach overlooks factors like the
order’s destination and the driver’s future service zones, which can significantly impact
their future earnings. This shortsightedness in existing research methods also impacts
fairness to some extent. Moreover, platforms currently aim to maximize total revenue
through matching optimization. In this context, many orders that do not yield high profits
are discarded, and many drivers in ’cold zones’ are not allocated orders [24–26], failing to
meet fairness requirements.

In addition, in the matching scenario of ride-hailing services, existing algorithms are
mostly based on the current scene and fixed algorithms for matching [17,27,28], which
cannot make reasonable use of past experience because they ignore future spatiotemporal
distribution and income changes and have the shortcomings of shortsightedness and poor
adaptability [29]. Therefore, a preliminary idea is to introduce reinforcement learning into
the algorithm design to overcome the problem of poor algorithm adaptability. Reinforce-
ment learning has a wide range of applications in ride-hailing scenarios, such as dynamic
pricing [30] and online matching [31–33]. Dynamic pricing [30] sets different prices as
actions, and the corresponding revenue is the total platform revenue generated by this

Electronics 2024, 13, 775 5 of 24

pricing subsequently. Regarding online matching [32], the existing research often models
drivers as intelligent agents whose state, actions, and benefits can be intuitively defined.
In practical scenarios, to avoid multi-agent problems, all drivers are often modeled as the
same intelligent agent. Ref. [34] integrates reinforcement learning for online matching,
dividing ride-hailing matching into two parts: online planning and offline learning. Online
planning defines edge weight calculation methods related to order price, location value,
and pick-up distance and then completes matching through the maximum bipartite graph
matching formula. Offline learning achieves value updates through temporal differen-
tial errors where the value of each grid depends on the driver’s income within that grid.
Ref. [18] achieved optimization based on [34], representing each location as a vector and
updating the value function of the driver’s location through a deep neural network. To
make the value function smoother and more robust, Lipschitz regularization is adopted.

Due to the lack of research on fairness mechanisms in the field of ride-hailing matching,
we expanded the scope of our fairness study to the domain of spatiotemporal crowdsourc-
ing. In [24], the author, based on the issue of computational resource allocation, detailed
the theory of fair distribution, setting dynamic programming constraints and optimiza-
tion objectives such as incentive sharing, customized allocation strategies, non-deception,
and optimality. Refs. [24,35] extended this to the field of dynamic computational resource
allocation, achieving dynamic fair distribution through the relaxation of some constraints
in fair distribution theories. The research on fairness mechanisms often considers various
task arrival distributions, testing the algorithm’s matching rate and fairness under different
scenarios. We considered several task arrival distributions as follows: (1) adversarial order,
where the order arrival is precisely the worst-case scenario for the algorithm; (2) random
order, where order arrivals conform to the average real situation; (3) independent and
identically distributed (i.i.d.), where dynamically arriving orders and task participants
are distributed in a non-independent and identically distributed manner; (4) known i.i.d.,
where orders and participant distributions are non-independent and identically distributed
and the algorithm is aware of these distribution characteristics in advance; (5) known
adversarial distribution, where orders and participants satisfy a certain random, indepen-
dent distribution, distinct from each other, and the algorithm knows their distribution
characteristics in advance.

3. Problem Definition and Algorithm Evaluation Criteria

In this section, we first provide a definition of the problem; secondly, we introduce
bipartite graph matching; then, we discuss the time window matching model. Following
that, we offer formal definitions of the relevant entities and models within the algorithm,
and, finally, we explore the rational design of algorithm evaluation metrics and provide
their formal definitions.

3.1. Problem Definition

This subsection specifically describes the modeling approach for ride-hailing drivers’
orders and their symbolic abstract representation methods, as well as the algorithm match-
ing model based on bipartite graphs.

3.1.1. Order and Driver

Definition 1. (Order) A ride-hailing order can be represented by a tuple < or, dr, pr, τr >, where
or, dr, pr, τr respectively represent the starting point, destination, earnings, and duration of the task.

For each order, the starting and ending points are defined by the passenger who
submits the order. Once the order is uploaded to the platform, the platform determines
the earnings and duration of the task based on the distance between the starting and
ending points, as well as external conditions like weather, supply and demand, and traffic.
A commonly used algorithm for determining task arrival time is the estimated time of
arrival [36–38]. In the research scenario of this paper, since the error in the estimated time

Electronics 2024, 13, 775 6 of 24

of arrival does not significantly affect the accuracy of the algorithm, to ensure the efficiency
of the algorithm, the duration of the order as a multiple of the distance between the starting
and ending points is defined.

Definition 2. (Driver) A ride-hailing driver can be represented by a tuple < l(t)w , u(t)
w , a(t)w >,

where l(t)w , u(t)
w , a(t)w respectively represent the driver’s current location, income, and status.

Here, l(t)w indicates the driver’s GPS information at time t. When the driver is in a free
state, their income u(t)

w at time t is zero. When assigned to task r, their income u(t)
w is the

unit time earnings brought by the order, calculated as pr/τr.
Furthermore, a driver’s status can be categorized into three states: offline, idle, and on

duty. The range of values for a(t)w is 0, 1. When the driver is offline, a(t)w is 0. When the
driver is idle or on duty, a(t)w is 1. Within a time window, it is assumed that the value of a(t)w
remains constant. A detailed explanation of the symbols used in this paper is provided
in Table 1.

Table 1. Symbol description.

Symbol Description

T Divide a day into different time periods using a time window in hours
t Batch processing time window in seconds

W, R Driver, order
W(t), R(t) The set of all idle drivers and unmatched order in batch t

l(t)w , u(t)
w , a(t)w Driver’s location, income, and status in batch t

or, dr, pr, τr The starting point, destination, earnings, and duration of the task
D(t) To-be-matched bipartite graph established in batch t
E(t) Matchable edges in batch t
M(t) Actual matching edges in batch t
λw,r The rejection rate of matching driver orders (w, r)
θw,r Matching the edge weights of driver orders (w, r)
U Total revenue
Fw Weighted amortized fairness
ξ(t) The weighted amortized fairness during that time period
F Time benefit fairness
V Value function, where V(L) represents the value function of location l

H, S The value functions of hexagons and quadrilaterals
S Guidance scheme for idle drivers

In evaluating actual ride-hailing matching algorithms, many existing research ap-
proaches simulate batches of independent drivers for each time window based on the
actual spatiotemporal distribution of drivers [4,21]. However, in reality, a driver’s match-
ing result in one state often affects their spatiotemporal distribution in the next phase.
Therefore, existing algorithm evaluation approaches overlook the impact of algorithms on
driver distribution and cannot comprehensively evaluate the effectiveness of algorithms.
To make the research scenario more realistic, FMRL maintains a fixed group of drivers and
simulates changes in driver distribution through actual order acceptance, repositioning,
and online/offline behaviors.

3.1.2. Bipartite Matching

Definition 3. (Bipartite Graph) The bipartite graph G(t) =< R(t), W(t), E(t) > represents the
matching status between drivers and orders at time t.

Here, the sets R(t) and W(t) respectively represent the set of orders available for
matching and the set of idle drivers at time t. If driver w and order r can be matched, then

Electronics 2024, 13, 775 7 of 24

there exists an edge (r, w) ∈ E(t) in the bipartite graph. The weight of the edge (r, w) is
denoted by θr,w.

In setting the edge weights, traditional ride-hailing matching algorithms (such as the
Distance-Based Greedy Algorithm or Earnings-Ratio-Based Greedy Algorithm) often set
them according to the objectives they aim to optimize (e.g., distance between driver and
order, earnings ratio of the order). In this paper, to design a ride-hailing matching algorithm
that balances both the total efficiency of the platform and the fairness of driver income,
the earnings of orders pr and the cancellation rate λr,w are taken into consideration. Here,
the cancellation rate is predicted based on the customer’s historical order behavior.

3.2. Time Window Matching Model

To simplify the problem as much as possible, the existing research has largely focused
on studying the ride-hailing matching problem in static scenarios where all information
about drivers and orders is known in advance. Hence, with predetermined optimiza-
tion objectives and constraints, and given that all inputs are known beforehand, static
matching algorithms can achieve globally optimal solutions. However, in real-world
scenarios, passenger orders often require real-time responses, making traditional offline
solutions impractical.

To implement dynamic matching in ride-hailing services, an intuitive solution is to
immediately match new orders with available drivers as they arrive. However, once a match
is made, it cannot be undone, even if a more suitable driver becomes available in the next
moment or if an order arrives that is closer to or more profitable for the already matched
driver. Changing the match could improve overall performance. Therefore, the immediate
matching algorithm has a shortsighted flaw, leading to local optima and compromising
the global optimization goal. Additionally, this order-arrival-based computation model
significantly reduces algorithm efficiency when the volume of orders increases, failing to
meet the need for algorithmic efficiency.

To balance the real-time needs of passengers while considering algorithm efficiency
and optimization objectives, this paper adopts a time window matching model [7,8]. In de-
signing the size of the time window based on long-term exploration in the industry, FMRL
chooses every two seconds [39] as a time window in which to perform bipartite graph
matching once for new orders arriving on the platform and idle drivers based on the de-
signed algorithm strategy. The time window matching model is widely used in ride-hailing
matching platforms [18,39,40].

3.3. Algorithm Evaluation Criteria

This subsection primarily explores the evaluation criteria for algorithms that balance
the overall efficiency of the platform with the fairness of driver income. First, we introduce
the definition of platform utility evaluation metrics; secondly, we present the definition of
fairness evaluation metrics and their representation for optimization.

3.3.1. Utility Function

Definition 4. (Utility Function) Given the set of drivers W and the set of tasks R, the total utility
function of the platform is the sum of all drivers’ expected earnings before time T, expressed by the
following equation:

U = ∑
w∈W

E[∑
t∈T

u(t)
w] (1)

Here, each driver’s expected earnings depend on the sum of all matched order earnings
during their service time as follows:

E[∑
t∈T

u(t)
w] = ∑

t∈T
∑

(r,w)∈M(t)

(1− λw,r) · pr (2)

Electronics 2024, 13, 775 8 of 24

Based on this definition, the paper uses the utility function as an evaluation metric for
the algorithm in optimizing the total revenue of the platform.

3.3.2. Fairness

In terms of fairness evaluation metrics, the existing research often uses amortized
fairness [7] to characterize and optimize income fairness among drivers.

Definition 5. (Amortized Fairness) Amortized fairness is defined as the unit time earnings of
drivers during their online periods.

∑t∈T u(t)
w

∑t∈T a(t)w

(3)

However, due to the differences in working hours and patterns among drivers, amor-
tized fairness does not adequately reflect the fairness of earnings between drivers. For in-
stance, there will inevitably be differences in earnings between drivers who primarily work
during the day and those who work at night. Additionally, the city in which a driver oper-
ates and their frequent areas of activity can also impact their unit time earnings. Therefore,
enforcing the same unit time earnings for drivers in each time period and area can actually
harm the fairness of driver income. To offset the impact of differences in driving habits,
this paper defines weighted amortized fairness.

Definition 6. (Weighted Amortized Fairness) Weighted amortized fairness refers to the cumulative
weighted earnings per unit time for drivers during their online periods.

Fw =
∑t∈T

u(t)
w

ξ(t)

∑t∈T a(t)w

(4)

where ξ(t) represents the weighting factor used to normalize the income for different times
of the day. Since drivers often assess their earnings based on daily and hourly wages in
actual matching scenarios [41], the formula defines T as the interval for one day and t as
the interval for two seconds, with ξ(t) being the average hourly wage of drivers during that
time period.

As can be seen from the formula, weighted amortized fairness, building upon the
concept of amortized fairness, divides each driver’s hourly earnings by the average hourly
wage of drivers during that time period. This calculation method aims to eliminate the
impact of drivers’ working habits on the fairness metric as much as possible. However,
this type of fairness is established only on an individual driver basis. To evaluate the
algorithm’s protection of individual driver fairness from a macro perspective, temporal
earnings fairness is defined.

Definition 7. (Temporal Earnings Fairness) Given the set of drivers W and the dynamically
arriving set of tasks R, the overall temporal earnings fairness of drivers is measured by the entropy
change of the weighted average amortized fairness. The formula for calculating temporal earnings
fairness, which is the metric for evaluating the fairness of the algorithm in this paper, is as follows:

F = − ∑
w∈W

log(
Fw

maxw′∈W Fw′
) (5)

When F is larger, it indicates that the distribution of the amortized fairness metric
among drivers is more dispersed, implying poorer income fairness among drivers. There-
fore, the optimization objective for fairness is to minimize temporal earnings fairness.

Electronics 2024, 13, 775 9 of 24

4. Method

We adopt a fairness allocation algorithm based on reinforcement learning. First, we
provide an overview of this approach, discussing its framework, implementation mecha-
nism, and design philosophy. Next, we explore the specific implementation mechanisms,
optimization ideas, and algorithmic processes of each submodule. Finally, we discuss the
integration of the algorithm.

4.1. Algorithm Overview

The fairness allocation algorithm based on reinforcement learning optimizes the two
following key metrics: total platform revenue and driver income fairness. In optimizing
platform utility, traditional algorithms are limited by their inability to effectively fore-
cast future arrivals, exhibiting shortsightedness compared to optimal matching results in
static scenarios.

To overcome this shortsightedness, the fairness allocation algorithm based on rein-
forcement learning introduces a reinforcement learning mechanism in setting edge weights.
It adjusts the weights according to the matching situation and the relative value of the
order’s starting and ending regions, allowing the matching result to consider future order
arrivals and driver spatiotemporal distribution. In terms of optimizing driver income fair-
ness, the algorithm considers this aspect during the matching process, aiming to reduce the
income disparity among drivers. The algorithm operates online, dynamically considering
the supply and demand of drivers and orders. Additionally, by incorporating pruning
and various acceleration mechanisms, the algorithm ensures efficient matching on large
datasets, and the algorithm overview is shown in Figure 1.

Figure 1. Algorithm overview.

The fairness allocation algorithm based on reinforcement learning consists of a value
prediction module based on reinforcement learning and an efficient matching module for
multiple objectives, detailed in Figure 2.

(1) Value prediction module based on reinforcement learning: This module adjusts the
weights of edges in the bipartite graph to better reflect the two following optimization
objectives: total platform efficiency and driver income fairness. In traditional solutions,
edge weights are usually set as the earnings of individual orders to optimize platform
efficiency. This module balances platform efficiency and driver income fairness by
incorporating the impact of current matches on future spatiotemporal distribution and
individual driver fairness metrics into the edge weight design. Here, total platform

Electronics 2024, 13, 775 10 of 24

efficiency is reflected by the income of individual orders, and driver income fairness
is represented by a regional value function reflecting the current and future volume
of orders in a region. The adjustment of edge weights is achieved through online
reinforcement learning. Additionally, to alleviate the cold start issue in online learning,
a driver guidance algorithm is designed;

(2) Efficient matching module for multiple objectives: This module performs matching
on the bipartite graph after the adjustment of edge weights. The core of this module
is the Fairness Augmentation Algorithm, which fundamentally implements the KM
algorithm. To ensure fairness, the augmentation process includes checks for tem-
poral earnings fairness, achieving bipartite graph matching that balances fairness
and efficiency. Furthermore, to enhance algorithm efficiency, the module improves
performance in large-scale, sparse graphs through special case determinations.

Figure 2. Overview of value prediction module based on reinforcement learning.

4.2. Value Prediction Module Based on Reinforcement Learning

This subsection introduces the specific implementation mechanism of the reinforce-
ment learning mechanism.

4.2.1. Edge Weight Adjustment Formula Based on Online Reinforcement Learning

In reinforcement learning, an agent continually interacts with the environment and
updates the value function Vπ

w based on the feedback to its actions from the environment.
Vπ

w represents the expected cumulative reward that agent w can obtain under the current
state by taking the next action according to policy π. The optimal policy can be learned by
constantly interacting with the environment and evaluating the feedback obtained from
these interactions.

In the ride-hailing matching scenario, each driver is an agent. In each time window,
the agent can perform one of the following two actions: serve the order r assigned by
the platform or remain idle. The corresponding rewards for these choices are pr and 0,
respectively, representing the driver’s expected income from making this choice. The state
of driver w is represented as (l(t)w , t), where l(t)w is their location in time window t. To more
accurately optimize the driver–task matching situation in each time window from both the
perspective of fairness and total revenue, Vπ

w (l(t)w , t) represents the value function obtained
by driver w making a choice under policy π in time window t.

As the optimization objective includes fairness, ensuring as small a difference as
possible in each driver’s income, some trade-offs must be made in total platform revenue.
Therefore, optimizing for fairness to some extent contradicts the goal of maximizing total

Electronics 2024, 13, 775 11 of 24

platform revenue. Under two conflicting optimization objectives, directly specifying policy
π presents certain difficulties. Hence, we adopt an iterative approach to learning the value
function with the policy, as demonstrated below.

Vπ
w (l(t)w , t)← V(t)

w (l(t)w , t) + β · ∆w(∀w ∈W) (6)

where β represents the learning rate, and the calculation formula for ∆w is as follows:

∆w =

{
pr + Vπ

w (dr, t + τr)−Vπ
w (lw, t), if w gets r

0, if w is idle
(7)

The introduction of the reinforcement mechanism is aimed at better characterizing
and predicting future scenarios. Therefore, whether the policy π is learned or not is
not the primary concern of this paper. For convenience, after formulating the value
function based on iterative updates, its superscript π is omitted. Additionally, the matching
algorithm incorporating online reinforcement learning is also applicable to learning short-
term dynamic data.

4.2.2. Reducing the Size of the State Space

For an agent, i.e., a driver, in a given time window, changes can be made in both
spatial and service states. The spatial state is represented by Ns, and the time state by NT .
If a city is divided into square kilometers, and time is divided into the average service
duration of an order, which is 20 min, the combined spatial and temporal states result in
a state space of over 500,000 choices for each agent. Even if each agent works for 14 h a
day—the maximum allowed by the platform—and makes one state change in each time
window, the maximum number of states explored per day is only 250,000. The vastness of
the state space, coupled with the limited capacity to explore it, makes it difficult for agents
to effectively learn through reinforcement. Therefore, it is necessary to reduce the size of
the state space. However, simple state discretization does not adequately address this issue.
This paper adopts the following two methods to reduce the state space available to agents.

(1) Approximating the spatial value function

Previously, to eliminate the impact of individual driver service patterns on fairness
metrics, drivers’ earnings were divided by the average earnings of drivers in that hour.
Compared to an hour, the average duration of each order is only twenty minutes, making
the temporal factor’s impact on the function’s value negligible. Therefore, in calculating the
value function for individual orders, only the spatial factor’s impact on the function value
is considered, i.e., Vw(dr, t) + τr = Vw(dr, t). Thus, the update function can be rewritten
as follows:

∆w =

{
(pr + γτr Vw(dr))−Vw(lw), if w gets r
0, if w is idle

(8)

where γ is the discount factor. When the duration of an order is longer, the value function
of the destination has a smaller influence on the driver’s decision to accept the order,
effectively correcting the approximation error for long-distance requests.

(2) Information sharing among agents

In the ride-hailing matching scenario, all drivers’ actions are aligned with the goal
of optimizing their total earnings. Therefore, drivers in the same spatiotemporal state
should have a converging assessment of the value of a certain location. Consequently, all
agents adopt a shared value function, which effectively circumvents the limited exploration
capabilities of individual agents and, to some extent, alleviates the challenges that a large

Electronics 2024, 13, 775 12 of 24

state space poses to the convergence of the value function. By applying this strategy,
the update equation can be simplified as follows:

V(l)← V(l) + β′ · ∑
w:l(t)w ∈l

∆w (9)

where β′ is the normalized learning rate, l is the region in which the driver is located,
and the value function of region l is the sum of this expected original value function and
the ‘earnings’ of all drivers in that region during this time window.

The contributions of the above two optimization strategies to reducing the size of the
state space can be summarized as follows: (1) By applying an approximate spatial value
function, the temporal factor’s impact can be ignored, reducing the state space size from Nt ·
Ns to Ns. (2) Using information sharing among agents allows all drivers to collaboratively
explore a single value function, thereby greatly reducing both the total number of states in
the state space and the relative value of the state space exploration capability.

4.2.3. Algorithm Adaptability

In traditional ride-hailing matching applications, space is often discretized [40], lim-
iting the portability of value function computation methods. To eliminate this impact,
this paper smooths the value function over space with the following specific strategies:
(1) discretizing space into two layers based on different division methods; (2) smoothing
the value functions of different layers.

In this paper, the two layers of discretization are hexagonal and quadrilateral layers.
The hexagonal layer is composed of hexagonal grids, while the quadrilateral layer is
composed of quadrilateral grids. Based on the geometric characteristics of these two types
of grids, different smoothing strategies are set. In the hexagonal layer, each grid has
six symmetric sides and six completely equivalent adjacent grids. The value function is
smoothed through the adjacent grid values around the central grid, making it more fitting
for irregular urban layouts. In the quadrilateral layer, the latitude and longitude of the
sides are identical, making it more suitable for exploring reasonable value functions in
regular areas. In Figure 3, the value function of the hexagonal layer reflects the distribution
of the city’s main thoroughfares, and the value function of the quadrilateral layer reflects
the radiation situation of the city center. Thus, by combining these two types of regional
division, a location’s value can be effectively and comprehensively characterized. Next,
we will provide a detailed introduction to the geometric characteristics of hexagonal and
quadrilateral layers.

Figure 3. Value function distribution of hexagonal layer (1) and quadrilateral layer (2).

(1) Characteristics of hexagonal layers:

Electronics 2024, 13, 775 13 of 24

(a) Uniformity and symmetry: Due to their six-fold symmetry, hexagonal layers
offer higher uniformity and symmetry compared to quadrilateral layers. This
means that, in a hexagonal layer, each cell has a consistent distance to its neigh-
boring cells, which helps reduce directional bias during spatial analysis [42];

(b) Coverage efficiency: Hexagons provide the smallest perimeter for the same
area, which means they are more material efficient when covering large areas
compared to quadrilateral layers. Therefore, in applications requiring equal
area division, hexagonal layers can cover space more effectively, reducing
edge effects;

(c) Adjacency consistency: Hexagonal layers have six direct neighbors. This con-
sistency aids in more accurate spatial analysis, especially in simulating natural
phenomena (such as fluid dynamics or population migration), providing a
better reflection of actual conditions.

(2) Characteristics of quadrilateral layers:

(a) Simplicity and compatibility: Quadrilateral layers have a simple structure
and are highly compatible with existing map projections and computer display
systems, making them easy to implement and use, especially in standard GIS
(Geographic Information System) software and computer graphics;

(b) Computational efficiency: In some computational processes, quadrilateral
layers may offer higher computational efficiency due to their simple structure.
For example, in raster analysis or image processing, quadrilateral layers can
directly correspond to pixel layers, simplifying calculations;

(c) Adaptability: Quadrilateral layers can better adapt to irregular boundaries
and linear structures, which is particularly useful in applications such as urban
planning and architectural layout. Quadrilateral layers can be more easily
resized and shaped to fit specific geographical features.

Finally, the smoothed value function is defined as follows:

V(l) =
1

|DIRH |+ |DIRS|

(
∑

x∈DIRH

H(l + x) + ∑
x∈DIRS

S(l + x)

)
(10)

where H and S respectively represent the value functions of the hexagonal and quadri-
lateral layers, and their update methods are as shown in Equation (10). DIRH and DIRS
respectively indicate the smoothing directional offsets for the two layers, meaning that
the value function of each location is the average value of the adjacent quadrilateral and
hexagonal grid layers.

4.2.4. Avoiding the Cold Start Problem

Due to the characteristics of online reinforcement learning, the value function is
initialized to 0 in the initial stage of online learning, causing the estimated edge weights to
degenerate into initial weights (the earnings of individual orders). This problem is known
as the cold start problem. The cold start issue results in the inability of the matching results
to effectively incorporate predictions for future orders in the initial stage of matching.

To overcome the cold start issue, this paper guides drivers to appropriate locations
in the initial stage of learning. Where a driver is guided depends on the distance and the
increment of the value function. To simplify this issue, the hexagonal region value function
is used as a guiding objective.

4.2.5. Algorithm Integration

The edge weight adjustment method based on reinforcement learning comprises three
stages: evaluation, learning, and guidance.

The primary purpose of the evaluation stage is to analyze the current state of the
environment and make reasoned estimates of the value of various grids. This stage uses

Electronics 2024, 13, 775 14 of 24

historical data and real-time information (such as driver locations, passenger requests,
and rejection rates) to assess the value of each area, thereby determining which areas are
more attractive to drivers, as shown in Algorithm 1.

Suppose a city is divided into multiple hexagonal grids. During the evaluation
stage, the algorithm identifies that a particular hexagonal grid area (Area A) experiences a
significant increase in ride requests during the evening rush hour, while adjacent Area B
has relatively lower demand. Based on this information, the algorithm adjusts the value
score of Area A upwards, reflecting its high demand during specific times.

Algorithm 1: The evaluation stage of the value prediction module.

Input: Bipartite graph G(t) =< W(t), R(t),E(t)
>, driver rejection rate λ, hexagonal

network layer value function H, quadrilateral network layer value function
S.

Output: The bipartite graph after edge weight adjustment
G(t) =< W(t), R(t), E(t) >.

E′(t) ← ∅;
for w, r, θw,r ∈ E(t) do

Compute V(lw), V(dr);
θw,r ← (1− λw,r · (pr + γτr V(dr)−V(lw)));
E′(t) ← E′(t) ∪ (w, r, θw,r);

end
Return the bipartite graph after edge weight adjustment G(t);

The learning stage of the value prediction module, based on actual matching results,
updates the value functions of the quadrilateral and hexagonal network layers, and the
learning stage updates the value functions based on the analysis of matching results, i.e., it
learns and adjusts the value assessments of each area based on the actual effectiveness
of matches. The goal of this stage is to ensure that the value prediction module can
continuously adapt to changes in the environment, improving the accuracy of predictions
and matching efficiency, as shown in Algorithm 2.

Continuing with the evaluation stage example: if the adjusted matching strategy
leads to an increased rate of driver acceptance in Area B, the learning stage would update
the value score for Area B based on this outcome. This indicates that increasing the
attractiveness of Area B helps balance driver distribution and improve service coverage.

Algorithm 2: The learning stage of the value prediction module.

Input: Matching result M(t), order set W(t), hexagonal network layer value
function H, quadrilateral network layer value function S.

Output: The updated hexagonal and quadrilateral network layer value functions
H, S.

for w ∈W(t) do
if There is a request r that causes (w, r) ∈ M(t) then

∆H ← pr + γτr H(dr)− H(lw);
∆S ← pr + γτr S(dr)− S(lw);

end
else

∆H ← 0;
∆S ← 0;

end
H ← H + β · ∆H ;
S← S + β · ∆S;

end
Return the updated hexagonal and quadrilateral network layer value functions

H, S;

Electronics 2024, 13, 775 15 of 24

To avoid drivers in ‘cold zones’ waiting blindly for a long time, the guidance stage of
the value prediction module directs idle drivers to locations where they are more likely to
receive orders. Based on the actual value functions of each location and their proximity,
the algorithm provides real-time recommendations to drivers, helping them more efficiently
locate their next passenger. The guidance stage of the value prediction module is shown
in Algorithm 3.

In the scenario evaluation and learning example, suppose the algorithm determines
that Area C is expected to have high demand in the next few hours. The guidance stage
would recommend drivers nearby to move towards Area C even if the current request
volume in that area is not high. This predictive guidance helps preempt potential demand
spikes, reducing passenger wait times.

Algorithm 3: The guidance stage of the value prediction module.

Input: Set of idle drivers W(t), optional guide to set of target locations Ah, ξ
values in each batch from the beginning to the present.

Output: Guidance Scheme S .
S ← ∅;

Sort in ascending order ∑t
i=1 u(i)

w /ξ(i)

∑t
i=1 a(i)w

;

for w ∈W(t) do
g← arg maxg′∈Ah

V(g)−V(lw)
dist(g′ ,lw)

;
S ← S ∪ (w, g);

end
Return guidance Scheme S ;

4.3. Efficient Matching Module for Multiple Objectives

This module specifically discusses how the matching algorithm optimizes for both
total platform efficiency and driver income fairness.

For dual-objective optimization problems [43], the existing research often adopts linear
programming algorithms [7] and reallocation algorithms. However, linear programming
algorithms are often very inefficient due to the complexity of constraints and the diversity of
optimization goals. Meanwhile, reallocation algorithms require different matching results
for different optimization goals followed by adjustments and trade-offs between these
results. Neither method is straightforward or efficient. This paper embeds fairness checks
directly into the matching process for efficient optimization of both objectives.

The basic augmentation algorithm uses the KM algorithm [44] to maximize total
platform efficiency. The core idea of the KM algorithm is to traverse each node in the
graph and find an augmenting path that alternates between unmatched and matched edges.
If the sum of the weights of unmatched edges is greater than that of the matched edges,
the matched edges are turned into unmatched edges, and vice versa, to increase the total
platform efficiency in the current match.

The core idea of the Fairness Augmentation Algorithm is to check the future earnings
ratio of each driver when a replaceable augmenting path is found. If there is a significant
difference in future earnings between drivers, this augmenting path is not used. However,
refusing augmentation for the sake of fairness can somewhat reduce total platform revenue.
Moreover, checking fairness for each augmentation adds some time, affecting the efficiency
of the algorithm. To minimize the impact on total revenue and efficiency, only the fairness
difference between two adjacent drivers on the augmenting path is checked. If it is within a
certain range, the augmentation is accepted. Algorithm 4 describes the Fairness Augmenta-
tion Algorithm, which has a time complexity of O(N2M), where M = min(|W(t)|, |R(t)|)2,
N = max(|W(t)|, |R(t)|).

Electronics 2024, 13, 775 16 of 24

Algorithm 4: Fairness Augmentation Algorithm.

Input: Bipartite graph G(t) =< W(t), R(t), E(t) >, weighted amortization fairness
ξ from initial to present values in each batch.

Output: Matching Scheme M(t).
M(t) ← ∅;
for w ∈W(t) do

while There is an augmenting road passing through p do
Accept← True;
for Each pair nearby driver wpre, wcur do

rpre ← current assigned request of wpre;
rcur ← current assigned request of wcur;

end

if |
∑t

i=1

u(i)wpre
ξi +

prpre

ξ(t)

∑t
i=1 a(i)wpre+τrpre

−
∑t

i−1
u(i)wcur

ξ(i)
+

prcur
ξ(t)

∑t
i=1 a(i)wcur+τrcur

| > ϵ then

Accept← False;
Break;

end
else

Update matching M(t) based on augmented path P;
end

end
end
Return matching Scheme M(t);

5. Experiments

This section first introduces the specific experimental setup, including the hardware
environment, datasets, and comparison algorithms. Next, a preliminary assessment of
the experimental results is provided. Then, using real-world datasets, detailed analysis
and interpretation of the algorithm’s effectiveness are conducted. Finally, the fairness and
effectiveness of the fairness-aware dynamic ride-hailing matching based on reinforcement
learning (FMRL) algorithm are evaluated.

5.1. Experimental Setup

The order data for the experiment come from real data of the Didi ride-hailing platform
from three major cities in Southwest, East, and Central China. Based on actual driver data,
behaviors such as order rejection and logging on and off are simulated. To verify the
portability of the proposed algorithm to different city data, experiments were conducted
on real data from these three cities over a period of 21 days. To validate the effectiveness,
fairness, and efficiency of the algorithm horizontally, four common algorithms in the
ride-hailing matching scenario are used as benchmark algorithms.

The specific environment uses an Intel Xeon CPU E5-2630 v4 with 12 GB of RAM,
running on Centos 7 OS, and the programming language is Python 3.8.

5.2. Comparison Algorithms

(1) Distance-Based Greedy Algorithm (DG): Based on the idea of greediness, this algo-
rithm matches each request to the nearest driver. It is a simple and naive algorithm
widely used in the industry;

(2) Earnings-Ratio-Based Greedy Algorithm (ERG): Within a time window, firstly, idle
drivers are sorted in descending order based on weighted amortized fairness, and in-
coming platform orders are sorted in descending order of earnings ratio. Then,
matching is performed according to the order of the two sorted lists, ensuring drivers
with lower earnings ratios receive the more profitable orders as much as possible;

Electronics 2024, 13, 775 17 of 24

(3) Integer Linear Programming (ILP) algorithm [7]: This is the first work to use amortized
fairness as an income fairness evaluation criterion. In this algorithm, the amortized
fairness of drivers is taken as the optimization objective;

(4) Reassignment algorithm [8] (REA): First, two types of matching results are obtained
based on total platform utility and driver fairness, then adjustments are made based
on these two results, striking a balance between total platform utility and fairness.
This is currently the only method that optimizes across both dimensions of total
platform utility and fairness.

5.3. Algorithm Evaluation

This subsection evaluates the algorithm in three dimensions: fairness, platform utility,
and efficiency. Definitions of fairness and platform utility have already been introduced in
Section 3, and efficiency is assessed by the time consumed by the matching algorithm to
process orders per hour. The specific parameters of the algorithm are shown in Table 2.

Table 2. Parameter settings.

Parameter Meaning Value

γ Discount factor 0.9
β′ Learning rate 0.025

The experiment was conducted on real data from three major cities in Southwest,
East, and Central China, labeled as cities A, B, and C. The overall experimental results are
summarized in Table 3.

Table 3. The overall experimental results.

City Algorithm F (Work Days) U (Work Days) F (Weekends) U (Weekends)

A

DG 41,767 2,242,977 31,962 2,131,996
ERG 48,549 2,256,277 35,903 2,172,489
ILP 44,072 2,246,077 30,573 2,122,834

REA 44,251 2,250,118 27,865 2,134,534
FMRL (ours) 22,656 2,656,773 13,384 2,565,060

B

DG 31,217 1,297,735 28,563 1,360,659
ERG 38,594 1,373,478 37,464 1,452,488
ILP 29,496 1,281,273 25,077 1,336,712

REA 31,744 1,319,958 33,671 1,373,691
FMRL (ours) 7420 1,479,348 4976 1,616,385

C

DG 12,897 872,693 9044 865,031
ERG 13,704 885,558 8793 882,573
ILP 12,377 862,588 8439 863,245

REA 13,491 880,847 8684 881,519
FMRL (ours) 2553 1,114,000 2392 1,109,474

Table 3 briefly describes the fairness and efficiency indicators of the algorithm on
datasets from the three cities. Across the data from all three cities, our proposed algorithm
showed an improvement of 45.5% to 81.4% in fairness indicators on weekdays and 52.0%
to 86.7% on weekends compared to the baseline algorithms. For platform utility indicators,
there was an improvement of 7.7% to 29.1% on weekdays and 11.3% to 28.5% on weekends,
as shown in Table 4.

Electronics 2024, 13, 775 18 of 24

Table 4. Evaluation of improvement effect.

Improvement Rate Weekdays Weekends

Fairness (F) 45.7–81.4% 52.0–86.7%
Total platform utility (U) 7.7–29.1% 11.3–28.5%

Figure 4 visually present the utility function, amortized fairness, and temporal earn-
ings fairness distribution for the five algorithms.

(a) (b) (c)

Figure 4. The results on utility function, amortization fairness, and temporal earnings fairness.
(a) Utility; (b) amortization fairness; (c) temporal earnings fairness.

It is evident that the proposed FMRL outperforms the other four algorithms in terms
of efficiency, effectively ensuring the income fairness of drivers.

In specific algorithm comparisons, compared to the Integer Linear Programming
(ILP) algorithm, FMRL showed an average improvement of 68.4% in fairness and 22.1% in
platform utility. Compared to the Reassignment algorithm (REA), it showed an average
improvement of 69.3% in fairness and 20.1% in platform revenue. Overall, the proposed
algorithm consistently outperformed the baseline algorithms on real order data from the
three cities in terms of total platform revenue and fairness.

Figure 5 compares the efficiency of different algorithms in cities A, B, and C.

(a) (b) (c)

Figure 5. The efficiency of different algorithms in cities A, B, and C.(a) City A; (b) city B; (c) city C.

The Distance-Based Greedy Algorithm (DG) and the Earnings-Ratio-Based Greedy
Algorithm (ERG), due to their simplistic algorithmic concepts, have time complexities of
O(|E| log |E|) and O(|W| log |W|), respectively. As their problem-solving approach and
mathematical modeling are consistent, these two algorithms have a similar runtime to our
proposed algorithm, but their results are poorer in terms of fairness and efficiency metrics
due to their single-objective greedy approach.

The Integer Linear Programming (ILP) algorithm and Reassignment algorithm (REA),
due to their fundamentally different approaches and methods, can take up to eight times
longer to run than the algorithm proposed in this paper. Additionally, changes in traffic
conditions significantly impact the runtime of these two baseline algorithms. During peak
hours, when orders flood in, the time consumption of these algorithms surges. Furthermore,
the efficiency of the ILP algorithm is also constrained by the number of drivers, and the
algorithm’s efficiency does not significantly improve even when there are fewer orders.

Electronics 2024, 13, 775 19 of 24

5.4. Case Analysis

To scientifically elucidate the effectiveness of the algorithm, this subsection delves into
an in-depth analysis of the algorithm’s operating mechanism based on data from city A.

Figure 6 shows the adjustment mechanisms of different allocation algorithms for long-
distance orders from city A’s data. Figure 6(1) corresponds to the Distance-Based Greedy
Algorithm, Figure 6(2) to the Earnings-Ratio-Based Greedy Algorithm, Figure 6(3) to the Inte-
ger Linear Programming algorithm, Figure 6(4) to the Reassignment algorithm, and Figure 6(5)
to the Fairness Matching Reinforcement Learning (FMRL) algorithm, i.e., the FMRL algorithm
proposed in this paper.

Figure 6. The trajectory of a driver under different algorithms. (1) Distance-Based Greedy Algo-
rithm; (2) Earnings-Ratio-Based Greedy Algorithm; (3) Integer Linear Programming Algorithm;
(4) Reassignment Algorithm; (5) FMRL Algprithm.

The Distance-Based Greedy Algorithm only matches drivers to the nearest orders,
failing to effectively balance driver income and the prediction of future order arrivals. Once
a match is made, even if more suitable orders arrive later, the driver cannot be matched to
them. This approach does not effectively ensure driver income fairness.

The Earnings-Ratio-Based Greedy Algorithm only considers the highest earnings ratio
of previous orders received by a driver when matching. Drivers serving the highest-earning
orders are later matched to orders with lower earnings ratios. It does not take the distance
between orders and drivers into account, resulting in lost platform revenue. It also fails to
effectively assess future earnings, harming driver income fairness.

The Integer Linear Programming algorithm reduces the priority of a driver to receive
orders after serving a long-distance order as their earnings ratio becomes very high.

The Reassignment algorithm strikes a balance between fairness and platform efficiency.
Experimental results show that it can improve platform efficiency by increasing order
matching rates. However, it still fails to consider situations where drivers in remote areas
cannot receive orders; thus, it does not effectively ensure driver income fairness.

The Fairness Matching Reinforcement Learning (FMRL) algorithm takes into account
the impact of current allocations on future spatiotemporal distribution and fairness. In ad-
dition, the guidance algorithm for drivers effectively avoids leaving drivers stranded in
remote areas. As shown in the figure, when a driver completes several orders in the central
area and their earnings ratio is high, the platform tends to assign them a long-distance
order. Afterwards, to prevent drivers in remote areas from being unable to receive orders

Electronics 2024, 13, 775 20 of 24

for extended periods, the platform guides them to areas where they can receive orders,
helping them return to central areas.

5.5. Algorithm Fairness Evaluation

One of the core contributions of this paper is the incorporation of weighted amortized
fairness. Figure 7a shows the daily changes in the number of drivers, the number of
requests, and the weighted amortized fairness ξ−1(t) (the reciprocal of the median income
per unit time of drivers).

(a) (b)

Figure 7. (a) The daily changes in drivers, requests, and weighted amortized fairness. (b) The hourly
wages of 3500 randomly selected drivers.

From the number of drivers and orders, we can infer the traffic situation for each time
period. There is a surge in the volume of driver orders from 6 AM to 8 AM, reaching a peak
at noon and then gradually declining. The variation in the weighted amortized fairness
ξ−1(t) generally follows this pattern. Temporally, its trend slightly precedes the volume of
driver orders, thereby effectively predicting future traffic conditions.

Figure 7b shows the hourly wages of 3500 randomly selected drivers. It is evident
from the graph that the FMRL algorithm effectively ensures the fairness of driver income.
Compared to other algorithms, the distribution by the algorithm proposed in this paper
averages the income of the 3500 drivers, reducing the number of drivers with excessively
high and low incomes.

5.6. Algorithm Effectiveness Evaluation

To holistically assess the effectiveness of the algorithm, the four baseline algorithms
and the proposed algorithm are evaluated on weekdays and weekends across the dimen-
sions of amortized fairness and total platform revenue. Table 5 shows that, even though
the Integer Linear Programming algorithm and the Reassignment algorithm among the
benchmarks consider the fairness indicator, the FMRL algorithm still achieves an improve-
ment of 57.9% to 62.2% in fairness indicators and 17.3% to 17.6% in total platform efficiency
compared to the other four benchmark algorithms.

When evaluating the performance of the five algorithms on weekdays and weekends,
the proposed algorithm showed stable performance and consistent improvement, perform-
ing even better on weekend data. In conclusion, the FMRL algorithm outperforms existing
algorithms in terms of total platform efficiency, driver fairness, and algorithmic efficiency.

Electronics 2024, 13, 775 21 of 24

Table 5. Algorithm effectiveness evaluation.

City Algorithm F (Work Days) U (Work Days) F (Weekends) U (Weekends)

A

DG 44,442 2,242,977 33,057 2,131,996
ERG 54,270 2,248,669 38,315 2,166,980
ILP 40,066 2,243,334 30,772 2,120,947

REA 42,003 2,242,561 31,832 2,130,431
FMRL (ours) 20,539 2,359,431 12,963 2,447,596

6. Conclusions and Future Work

This section first summarizes our work presented in this paper and then reflects on
and anticipates future works.

6.1. Conclusions

This paper has designed a fairness-oriented dynamic matching algorithm for ride-
hailing services, effectively optimizing both the total platform efficiency (expected total
income of drivers) and driver income fairness (weighted amortized fairness entropy among
drivers). The core contributions of this work are as follows:

(1) Considering future matching scenarios : To overcome the shortsightedness of existing
research algorithms and to optimize the fairness allocation algorithm globally, future
potential spatiotemporal distributions of drivers and orders are reasonably considered
when making matches. Additionally, a guidance algorithm is designed to direct
drivers to areas where they are likely to receive future orders, preventing the issue of
drivers waiting a long time without orders;

(2) Designing a reinforcement-learning-based fair allocation algorithm: The value func-
tion at each location incorporates the matching results of previous orders, thus intro-
ducing the value function of the start and end points of orders into the edge weight.
This approach allows the driver–order edge weight to reflect future earnings scenarios.
Moreover, the value functions of locations are determined jointly by quadrilateral
and hexagonal layers, effectively reflecting the distribution of the city center and
main thoroughfares. This calculation method performs well in cities of various sizes,
making the algorithm highly portable;

(3) Validation on real datasets: The algorithm’s effectiveness, fairness, and efficiency
were validated through experiments on real datasets. Unlike previous studies where
drivers are generated independently at each moment, this experiment considered
the impact of the matching algorithm on the real distribution of drivers, maintaining
a fixed group of drivers and simulating their behaviors of logging on and off and
accepting and rejecting orders. Thus, the data were more closely aligned with real
situations, making the experimental results more credible.

6.2. Future Work

There are several issues to be explored and expanded upon in future research.
Firstly, regarding fairness calculation indicators, currently, only the income fairness of

the driver community is considered. Issues like preferential treatment of certain customers
by platforms such as Ele.me highlight the need for ensuring fairness among customer
groups as well. In the future, the connotation and definition of passenger fairness indi-
cators can be explored, and constraints for this type of fairness can be introduced into
the algorithm.

Secondly, the existing definitions of fairness have certain limitations and are only ap-
plicable to specific groups for specific problems. Therefore, based on this, more generalized
definitions and mechanisms for fairness can be explored.

Finally, simulators that mimic real traffic conditions are a current research hotspot.
In the future, designing simulators that more closely resemble real situations can be ex-
plored, for instance, maintaining a fixed group of passengers, protecting current data as

Electronics 2024, 13, 775 22 of 24

much as possible in the generation process, and ensuring greater autonomy. Additionally,
the efficiency of simulators should be considered, requiring cross-platform integration and
parallel operations.

Funding: This work was supported in part by the Guangxi Key Laboratory of Trusted Software (no.
KX202037), the Project of Guangxi Science and Technology (no. GuiKeAD 20297054) and the Guangxi
Natural Science Foundation Project (no. 2020GXNSFBA297108).

Data Availability Statement: We conduct experiments on a simulator developed by a major ride-
hailing platform. The data comes from within the simulator, provided by the relevant cities for ride-
hailing data. The simulator provides an interface for inputting algorithms, with the link being https://
sumo.dlr.de/docs/index.html#simulation (accessed on 1 February 2024). Named SUMO (Simulation
of Urban MObility), it is an open-source, highly configurable, multimodal traffic simulation software
frequently used to simulate urban traffic flows.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Charnes, A.; Cooper, W.W.; Stedry, A. Static and Dynamic Assignment Models with Multiple Objectives, and Some Remarks on

Organization Design. Manag. Sci. 1969, 15, 365. [CrossRef]
2. Emek, Y.; Kutten, S.; Wattenhofer, R. Online matching: Haste makes waste! In Proceedings of the Forty-Eighth Annual ACM

Symposium on Theory of Computing (STOC’16), Cambridge, MA, USA, 19–21 June 2016; pp. 333–344.
3. Bernstein, A.; Dudeja, A.; Langley, Z. A framework for dynamic matching in weighted graphs. In Proceedings of the 53rd

Annual ACM SIGACT Symposium on Theory of Computing (STOC’21), Virtual, 21–25 June 2021; Khuller, S., Williams, V.V., Eds.;
Association for Computing Machinery: New York, NY, USA, 2021; pp. 668–681.

4. Tong, Y.; She, J.; Ding, B.; Chen, L.; Wo, T.; Xu, K. Online Minimum Matching in Real-Time Spatial Data: Experiments and
Analysis. Proc. VLDB Endow. 2016, 9, 1053–1064. [CrossRef]

5. Wang, Y.; Tong, Y.; Long, C.; Xu, P.; Xu, K.; Lv, W. Adaptive Dynamic Bipartite Graph Matching: A Reinforcement Learning
Approach. In Proceedings of the 2019 IEEE 35th International Conference on Data Engineering (ICDE), Macao, China, 8–11 April
2019; pp. 1478–1489.

6. Yang, S.; Wen, J.; Eckert, S.T.; Wang, Y.; Liu, D.J.; Wu, R.; Li, R.; Zhan, X. Prioritizing genetic variants in GWAS with lasso using
permutation-assisted tuning. Bioinformatics 2020, 36, 3811–3817. [CrossRef] [PubMed]

7. Sühr, T.; Biega, A.J.; Zehlike, M.; Gummadi, K.P.; Chakraborty, A. Two-Sided Fairness for Repeated Matchings in Two-Sided
Markets: A Case Study of a Ride-Hailing Platform. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD’19), Anchorage, AK, USA, 4–8 August 2019; pp. 3082–3092.

8. Lesmana, N.S.; Zhang, X.; Bei, X. Balancing Efficiency and Fairness in On-Demand Ridesourcing. In Proceedings of the 33rd
International Conference on Neural Information Processing Systems (NIPS’19), Vancouver, BC, Canada, 8–14 December 2019;
pp. 5310–5320.

9. Spivey, M.Z.; Powell, W.B. The Dynamic Assignment Problem. Transp. Sci. 2004, 38, 399–419. [CrossRef]
10. Li, Y.; Yiu, M.L.; Xu, W. Oriented Online Route Recommendation for Spatial Crowdsourcing Task Workers. In Advances in Spatial

and Temporal Databases—SSTD 2015; Springer: Cham, Switzerland, 2015; Volume 9239, pp. 137–156.
11. Wu, B.; Han, K.; Zhang, E. On the task assignment with group fairness for spatial crowdsourcing. Inf. Process. Manag. 2023,

60, 103175. [CrossRef]
12. Kumar, A.; Vorobeychik, Y.; Yeoh, W. Using Simple Incentives to Improve Two-Sided Fairness in Ridesharing Systems. In

Proceedings of the 33rd International Conference on Automated Planning and Scheduling (ICAPS), Prague, Czech Republic, 8–13
July 2023; Koenig, S., Stern, R., Vallati, M., Eds.; AAAI Press: Palo Alto, CA, USA, 2023; pp. 227–235.

13. Wen, J.; Yang, S.; Wang, C.D.; Jiang, Y.; Li, R. Feature-splitting algorithms for ultrahigh dimensional quantile regression. J. Econom.
2023, in press. [CrossRef]

14. Zhang, J.; Jiang, T.; Gao, X.; Chen, G. An Online Fairness-Aware Task Planning Approach for Spatial Crowdsourcing. IEEE Trans.
Mob. Comput. 2024, 23, 150–163. [CrossRef]

15. Wang, Y.; Li, Y.; Bonchi, F.; Wang, Y. Balancing Utility and Fairness in Submodular Maximization. In Proceedings of the 27th
International Conference on Extending Database Technology (EDBT), Paestum, Italy, 25–28 March 2024; pp. 1–14.

16. Guo, X.; Xu, H.; Zhuang, D.; Zheng, Y.; Zhao, J. Fairness-Enhancing Vehicle Rebalancing in the Ride-hailing System. arXiv 2024,
arXiv:2401.00093.

17. Jalota, D.; Solovey, K.; Tsao, M.; Zoepf, S.; Pavone, M. Balancing fairness and efficiency in traffic routing via interpolated traffic
assignment. Auton. Agents Multi-Agent Syst. 2023, 37, 32. [CrossRef]

18. Tang, X.; Qin, Z.T.; Zhang, F.; Wang, Z.; Xu, Z.; Ma, Y.; Zhu, H.; Ye, J. A Deep Value-network Based Approach for Multi-Driver
Order Dispatching. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(KDD’19), Anchorage, AK, USA, 4–8 August 2019; pp. 1780–1790.

https://sumo.dlr.de/docs/index.html#simulation
https://sumo.dlr.de/docs/index.html#simulation
http://doi.org/10.1287/mnsc.15.8.B365
http://dx.doi.org/10.14778/2994509.2994523
http://dx.doi.org/10.1093/bioinformatics/btaa229
http://www.ncbi.nlm.nih.gov/pubmed/32246825
http://dx.doi.org/10.1287/trsc.1030.0073
http://dx.doi.org/10.1016/j.ipm.2022.103175
http://dx.doi.org/10.1016/j.jeconom.2023.01.028
http://dx.doi.org/10.1109/TMC.2022.3229112
http://dx.doi.org/10.1007/s10458-023-09616-7

Electronics 2024, 13, 775 23 of 24

19. Garg, N.; Ranu, S. Route Recommendations for Idle Taxi Drivers: Find Me the Shortest Route to a Customer! In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD’18), London, UK, 19–23 August
2018; pp. 1425–1434.

20. Wang, X.; Agatz, N.A.H.; Erera, A.L. Stable Matching for Dynamic Ride-Sharing Systems. Transp. Sci. 2018, 52, 850–867.
[CrossRef]

21. Xu, P.; Shi, Y.; Cheng, H.; Dickerson, J.P.; Sankararaman, K.A.; Srinivasan, A.; Tong, Y.; Tsepenekas, L. A Unified Approach to
Online Matching with Conflict-Aware Constraints. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence,
Honolulu, HI, USA, 27 January–1 February 2019; pp. 2221–2228.

22. Song, X.; Wang, E.; Liu, W.; Liu, Y.; Dong, Y. Fairness task assignment strategy with distance constraint in Mobile CrowdSensing.
CCF Trans. Pervasive Comput. Interact. 2023, 5, 184–205. [CrossRef]

23. Yang, S.; Wen, J.; Zhan, X.; Kifer, D. ET-lasso: A new efficient tuning of lasso-type regularization for high-dimensional data. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD’19), Anchorage,
AK, USA, 4–8 August 2019; pp. 607–616.

24. Nanda, V.; Xu, P.; Sankararaman, K.A.; Dickerson, J.P.; Srinivasan, A. Balancing the Tradeoff between Profit and Fairness in
Rideshare Platforms during High-Demand Hours. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence,
New York, NY, USA, 7–12 February 2020; pp. 2210–2217.

25. Dickerson, J.P.; Sankararaman, K.A.; Srinivasan, A.; Xu, P. Assigning Tasks to Workers based on Historical Data: Online Task
Assignment with Two-sided Arrivals. In Proceedings of the 17th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), Stockholm, Sweden, 10–15 July 2018; pp. 318–326.

26. Dickerson, J.P.; Sankararaman, K.A.; Srinivasan, A.; Xu, P. Allocation Problems in Ride-sharing Platforms: Online Matching with
Offline Reusable Resources. ACM Trans. Econ. Comput. 2021, 9, 13:1–13:17. [CrossRef]

27. Chen, Z.; Cheng, P.; Chen, L.; Lin, X.; Shahabi, C. Fair Task Assignment in Spatial Crowdsourcing. Proc. VLDB Endow. 2020,
13, 2479–2492. [CrossRef]

28. Chakraborty, S.; Calo, S.B.; Wen, J. Using Disentangled Learning to Train an Interpretable Deep Learning Model. U.S. Patent
2022/0198266 A1, 23 June 2022.

29. Hassan, U.U. Adaptive Task Assignment in Spatial Crowdsourcing. Ph.D. Thesis, University of Galway, Galway, Ireland, 2016.
30. Chen, H.; Jiao, Y.; Qin, Z.T.; Tang, X.; Li, H.; An, B.; Zhu, H.; Ye, J. InBEDE: Integrating Contextual Bandit with TD Learning for

Joint Pricing and Dispatch of Ride-Hailing Platforms. In Proceedings of the 2019 IEEE International Conference on Data Mining
(ICDM), Beijing, China, 8–11 November 2019; pp. 61–70.

31. Wang, Z.; Qin, Z.T.; Tang, X.; Ye, J.; Zhu, H. Deep Reinforcement Learning with Knowledge Transfer for Online Rides Order
Dispatching. In Proceedings of the 2018 IEEE International Conference on Data Mining (ICDM), Singapore, 17–20 November
2018; pp. 617–626.

32. Wang, Y.; Wu, J.; Hua, X.; Liu, C.H.; Li, G.; Zhao, J.; Yuan, Y.; Wang, G. Air-Ground Spatial Crowdsourcing with UAV Carriers by
Geometric Graph Convolutional Multi-Agent Deep Reinforcement Learning. In Proceedings of the 2023 IEEE 39th International
Conference on Data Engineering (ICDE), Anaheim, CA, USA, 3–7 April 2023; pp. 1790–1802.

33. Wang, Y.; Liu, C.H.; Piao, C.; Yuan, Y.; Han, R.; Wang, G.; Tang, J. Human-Drone Collaborative Spatial Crowdsourcing by Memory-
Augmented and Distributed Multi-Agent Deep Reinforcement Learning. In Proceedings of the 2022 IEEE 38th International
Conference on Data Engineering (ICDE), Kuala Lumpur, Malaysia, 9–12 May 2022; pp. 459–471.

34. Lin, K.; Zhao, R.; Xu, Z.; Zhou, J. Efficient Large-Scale Fleet Management via Multi-Agent Deep Reinforcement Learning. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD’18), London,
UK, 19–23 August 2018; pp. 1774–1783.

35. Cai, Z.; Li, C.; Wen, J.; Yang, S. Asset splitting algorithm for ultrahigh dimensional portfolio selection and its theoretical property.
J. Econom. 2022, in press. [CrossRef]

36. Hong, H.; Lin, Y.; Yang, X.; Li, Z.; Fu, K.; Wang, Z.; Qie, X.; Ye, J. HetETA: Heterogeneous Information Network Embedding for
Estimating Time of Arrival. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (KDD’20), Virtual, 6–10 July 2020; pp. 2444–2454.

37. Fu, K.; Meng, F.; Ye, J.; Wang, Z. CompactETA: A Fast Inference System for Travel Time Prediction. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD’20), Virtual, 6–10 July 2020;
pp. 3337–3345.

38. Yuan, H.; Li, G.; Bao, Z.; Feng, L. Effective Travel Time Estimation: When Historical Trajectories over Road Networks Matter. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data (SIGMOD’20), Portland, OR, USA,
14–19 June 2020; pp. 2135–2149.

39. Zhang, L.; Hu, T.; Min, Y.; Wu, G.; Zhang, J.; Feng, P.; Gong, P.; Ye, J. A Taxi Order Dispatch Model based On Combinatorial
Optimization. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD’17), Halifax, NS, Canada, 13–17 August 2017; pp. 2151–2159.

40. Xu, Z.; Li, Z.; Guan, Q.; Zhang, D.; Li, Q.; Nan, J.; Liu, C.; Bian, W.; Ye, J. Large-Scale Order Dispatch in On-Demand Ride-Hailing
Platforms: A Learning and Planning Approach. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD’18), London, UK, 19–23 August 2018; pp. 905–913.

http://dx.doi.org/10.1287/trsc.2017.0768
http://dx.doi.org/10.1007/s42486-022-00116-3
http://dx.doi.org/10.1145/3456756
http://dx.doi.org/10.14778/3407790.3407839
http://dx.doi.org/10.1016/j.jeconom.2022.04.004

Electronics 2024, 13, 775 24 of 24

41. Robinson, H.C. Making a Digital Working Class: Uber Drivers in Boston, 2016–2017. Ph.D. Thesis, Massachusetts Institute of
Technology, Cambridge, MA, USA, 2017; pp. 19–80.

42. Li, C.; Li, R.; Wen, J.; Yang, S.; Zhan, X. Regularized linear programming discriminant rule with folded concave penalty for
ultrahigh-dimensional data. J. Comput. Graph. Stat. 2023, 32, 1074–1082. [CrossRef]

43. Chen, W.; Hu, W.; Li, F.; Li, J.; Liu, Y.; Lu, P. Combinatorial Multi-Armed Bandit with General Reward Functions. In Proceedings
of the Thirtieth Annual Conference on Neural Information Processing Systems (NIPS), Barcelona, Spain, 5–10 December 2016;
pp. 1651–1659.

44. Edmonds, J.; Karp, R.M. Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems. J. ACM 1972,
19, 248–264. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/10618600.2022.2143785
http://dx.doi.org/10.1145/321694.321699

	Introduction
	Related Work
	Ride-Hailing Matching Algorithms
	Fairness Mechanism Design

	Problem Definition and Algorithm Evaluation Criteria
	Problem Definition
	Order and Driver
	Bipartite Matching

	Time Window Matching Model
	Algorithm Evaluation Criteria
	Utility Function
	Fairness

	Method
	Algorithm Overview
	Value Prediction Module Based on Reinforcement Learning
	Edge Weight Adjustment Formula Based on Online Reinforcement Learning
	Reducing the Size of the State Space
	Algorithm Adaptability
	Avoiding the Cold Start Problem
	Algorithm Integration

	Efficient Matching Module for Multiple Objectives

	Experiments
	Experimental Setup
	Comparison Algorithms
	Algorithm Evaluation
	Case Analysis
	Algorithm Fairness Evaluation
	Algorithm Effectiveness Evaluation

	Conclusions and Future Work
	Conclusions
	Future Work

	References

