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Abstract: The use of in-hole imaging to investigate geological structure characteristics is one of
the crucial methods for the study of rock mass stability and rock engineering design. The in-hole
images are usually influenced by the lighting and imaging characteristics, resulting in the presence
of interference noise regions in the images and consequently impacting the classification accuracy.
To enhance the analytical efficacy of in-hole images, this paper employs the proposed optimal
non-concentric ring segmentation method to establish a new database. This method establishes
the transformation function based on the Ansel Adams Zone System and the fluctuation values
of the grayscale mean, adjusting the gray-level distribution of images to extract two visual blind
spots of different scales. Thus, the inner and outer circles are located with these blind spots to
achieve the adaptive acquisition of the optimal ring. Finally, we use the optimal non-concentric
ring segmentation method to traverse all original images to obtain the borehole image classification
database. To validate the effectiveness of this method, we conduct experiments using various
segmentation and classification evaluation metrics. The results show that the Jaccard and Dice of the
optimal non-concentric ring segmentation approach are 88.43% and 98.55%, respectively, indicating
superior segmentation performance compared to other methods. Furthermore, after employing four
commonly used classification models to validate the performance of the new classification database,
the results demonstrate a significant improvement in accuracy and macro-average compared to the
original database, with the highest increase in accuracy reaching 4.2%. These results fully demonstrate
the effectiveness of the proposed optimal non-concentric ring segmentation method.

Keywords: intelligent analysis and processing; computer vision; image classification; image segmentation;
data optimization

1. Introduction

With the increasing demand for resources, projects in various fields, such as tunnel
excavation, oil exploration, and mining, are on the rise. In these projects, geological ex-
ploration becomes crucial, especially in the study of rock structure surfaces [1]. A rock
mass consists of rock blocks separated by structural surfaces, and the characteristics of
these surfaces directly impact the stability, mechanical properties, and engineering features
of the rock mass. Due to different tectonic movements in different geological periods,
various types of structural surfaces form in the rock mass, including fissures, faults, joints,
detachments, fracture zones, weak zones, and weak layers. These structural surfaces con-
stitute the most vulnerable parts of the rock mass, determining the engineering geological
characteristics and overall stability of the rock mass. Therefore, the in-depth analysis and
study of rock structure surfaces have become an essential task in geological exploration.

To gain a deeper understanding of the internal structure of rock formations, it is neces-
sary to employ specialized techniques and equipment to observe their internal features.
With the continuous advancement of borehole camera technology, this technology has
found widespread application in various fields, such as engineering geological exploration,
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rock mass integrity assessment, mining engineering, and petroleum development. Devices
based on optical technology can capture 360° borehole wall videos or images, recording
crucial information about the distribution, development characteristics, and geometric
parameters of internal rock structures. This information is essential for geological explo-
ration and the design of rock and soil engineering projects. However, the processing and
analysis of borehole image data require significant time and manpower, and human factors
may introduce subjective results. Therefore, to enhance the efficiency and accuracy of
processing and analysis, particularly for large geological datasets, efficient automation
methods are indispensable.

Drilling imaging technology often captures geological borehole images that exhibit
interference regions, including quasi-circular shadow areas and edge distortions. These are
attributed to the effects of lighting and camera principles within the borehole. Interference
factors, such as quasi-circular shadow regions and edge distortion, significantly impact
the accuracy and reliability of applications like feature extraction [2,3], image recognition,
and geological structure analysis. The analysis of geological borehole images requires the
use of appropriate algorithms and techniques, including image denoising [4], enhance-
ment [5], segmentation [6], etc., to improve the image recognition accuracy and information
acquisition efficiency. Thus, constructing a geological borehole image recognition database
through image segmentation technology [7,8] can significantly enhance the efficiency in pro-
cessing [9–11] and analyzing geological borehole images, reducing the manual processing
burden and minimizing the potential for errors.

When analyzing the experimental results of the literature related to image segmenta-
tion, it was observed that the application domains of existing image segmentation methods
do not align with geological borehole images. The extracted features from these methods
differ significantly from the characteristics of geological borehole images. Therefore, when
applying these methods to geological borehole images, it is often challenging to achieve
the desired segmentation results. To enhance the segmentation quality and obtain a more
optimal dataset, this paper proposes an optimal non-concentric ring segmentation method
to establish a new database. The experimental results indicate that, compared to the original
images, the new database not only eliminates noise interference regions in the images but
also achieves higher classification accuracy. In summary, the contributions of this work
encompass the following aspects.

• By employing the optimal non-concentric ring segmentation method proposed in
this paper, we are able to remove interference regions within the images and extract
the region of interest (ROI). This process helps to reduce the proportion of irrelevant
information in the image feature data, thereby extracting geological features that are
more representative and critical.

• Dynamic grayscale transformation intervals are constructed to optimize the image
segmentation results.

• Constructing the geological borehole image classification database involves imple-
menting the proposed optimal non-concentric ring segmentation method and compar-
ing it with the original database using various classification models.

The structure of the remaining sections of this paper is as follows. The related work is
reviewed in Section 2. Section 3 provides a comprehensive explanation of the proposed op-
timal non-concentric ring segmentation method and outlines the process of constructing the
geological borehole image classification database. In Section 4, we discuss the experimental
results. Finally, Section 5 serves as the conclusion for this presentation.

2. Related Works

For image datasets obtained from borehole camera systems, various processing meth-
ods are commonly employed to improve the data processing efficiency and enhance
the visual effects. These methods encompass image enhancement, feature extraction,
multi-dimensional modeling, image classification, and image segmentation, among oth-
ers. Zou et al. [12] proposed a high-resolution borehole image rapid synthesis method,
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capable of enhancing both the horizontal and vertical resolutions of the images to 0.1 mm,
enabling the finer detection of rock structure features. Guo and Wang [13] proposed a
multiple-point geostatistical method, introducing a mobile local scanning approach. This
method enables simulation nodes to scan within specific zoom areas, achieving partition
simulation effects concurrently and addressing discontinuity issues between partition
boundaries. The approach is instrumental in directly reconstructing a three-dimensional
geological model from borehole data. It proves effective in revealing the morphology of
stratigraphic structures, layer properties, and relationships between different geological
layers. Mirkes et al. [14] demonstrated a pseudo-outcrop visualization method for borehole
and full-diameter rock core images, aiming to augment the ubiquitous unwrapped cylinder
view and assist non-specialist interpreters. The pseudo-outcrop visualization is equivalent
to a nonlinear projection of the image from the borehole to an earth frame of reference,
creating a solid volume sliced longitudinally to reveal two or more faces.

In the field of geological image classification, Ma et al. [15] designed a learning
architecture based on knowledge distillation and a high-accuracy feature localization
comparison network (FPCN) for the generation of small yet high-performance rock image
classification models. The architecture involves the interaction of feature vectors generated
from local feature maps of two images, capturing both common and distinctive features.
This enables the network to focus on more complementary information across different
scales for various objects. Subsequently, the model learns the essential features of the
images in this manner, providing crucial discriminative information for the micro-model
through model distillation. Zhou and colleagues [16] proposed and implemented a next-
generation convolutional neural network (CNN) named HKUDES_Net, designed to classify
seven rock types with similar textures and colors. Leveraging computational strategies
such as dynamic dilation and squeeze-and-excitation, HKUDES_Net can effectively classify
rock types with varying granularity.

In the field of image segmentation, the classic methods include threshold-based [17],
clustering-based [18], and edge-based approaches. Matica et al. [19] proposed a real-time
Biscuit Tile Segmentation (BTS) method, which is based on signal change detection and
contour tracing. This method aims to separate tile pixels from the background in images
captured on the production line. A fault-tolerant quantum dual-threshold algorithm has
been proposed by Lopez et al. [20], constructed using Clifford+T gates and compatible
with error detection and correction codes. This integration enhances the noise tolerance,
reduces the computational costs, and adds fault tolerance to the existing dual-threshold
segmentation approach. Bayá [21] employed a clustering validation method, clustering
stability (CS), for automatic image segmentation. CS is not constrained by the dimensions
of the image or the clustering algorithm and is capable of determining the optimal number
of partitions based on color and texture features.

In recent years, with the continuous development of deep learning networks, their ap-
plications have been expanding. Deep learning methods [22], such as convolutional neural
networks (CNNs), have been successfully applied to image segmentation tasks in various
domains [23,24], including natural images, satellite images, and medical images, achiev-
ing remarkable results. Islam et al. [25] proposed a lightweight convolutional network,
LUVS-Net. The network utilizes an encoder–decoder framework, wherein edge data are
transposed from the first layer of the encoder to the last layer of the decoder, significantly
improving the convergence speed. Fan et al. [26] proposed a method that integrates a
hierarchical strategy into an image matting model for blood vessel segmentation in fundus
images. This approach utilizes the features of vascular regions to generate a ternary map,
and then applies a hierarchical image matting model to extract vessel pixels from unknown
regions. However, these methods are primarily tailored to their respective domain images.
Due to the specific nature of the capture perspective and environment in borehole camera
systems, the features of geological borehole images are notably different from those of
other images. Therefore, other image segmentation methods cannot be directly applied
to geological borehole images. In this paper, considering the characteristics of geological
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borehole images, we propose an optimal non-concentric ring segmentation method to
establish a new database.

3. Materials and Methods
3.1. Analysis of Original Image Data

The original geological borehole images used in this study are 360-degree hole wall
images obtained by moving the forward-looking borehole camera system radially in a pre-
drilled slender cylindrical hole. The system can map the three-dimensional hole wall images
within the effective illumination region in front of the probe into the two-dimensional plane
images, similar to observing the three-dimensional space of a cylinder through a circular
window. The geological borehole images are mainly divided into three categories, namely
border images, intact rock images, and fracture images.

The border images mainly include coal rock boundary images and the boundary im-
ages of different rock masses. These images exhibit significant variations in texture features,
typically characterized by rough and irregular textures. At the interface, the grayscale vari-
ation of the image is significant, as shown in Figure 1a. The intact rock images are relatively
complete borehole wall images, with a smooth and delicate surface, a single color feature,
and small changes in texture and grayscale features, as shown in Figure 1b. The fracture
images are hole wall images that include destructive structures such as abscission layers,
fractures, joints, rupture regions, and so on, as shown in Figure 1c.
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Figure 1. Three types of geological borehole images. (a) Border image. (b) Intact rock image.
(c) Fracture image.

The forward-viewing borehole camera technology captures images of the borehole
wall in front of the probe using a CCD camera installed at the top of the probe. Due to the
borehole channel being a slender cylindrical space with an uneven medium on its inner
surface, the light emitted by the probe’s illumination device scatters continuously during
the reflection process. This scattering results in the appearance of a quasi-circular shadow
region (QSR) at the center of the image, as shown in the Figure 2. In addition, according to
the principle of in-hole imaging, in the process of mapping a cylindrical three-dimensional
space image into a two-dimensional plane image, the generated two-dimensional image
will produce varying degrees of geometric distortion as the angle increases when the
viewing angle of the wide-angle lens is greater than 90°. Therefore, there is an obvious
edge distortion region (EDR) in the edge imaging region of geological borehole images,
as illustrated in Figure 2.
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In general, the QSRs in different types of borehole images share similar image charac-
teristics, such as position, shape, texture, and color, making them challenging for image
type discrimination. This region occupies a significant portion of the entire image but does
not contribute meaningful features for image recognition. Therefore, the significance of
this region is relatively low, diluting the weight of valuable information in image feature
representation. It has no positive effect on the image recognition process, but rather serves
as an interference region.

In addition, the two-dimensional plane image of cylindrical spatial mapping can be
viewed as being composed of continuous annular regions, where the degree of distortion
in these annular regions gradually increases outward from the two-dimensional axis of the
cylindrical drill, and the drilling center is usually not located at the geometric center of the
image. In this paper, the EDR is situated at the boundaries of the rectangular image, which
is an incomplete ring with severe geometric distortion. Therefore, the EDR can also be
regarded as an interference region with a limited positive impact on the recognition process.

3.2. Overview of Dynamic Construction Method of Geological Borehole Image
Recognition Database

When performing image recognition or big data analysis on the original borehole
image database, the presence of the QSR and the EDR might generate a large number of
image noise regions, which can impact the image analysis results. To solve this problem, this
study proposes a dynamic construction method for a borehole image recognition database
based on the optimal non-concentric ring segmentation algorithm (ONRS). Taking the
original geological borehole images as the research object, the proposed ONRS algorithm
is used to extract the region of interest (ROI) from the original images, and then it is
cyclically processed with the original image data to build a geological borehole image
recognition database. The database construction process is shown in Figure 3, which is
mainly divided into three steps, namely extracting adaptive dual-scale visual blind spots,
segmenting the optimal non-concentric ring region, and building the geological borehole
image recognition database.

Figure 3. Dynamic construction flowchart of geological borehole image recognition database.

(1) Extracting adaptive dual-scale visual blind spots.
According to the tone relationship of the Ansel Adams Zone System, the first and

second tones (Tone I and Tone II) are used for grayscale mapping to obtain the corresponding
two grayscale values. These grayscale values serve as the minimum values of the transfor-
mation interval, and the two fluctuation values of the average grayscale value (Mean-α and
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Mean-β) serve as the maximum values, which form the grayscale transformation intervals
((Tone I-Mean-α) and (Tone II-Mean-β)). Then, using the segmented functions constructed
from these intervals to optimize the grayscale distribution, two grayscale images with
different scales are obtained. Subsequently, the Otsu algorithm is applied to the grayscale
images to perform binarization. Post-binarization, clutter filtering is executed on the binary
images to obtain the adaptive dual-scale visual blind spots, i.e., large-scale and small-scale
visual blind spots.

(2) Segmenting the optimal non-concentric ring region.
We use the Hough transform to obtain the fitting circles of the large-scale visual blind

spots and set threshold γ to expand the fitting circle radius to gain the optimal inner circle,
thereby achieving full inclusion for the QSR. Simultaneously, the 2D axis coordinate of
a drilling cylinder (centroid of the small-scale visual blind spot) is determined, and it is
used as the center to select the minimum inscribed circle as the optimal outer circle to
eliminate the EDR. Through these methods, we can achieve the segmentation of the optimal
non-concentric ring region.

(3) Building the geological borehole image recognition database.
All original borehole images are labeled using expert knowledge, which are then

traversed based on the proposed ONRS algorithm to obtain the optimal non-concentric
ring borehole image with labels. Ultimately, the image set is organized and summarized to
complete the dynamic construction of the geological borehole image recognition database.

3.3. Extracting Adaptive Dual-Scale Visual Blind Spots

The ONRS algorithm proposed in this paper adaptively acquires dual-scale visual
blind spots (comprising both large-scale and small-scale visual blind spots) with the
grayscale distribution of borehole images, aiming to eliminate the QSR and the EDR
from the original images. Among them, the large-scale and small-scale visual blind spots
are employed to extract the inner and outer circles of the optimal non-concentric ring
regions, respectively. The extraction process is shown in Figure 4 and is primarily divided
into two parts.

Tone Relationship

(Tone II, Mean-α)

(Tone I, Mean-β)
F1

F2

Obtain dual scale transformation intervals

Large scale 

Small scale 

Large scale 

Small scale Small scale 

Large scale 

Gray-Scale Binarization
transformation

Impurity 
 removal

Extracting visual blind spots

Figure 4. Flowchart of the adaptive dual-scale visual blind spot extraction method.

(1) Obtaining adaptive dual-scale gray-level transformation intervals.
In this part, based on the correspondence between image tones and grayscale values

in the Ansel Adams Zone System, the grayscale mappings of the first tone (Tone I) and the
second tone (Tone II) are extracted as the minimum values for the small-scale and large-scale
grayscale transformation intervals, which correspond to the small-scale and large-scale
visual blind spots, respectively. Simultaneously, we calculate the average grayscale values
of the borehole images using grayscale histograms and experimentally determine the
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fluctuation values [27,28] of these two average grayscale values to act as the maximum
values, forming the dual-scale grayscale transformation interval.

(2) Extracting visual blind spots.
According to the grayscale transformation intervals ((Tone I-Mean-α) and (Tone II-

Mean-β)), the segmented functions F1 and F2 are constructed to optimize the grayscale
distribution of the borehole images, obtaining two grayscale images at different scales.
Subsequently, the Otsu algorithm is employed for image binarization. After removing the
clutter and black spots from the binary images, the acquisition of the adaptive dual-scale
visual blind spots is thus achieved.

3.3.1. Obtaining the Dual-Scale Gray Transformation Intervals

Before obtaining the dual-scale visual blind spots, it is necessary to perform grayscale
transformation on the original images. This transformation emphasizes the edge infor-
mation of the visual blind spots and effectively distinguishes between visual blind spots
and effective amplitude regions. This article adaptively obtains the dual-scale grayscale
transformation interval that matches the original image based on the image tone under
the 18% gray reflectance benchmark in the Ansel Adams Zone System and the fluctuation
value of the average grayscale value.

The Ansel Adams Zone System [29] is one of the fundamental theories in photographic
science. It divides the grayscale range of an image into 11 tonal zones, from the darkest
zero zone (the blackest part that the photo can represent) to the tenth zone (the background
color of the photo, which is white). During the photographic process, 18% gray is used as
the benchmark for metering. Due to the logarithmic relationship between the brightness
reflected and the surface grayscale of an object, 18% gray corresponds to 50% of the reflected
light brightness. The corresponding relationship between the image tones and the grayscale
values under the 18% gray reflectance benchmark is shown in Table 1.

Table 1. Mapping relationship between image tonal zones and gray levels.

% Black 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

Tone 0 I II III IV V VI VII VIII IX X

Grayscale 0 26 51 77 102 128 153 179 204 230 255
Low tone regions Mid tone regions High tone regions

According to the Ansel Adams Zone System, different tonal zones have different
reflectivity, and its corresponding tone colors (grayscale values) are also different. Based
on the 18% gray benchmark, the 0 to X tonal zones correspond to 11 grayscale colors from
deep black to light white, respectively. Typically, these 11 grayscale values are divided
into three groups: the first group (tonal zones 0 to III) corresponds to the low-tone regions,
the second group (tonal zones IV to VI) corresponds to the mid-tone regions, and the third
group (tonal zones VII to X) corresponds to the high-tone regions. Additionally, tonal zones
II to VIII are often referred to as the texture amplitude, representing texture details and
subtle variations in the image. Tonal zones I to IX are referred to as the effective amplitude,
representing the detailed information and visual effects of the image. Tonal zones 0 to X are
often referred to as the full tone, covering the entire grayscale range of the image, as shown
in Figure 5. For the geological borehole images studied in this article, the QSR belongs to
the region outside the effective amplitude, while the optimal non-concentric ring region
and the EDR are both within the effective amplitude region.

For the minimum value of the grayscale transformation interval, this article uses the
grayscale values corresponding to different tones. When selecting the grayscale value
corresponding to the second tonal zone (Tone II) as the minimum value, the image seg-
mentation effect is closest to the standard large-scale visual blind spot range. Additionally,
as the size of the small-scale visual blind spot decreases, the error between the centroid
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coordinates and the true two-dimensional axis center coordinates of the drilling cylinder
will also decrease. After verification, the experimental effect is best when the grayscale
value corresponding to the first tonal zone (Tone I) is taken as the minimum value in the
small-scale transformation interval. Therefore, this paper selects Tone II and Tone I as the
minimum values of the grayscale transformation intervals for large- and small-scale visual
blind spots, respectively.
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For the maximum value of the grayscale transformation interval, due to the overall
grayscale difference of each borehole image, the optimal segmentation of the QSR cannot
be achieved when a fixed value is selected as the maximum value of the grayscale trans-
formation interval. Therefore, aiming at the segmentation effect of the two visual blind
spots, this paper determines the two fluctuation values as the maximum values of the
gray transformation intervals, by optimizing the parameters based on the average gray
value. This approach can not only ensure the integrity of the QSR in different types of
borehole images, but also allows one to automatically adjust the optimal range of the region
according to the gray distribution of each image.

Finally, this paper takes Tone I and Tone II as the minimum values and the fluctuation
values of the average gray value as the maximum values to form the dual-scale gray
transformation intervals ((Tone I-Mean-α) and (Tone II-Mean-β)). Their expressions are
shown in Equations (1) and (2). The piecewise functions constructed from these intervals
are applicable to the segmentation of different types of borehole images.

[Tone I, Mean − α] =

[
Tone I,

255

∑
k=0

k × Zk
M × N

−α

]
(1)

[
Tone I I, Mean − β

]
=

[
Tone I I,

255

∑
k=0

k × Zk
M × N

− β

]
(2)

where Tone I and Tone II correspond to the grayscale values of the first tone and the second
tone (Tone I = 26, Tone II = 51); Mean represents the average grayscale value of the image; α
and β correspond to the fluctuation values in the small-scale and large-scale visual blind
spots (α = 100, β = 90); k is the current grayscale value; M and N are the width and height of
the image; and Zk is the frequency of occurrence of the current grayscale value. According
to the gray distribution of the image, the transformation interval suitable for the current
image can be obtained.

3.3.2. Extract Visual Blind Spots

The segmented functions are constructed by using the obtained dual-scale grayscale
transformation intervals for grayscale transformation, and then the binary images with
large and small scales are segmented by the Otsu algorithm. After noise filtering processing,
the adaptive dual-scale visual blind spot can be achieved.

With the obtained dual-scale grayscale transformation intervals ((Tone I-Mean-α)
and (Tone II-Mean-β)), the segmented functions F1 and F2 are constructed, as shown in
Equations (3) and (4). Using F1 and F2 to perform grayscale transformations on the original
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image, two grayscale images of different scales of visual blind spots are obtained, as shown
in Figure 6b,c.

F1(x, y) =


I(x, y) 0 ≤ I(x, y) ≤ Tone I

Gmax−0
(Mean−α)−Tone I × I(x, y) Tone I < I(x, y) ≤ Mean − α

I(x, y) Mean − α < I(x, y) ≤ Gmax

(3)

F2(x, y) =


I(x, y) 0 ≤ I(x, y) ≤ Tone I I

Gmax−0
(Mean−β)−Tone I I × I(x, y) Tone I I < I(x, y) ≤ Mean − β

I(x, y) Mean − β < I(x, y) ≤ Gmax

(4)

where I (x, y) represents the grayscale value of pixel coordinates (x, y) in image I before
grayscale transformation; F1 (x, y) and F2 (x, y) represent the grayscale values of this pixel
in image I after grayscale transformation. Gmax is the maximum value of the grayscale
range of the image. The definition domains of F1 (x, y) and F2 (x, y) are determined based
on the transformation intervals in Equations (1) and (2).

The Otsu [30] algorithm is commonly used to obtain the global threshold of the
image, and it can automatically find a binary threshold suitable for the current image.
After obtaining the grayscale images representing two different scales of visual blind spots,
we used the Otsu algorithm to binarize the grayscale images, as shown in Figure 6d,e.

max
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( , ) 0 ( , )

0
1( , ) ( , ) ( , )

( )

( , ) ( , )

I x y I x y Tone I

G
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−
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Due to the uneven surface roughness of the hole wall and the varying attenuation 

of light scattering during the imaging process, the resulting binary image may have a 

small amount of noise points and local black spots. To eliminate these interferences, 

this article uses the Two Pass connected region labeling (TPCRL) algorithm to process 

the image to remove noise points and local black spots. 

The TPCRL algorithm is used to traverse all pixels in a binary image, attaching 

the same label to non-zero pixels that are connected to each other. The region composed 

Figure 6. Flowchart of grayscale transformation and binarization process. (a) Original image. (b) Grayscale
image after transformation by F1 (x, y). (c) Grayscale image after transformation by F2 (x, y).
(d) Binarized image corresponding to (b). (e) Binarized image corresponding to (c).

Due to the uneven surface roughness of the hole wall and the varying attenuation of
light scattering during the imaging process, the resulting binary image may have a small
number of noise points and local black spots. To eliminate these interferences, this article
uses the two pass connected region labeling (TPCRL) algorithm [31] to process the image
to remove the noise points and local black spots.

The TPCRL algorithm is used to traverse all pixels in a binary image, attaching the
same label to non-zero pixels that are connected to each other [32]. The regions composed
of pixels with the same label are referred to as connected regions, and the entire image is
composed of a series of connected regions with different labels. The labeling results are
shown in Figure 7. The entire image is composed of 7 different connected regions, marked
with different colors. The red region is the visual blind spot, which has a significantly larger
area than the other regions. The remaining connected regions are the noise points and local
black spots generated by regions with high attenuation of light scattering.
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of pixels with the same label are referred to as connected regions, and the entire image 
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significantly larger area than the other regions. The remaining connected regions are 

the noise points and local black spots generated by regions with high attenuation of 

light scattering. 

 

Figure 7. Connected region labeling result. 

 

TABLE II 

AREA STATISTICS OF CONNECTED REGIONS 

Color Red Blue Light Blue Dark blue Yellow Green Orange 

Pixels 1834 301 51 38 28 13 13 

The area of each connected region (i.e., the total number of pixels in each region) 

was statistically analyzed, and the results are shown in Table II. We set the threshold P 
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The area of each connected region (i.e., the total number of pixels in each region)
was statistically analyzed, and the results are shown in Table 2. We set the threshold P
and eliminate connected regions in the binary image where the number of pixels was less
than P to remove noise points and small-area local black spots. Figure 8a represents the
binary image before noise points and small-area local black spots were removed, Figure 8b
represents the binary image after connected region detection, and Figure 8c is the result
after eliminating connected regions smaller than the threshold value.
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Finally, by performing grayscale transformation, binarization, and connected region
filtering on the original images, the dual-scale visual blind spot images are obtained.
Figure 9a represents the image of the large-scale visual blind spot, and Figure 9b represents
the image of the small-scale visual blind spot.
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obtain the centroid coordinates of the small-scale visual blind spot as the center 

coordinates of the drilling hole for the positioning of the outer circle. 

Figure 9. Dual-scale visual blind spot. (a) Large-scale visual blind spot. (b) Small-scale visual blind spot.

3.4. Segmentation of Optimal Non-Concentric Ring Regions

The optimal non-concentric ring region is segmented by the optimal outer circle and
inner circle. In this section, the automatic positioning of the outer and inner circles is
achieved based on both small-scale and large-scale visual blind regions.
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3.4.1. Outer Circle Localization Based on Small-Scale Visual Blind Spot

Typically, the center of the optimal outer circle (i.e., the drilling center) is located at
the center of the small-scale visual blind spot, as shown in Figure 10. The contour of this
region is irregularly circular. In this paper, the Strong-Weighted Centroid Algorithm [33] is
used to obtain the centroid coordinates of the small-scale visual blind spot as the center
coordinates of the drilling hole for the positioning of the outer circle.

  
(a) Large-scale visual blind spot. (b) Small-scale visual blind spot. 

Figure 9. Dual-scale visual blind spot. 
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centroid coordinates of the small-scale visual blind spot as the center coordinates of the 

drilling hole for the positioning of the outer circle. 
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Figure 10. Schematic diagram of borehole center localization.

The Strong-Weighted Centroid Algorithm is a weighted centroid acquisition algorithm
based on the given point set. This algorithm assigns weights to each point, making the
contribution of each point more accurately reflected in the calculation results. Unlike
traditional arithmetic averages, the Strong-Weighted Centroid Algorithm weights each
point based on its geometric position; thus, it is better suited for the handling of irregular
point distributions.

In the process of obtaining the center of the drilling hole, the Strong-Weighted Centroid
Algorithm is used to enhance the pixel weights of some regions closer to the center of the
visual blind spot, further increasing the influence of points with a greater impact on the
visual blind spot, thereby improving the centroid localization accuracy. The calculation
formulas are shown in Equations (5) and (6).

xc =
∑

y0+w0,y/2
j=y0−w0,y/2 ∑x0+w0,x/2

i=x0−w0,x/2 xi Iijw

∑
y0+w0,y/2
j=y0−w0,y/2 ∑x0+w0,x/2

i=x0−w0,x/2 Iijw
(5)

yc =
∑x0+w0,x/2

i=x0−w0,x/2 ∑
y0+w0,y/2
j=y0−w0,y/2 yj Iijw

∑x0+w0,x/2
i=x0−w0,x/2 ∑

y0+w0,y/2
j=y0−w0,y/2 Iijw

(6)

where (xc, yc) is the coordinate of the borehole center, (xi, yi) is the current pixel coordinate,
Iij represents the light intensity received of each pixel, and w is the weighting function,
which can take various forms. In this paper, we use w=Ia, where a is the weighting factor,
set to 3.

After obtaining the coordinates of the outer circle’s center (xc, yc), we need to draw a
perpendicular line from this point, intersecting with the image edge to obtain the point (xi,
yi), and calculate the length of this perpendicular line di, where the shortest length of the
perpendicular lines is the optimal outer circle’s radius, as shown in Equation (7).

R = min{di} = min


√
(x1 − x0)

2 + (y1 − y0)
2,
√
(x2 − x0)

2 + (y2 − y0)
2, · · ·

· · · ,
√
(xi − x0)

2 + (yi − y0)
2

 (7)

Through the above-mentioned method, using the extracted outer circle in this article
for image segmentation, it is possible to preserve the valid information of the image to
the greatest extent, while eliminating the EDR. Finally, the borehole image obtained after
removing the EDR is as shown in Figure 11.
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Figure 11. EDR segmentation results. (a) Fracture image. (b) Border image. (c) Intact rock image.

3.4.2. Inner Circle Localization Based on Large-Scale Visual Blind Spot

The optimal inner circle positioning method in this paper mainly includes the follow-
ing three steps: edge detection, circular Hough transform, and the extraction of the optimal
inner circle.

(1) Edge detection
Considering that the edge pixels in the large-scale visual blind spot often have a

discontinuous distribution, this paper uses the Canny operator [34] for edge detection.
It can more accurately obtain the edge information of the large-scale visual blind spots,
providing a basis for the localization of the optimal inner circle.

Figure 12 shows the edge extraction results of the intact rock, fracture, and border
images after applying the Canny operator. It can be observed that the edge detection results
of fracture and border images contain more than two types of edge information.

   
(a) (b) (c) 

Figure 12. Canny edge detection results  

(a) The edge detection results of intact rock mass image.(b) The edge detection 

results of fracture image.(c) The edge detection results of border image. 
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of center and radius, and then search for points that match these combinations by 

traversing all pixels in the image. By accumulating all possible combinations of centers 

and radii, the Hough transform can detect the presence of circles in the image. The 

expression is shown in Equation (8), where the coordinates of any point on the circle 

can be represented by Equation (9). 
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where, a and b represent the horizontal and vertical coordinates of the center of the 

circle, r is the radius of the circle, and θ is the angle between the normal and the x-axis. 

To extract the inner circle, this article inputs the Canny edge detection results into 

the circular Hough transform algorithm for operation, and obtains the positions and 

radii of all circles in the image. The results of using the circular Hough transform for 

three different types of images are shown in Figure 13. It can be observed that suitable 

Hough circles can be extracted at all locations of the visual blind spots. However, due 

to some local structures and image noise, there may be some interference circles in the 

detection result image. 

 

Figure 13. Circular Hough transform results. 

 

3) Extracting the optimal inner circle 

The problems with the circular Hough transform results mainly include two 

situations, one is the presence of multiple interfering Hough circles, and the other is 

Figure 12. Canny edge detection results. (a) The edge detection results of an intact rock image.
(b) The edge detection results of a fracture image. (c) The edge detection results of a border image.

(2) Circular Hough transform
The circular Hough transform [35] is an effective algorithm for the detection of circular

contours in an image. It can view circular contours as a series of possible combinations of
center and radius, and then search for points that match these combinations by traversing
all pixels in the image. By accumulating all possible combinations of centers and radii,
the Hough transform can detect the presence of circles in the image. The expression is
shown in Equation (8), where the coordinates of any point on the circle can be represented
by Equation (9).

(x − a)2 + (y − b)2 = r2 (8){
x = a + r cos θ
y = b + r sin θ

(9)

where (x, y) can represent the coordinates of any point on the Hough circle. a and b represent
the horizontal and vertical coordinates of the center of the circle, r is the radius of the circle,
and θ is the angle between the normal and the x-axis.

To extract the inner circle, this article inputs the Canny edge detection results into the
circular Hough transform algorithm for operation and obtains the positions and radii of all
circles in the image. The results of using the circular Hough transform for three different
types of images are shown in Figure 13. It can be observed that suitable Hough circles can
be extracted at all locations of the visual blind spots. However, due to some local structures
and image noise, there may be some interference circles in the detection result image.
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Figure 13. Circular Hough transform results. (a) Fit of the image of a single Hough circle. (b) Fit of
the image of a double Hough circle. (c) Fit of an image of multiple Hough circles.

(3) Extracting the optimal inner circle
The problems with the circular Hough transform results mainly include two situations:

one is the presence of multiple interfering Hough circles, and the other is that the visual
blind spot is an irregular circle, and the Hough circles cannot cover all visual blind spots.

Regarding the first problem, this article first uses the Euclidean distance between
the center of the Hough circle and the geometric center of the image to filter the circles.
The Hough circle corresponding to the minimum Euclidean distance is selected as the
target circle, eliminating other interfering circles. The calculation formula is shown in
Equation (10). 

x0 = m/2
y0 = n/2

|Xi| =
√
(xi − x0)

2 + (yi − y0)
2

d(xi, yi) = min|Xi|

(10)

where m and n are the width and length of the image, (x0, y0) is the geometric center of
the image, (xi, yi) is the center coordinate of the i-th Hough circle, |Xi| is the Euclidean
distance from (xi, yi) to the geometric center, and d (xi, yi) is the minimum distance of all
Hough circle centers to the geometric center.

Regarding the second problem, this paper introduces a threshold γ (γ = 2) to increase
the diameter of the target circle, achieving the complete coverage of the visual blind spot.
As shown in Figure 14, the red circles represent the target circles obtained through the
Hough transform, while the blue circles represent the optimal inner circles obtained in
this study.

   
(a) (b) (c) 

 

   
(a) (b) (c) 

 

 
Figure 14. Optimal inner circle extraction results. (a) The processing results of the single Hough circle
image. (b) The processing results of the double Hough circle image. (c) The processing results of the
multiple Hough circle image.

By using the above method, utilizing the extracted optimal inner circle to perform
image segmentation, it is possible to remove the QSR while preserving the maximum
amount of valid image information. The final borehole image obtained after removing the
QSR is shown in Figure 15.
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Figure 15. QSR segmentation results. (a) Fracture image. (b) Border image. (c) Intact rock image.

3.5. Dynamic Construction Method of Geological Borehole Image Recognition Database Based on
ONRS Algorithm

The probe of the forward drilling camera system moves axially inside the borehole,
capturing borehole images of the formation where the borehole is located, through the
camera on the probe. These images are referred to as the original borehole images. Due to
the influence of the environmental conditions and the illumination factors of the camera sys-
tem, the original borehole images often contain extensive regions of interference, reducing
the distinguishability of different types of borehole images. To enhance the performance of
borehole image recognition, this paper constructs a geological borehole image recognition
database based on the ONRS algorithm.

To construct the geological borehole image recognition database, first, expert knowl-
edge is used to label the original images. Then, the ONRS algorithm is used to traverse
the labeled original images to obtain the optimal non-concentric ring images. Finally,
the optimal non-concentric ring images are organized and summarized to construct the
geological borehole image recognition database. The method process is shown in Figure 16,
and it is mainly divided into four steps.
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Figure 16. Dynamic construction method diagram for geological borehole image recognition database
based on ONRS algorithm.

Step 1. Set the label categories. According to expert knowledge [36], the geological
borehole images are generally categorized into three types, namely border images, intact
rock images, and fracture images.

Step 2. Label the original images. Based on expert knowledge in the field of geology,
which encompasses unique characteristic information present in various geological images,
a comparative analysis of the heterogeneity among borehole images can be conducted.
Subsequently, the original borehole images can be labeled according to the analysis results.
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Step 3. Label the segmented images. Input the labeled original borehole images into
the ONRS algorithm proposed in this paper, and the optimal non-concentric ring images
with labels are obtained.

Step 4. Construct the geological borehole image recognition database. The labeled
optimal non-concentric ring images are organized and categorized based on their labels,
achieving the construction of the geological borehole image recognition database.

The optimal non-concentric ring images in the geological borehole image recognition
database, relative to the original images, reduce the proportion of irrelevant and interfering
feature information [37] while preserving effective image feature information. It is beneficial
for the classification process.

4. Experimental Results and Analysis

To validate the effectiveness of the dynamic construction method of the geological
borehole image recognition database, this section conducts analyses based on the image
segmentation effect and image recognition performance. The dataset used in this study
comprises 1410 geological borehole images, categorized into three main types, all captured
in JPG format with a fixed resolution of 300 × 238 pixels. The experimental environment
for this study includes a CPU with an Intel Core i5-11300H processor, which has a maxi-
mum main frequency of 3.10 GHz, 16 GB of RAM, and a Windows 11 operating system.
The development environment employed is MATLAB R2020b.

4.1. Image Segmentation Results and Evaluation

The spatial domain processing is the primary factor affecting the image segmentation
effect, and different grayscale transformation parameters will directly affect the image
segmentation results in this article. This section verifies the effectiveness of the proposed
ONRS algorithm utilizing different transformation parameters.

Due to the fact that the grayscale values corresponding to tonal zones IV to X of the
Ansel Adams Zone System are much greater than the maximum grayscale values of the
QSR, the QSR contrast cannot be improved using these grayscale values as the minimum
values for the transformation interval. Furthermore, when the maximum value of the
transformation interval exceeds 150, the grayscale-transformed image has no significant
difference from the original image and cannot highlight the QSR. Therefore, in this section,
the grayscale values corresponding to tonal zones I–III are set as the minimum values for
the transformation interval. Simultaneously, values of 80, 90, Mean, and Mean-β are set as
the maximum values for the transformation interval, as shown in the experimental results
in Table 3.

In the vertical comparison, focusing on the experimental results where the maximum
value of the transformation interval is 80, the inner circle of image (q) deviates from the
center of the borehole, while the inner circles of images (r) and (j) exceed the QSR range.
In the experimental results with the maximum value of 90, the inner circles of images (d),
(l), (s), and (t) exceed the QSR range. In the experimental results with the maximum value
of Mean, the inner circle in image (u) deviates from the center of the borehole, while the
inner circles in other images exceed the QSR range. In contrast, the segmentation results
with the maximum value of Mean-β outperform the others in terms of image segmentation;
it does not experience the significant deviation of the inner circles from the borehole center
or exceed the QSR range.

In the horizontal comparison, the segmentation results for images with different tones
are compared when the maximum value is Mean-β. Among them, the inner circle in image
(h) of Tone I slightly deviates from the borehole center. The inner circles in images (x) and
(w) of Tone III exceed the QSR range. When the minimum value of the transformation
interval is chosen to correspond to Tone II, the positioning of the inner and outer circles is
relatively accurate.
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Table 3. Segmentation results of non-concentric ring in different intervals.

min

max
80 90 Mean Mean-β

Tone I
(a) (b) (c) (d) (e) (f) (g) (h)

Tone II
(j) (k) (l) (m) (n) (o) (p) (q)

Tone III
(q) (r) (s) (t) (u) (v) (w) (x)

This indicates that the ONRS algorithm proposed in this article can obtain an ideal
optimal non-concentric ring region when selecting the grayscale transformation interval
corresponding to (Tone II-Mean-β).

In this paper, the Jaccard index and Dice similarity coefficient are used as evaluation
metrics for the performance of the image segmentation algorithm. The Jaccard index [38]
and Dice coefficient [39] measure the performance of the algorithm by reflecting the sim-
ilarity between the actual segmentation results and the standard segmentation results.
The larger the two values, the better the algorithm. They are defined as follows.

Jaccard =
TP

(TP + FP + FN)
(11)

Dice =
2 × TP

(2 × TP + FP + FN)
(12)

In this study, ten images were randomly selected from the geological borehole image
recognition database. Various transformation intervals as well as the interval applied in
the ONRS algorithm were evaluated. The scores of the Dice similarity coefficient and
Jaccard index were recorded for comparison. Table 4 shows the experimental results in the
experimental environment with an NVIDIA Titan RTX graphics card.

From Table 4, it can be observed that, compared to other transformation intervals,
the Jaccard index and Dice similarity coefficient scores of the borehole images segmented us-
ing the transformation interval (Tone II-Mean-β) adopted in this paper are the highest. This
indicates that the proposed ONRS algorithm exhibits significant advantages in borehole
image segmentation.

Table 4. Scores of Dice similarity coefficient and Jaccard index for different transformation intervals.

Transformation Interval Jaccard /% Dice /%

(Tone I, 80) 87.63 98.28
(Tone I, 90) 87.40 98.00

(Tone I, Mean) 78.30 92.32
(Tone I, Mean-β) 88.40 98.31

(Tone II, 80) 87.33 98.07
(Tone II, 90) 87.17 97.79



Electronics 2024, 13, 1107 17 of 21

Table 4. Cont.

Transformation Interval Jaccard /% Dice /%

(Tone II, Mean) 80.02 93.11
(Tone II, Mean-β) 88.43 98.55

(Tone III, 80) 87.33 98.07
(Tone III, 90) 86.19 97.04

(Tone III, Mean) 74.61 91.21
(Tone III, Mean-β) 87.47 98.07

4.2. Analysis of Image Recognition Performance

To validate the effectiveness of the geological borehole image recognition database
constructed using the proposed method, this section verifies the recognition performance
using the fine-tuned decision tree [40] (FTDT), linear SVM [41] (LSVM), fine-tuned K-nearest
neighbors [42] (FT-KNN), ResNet34, and ResNet101 on both the original image database
and the constructed one. In both databases, the images in the training and validation sets
correspond to each other. During training, FTDT, LSVM, and FT-KNN utilize SIFT features
extracted from the images as input.

First, we verify that the geological borehole image recognition database achieves
higher classification accuracy. Figure 17 displays the recognition accuracy obtained with
various classifiers. When classifying the two databases using FTDT, LSVM, FT-KNN,
ResNet34, and ResNet101, the classification accuracy of the constructed new database is
improved by 3.6%, 4.2%, 2.6%, 1.57%, and 1.05%, respectively, compared to the original
image database.

积神经网络与迁移学习再做相应研究，结合本文所使用的地质钻孔图像识别数

据库构建方法尝试研究一种更加完善、准确的地质钻孔识别数据库构建及分类
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Figure 17. Classification accuracy of various algorithms on the original image database and the
geological borehole image recognition database.

Next, we verify that the geological borehole image recognition database achieves
higher macro-average accuracy [43]. Figure 18 presents the macro-average results for
various classifiers. When classifying the two databases using FTDT, LSVM, FT-KNN,
ResNet34, and ResNet101, the macro-average accuracy of the constructed new database
is significantly higher than that of the original image database. The experimental data
indicate that the introduction of the geological borehole image recognition database allows
for the more accurate classification of images across different categories, demonstrating
greater applicability.

Finally, we confirm the enhancement in class-specific accuracy achieved by the geolog-
ical borehole image recognition database. To compare the results of the two databases in the
aforementioned classification models, we employed a widely used indicator in statistical
classification problems, namely the confusion matrix [44]. Figure 19 shows the confusion
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matrix comparisons for the border images (Bi), fracture images (Fi), and intact rock images
(Irmi).

积神经网络与迁移学习再做相应研究，结合本文所使用的地质钻孔图像识别数

据库构建方法尝试研究一种更加完善、准确的地质钻孔识别数据库构建及分类
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Figure 18. Macro-averaged accuracy of various classification algorithms on the original image
database and the geological borehole image recognition database.
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Figure 19. Confusion matrices of various classification algorithms on the original image database
and the geological borehole image recognition database. (a) Classifying the original database using
FTDT. (b) Classifying the new database using FTDT. (c) Classifying the original database using
LSVM. (d) Classifying the new database using LSVM. (e) Classifying the original database using
FT-KNN. (f) Classifying the new database using FT-KNN. (g) Classifying the original database using
ResNet34. (h) Classifying the new database using ResNet34. (i) Classifying the original database
using ResNet101. (j) Classifying the new database using ResNet101.

According to the confusion matrix in Figure 19, fracture images have the greatest
impact on the classification accuracy of the database. Therefore, this paper mainly com-
pares the classification results of fracture images in the original image database and the
geological borehole image recognition database. Experimental analyses were conducted
on both databases using FTDT, LSVM, FT-KNN, ResNet34, and ResNet101. The confusion
matrix results in Figure 19a,c,e,g,i show that, in the fracture images, 30, 20, 28, 31, and
34 samples were recognized as intact rock images, respectively. The confusion matrix results
in Figure 19b,d,f,h,j show that, in the fracture images, 15, 13, 24, 28, and 32 samples were
recognized as intact rock images, respectively. By comparison, it can be seen that the geo-
logical borehole image recognition database proposed in this paper has higher class-specific
accuracy in classifying fracture images compared to the original image database.

Based on the experimental results in this section, it is evident that under various
classification models, the proposed geological borehole image recognition database has
significantly improved overall accuracy compared to the original images. The improvement
in the macro-average accuracy indicates that the geological borehole image recognition
database achieves better average performance in cases with an uneven distribution of
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categories and varying levels of category discrimination. Furthermore, the comparison of
the confusion matrices validates the increase in recognition accuracy for fracture images
and intact rock images when using the geological borehole image recognition database.

The conclusions from Sections 3.1 and 3.2 demonstrate that the geological borehole
image recognition database shows positive applicability in processing recognition tasks on
geological borehole images with special environments. The dynamic construction method
for the geological borehole image recognition database demonstrates outstanding image
segmentation accuracy and markedly enhances the classification precision, affirming its
applicability in real-world geological drilling contexts.

5. Conclusions

Due to the influence of insufficient lighting in the shooting environment and in-
hole imaging characteristics, the geological borehole images obtained contain numerous
interference regions. To reduce the impact of interference regions on geological borehole
image analysis and recognition work, we propose a dynamic construction method for
a geological borehole image recognition database based on an optimal non-concentric
ring segmentation algorithm. The optimal non-concentric ring segmentation algorithm
introduces the tone of the Ansel Adams Zone System and the fluctuation value of the
average grayscale value to construct the dynamic transformation interval, and it then
extracts the adaptive optimal non-concentric ring region. The database construction method
in this study utilizes the optimal non-concentric ring region to eliminate interference regions
in the original image, ensuring the integrity of the effective regions and improving the
accuracy of image recognition. The effectiveness and accuracy of this method can meet
the practical needs of engineering, with potential applications in geological exploration,
mineral resource investigation, and geological disaster monitoring.
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