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Abstract: The ubiquitin proteasome system (UPS) utilizes an orchestrated enzymatic cascade of E1,
E2, and E3 ligases to add single or multiple ubiquitin-like molecules as post-translational modification
(PTM) to proteins. Ubiquitination can alter protein functions and/or mark ubiquitinated proteins
for proteasomal degradation but deubiquitinases (DUBs) can reverse protein ubiquitination. While
the importance of DUBs as regulatory factors in the UPS is undisputed, many questions remain on
DUB selectivity for protein targeting, their mechanism of action, and the impact of DUBs on the
regulation of diverse biological processes. Furthermore, little is known about the expression and
role of DUBs in tumors of the human central nervous system (CNS). In this comprehensive review,
we have used publicly available transcriptional datasets to determine the gene expression profiles
of 99 deubiquitinases (DUBs) from five major DUB families in seven primary pediatric and adult
CNS tumor entities. Our analysis identified selected DUBs as potential new functional players and
biomarkers with prognostic value in specific subtypes of primary CNS tumors. Collectively, our
analysis highlights an emerging role for DUBs in regulating CNS tumor cell biology and offers a
rationale for future therapeutic targeting of DUBs in CNS tumors.

Keywords: brain tumor; glioma; neuronal system tumor; deubiquitinase (DUB); endoplasmic reticulum
associated degradation (ERAD); immune response; therapeutic target; DNA repair

1. Introduction

The ubiquitin proteasome system (UPS) is a highly regulated and dynamic process
that utilizes a three-step enzymatic cascade to attach small molecules of the ubiquitin family
onto proteins to alter their function and/or mark ubiquitinated proteins for proteasomal
degradation. The extensive Ubiquitin and Ubiquitin-like Conjugation Database (UUCD)
lists enzymes involved in ubiquitin post-translational modification of proteins [1]. In
eukaryotes, this includes 1 human ubiquitin-activating (E1) enzyme (although the litera-
ture recognized at least two E1 enzymes, UBA1 and UBA6), 43 E2 ubiquitin-conjugating
enzymes, 468 enzymes with E3 ligase activity (further classified as those with RING,
HECT, or UBR domains), 538 E3 ligase adaptors, and approx. 100 deubiquitinase enzymes
(DUBs) [2,3]. Ubiquitin is one of several ubiquitin-like protein modifiers that also includes
ubiquilins, SUMO, NEDD8, and ISG15 [4]. While cellular regulators in their own right,
these post-translational modifiers can cross-communicate with ubiquitin through modifica-
tions or are being modified by (poly)ubiquitin [5]. Ubiquitin has eight ubiquitination sites,
including seven lysine (K) residues (K6, K11, K27, K29, K33, K48, K63) and a primary amine
at the N-terminus [5]. While mono-ubiquitination and K48- and K63-linked polyubiquitina-
tion are the most abundant forms, multiple other types of ubiquitination exist which have
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distinct functional outcomes [6]. Mono-ubiquitination refers to the attachment of a single
ubiquitin molecule to a target protein and serves as a signal for protein recognition, com-
plex formation, or allosteric regulation. The addition of a single ubiquitin moiety during
mono-ubiquitination can influence the localization, activity, or interaction of the modified
protein within the cell. Poly-ubiquitination refers to the formation of a covalently linked
ubiquitin molecule chain attached to a specific lysine residue of ubiquitin. When a protein
is poly-ubiquitinated with K48-linked ubiquitin chains, it is recognized by the proteasome
and targeted for degradation. Unlike K48-linked ubiquitin chains, K63-linked ubiquitin
chains do not target proteins for degradation but enable context-specific functions of K63
ubiquitinated proteins in cellular signaling, intracellular trafficking, autophagy, and DNA
damage responses [7,8]. K63-linked ubiquitin chains serve as scaffolds for protein–protein
interactions, modulate enzyme activity, and regulate the localization and function of target
proteins [9,10].

Deubiquitinating enzymes (DUBs) contribute to the regulation of a variety of bio-
logical processes, including proteasomal degradation of proteins, cell cycle regulation,
histone modifications, transcriptional and translational control, protein trafficking, macro-
and mitophagy, DNA damage response, epigenetic processes, and immune response sig-
naling [5]. DUBs reverse the process of protein ubiquitination by selectively removing
ubiquitin molecules or chains from proteins. Hence, DUBs are editors of the ubiquitin code
and remove single ubiquitin molecules, entire ubiquitin chains, or ubiquitin branches from
a ubiquitinated protein by cleaving ubiquitin substrate bonds and ubiquitin–ubiquitin pep-
tide bonds [11,12] The approx. 100 putative DUBs identified so far in the human proteome
are classified into five major families based on their structural and functional character-
istics [13–15]. The ubiquitin-specific proteases (USPs) are the largest subclass of DUBs,
with currently 54 members in humans [16]. USPs contain a conserved catalytic domain
known as the ubiquitin-specific protease domain and exhibit specificity towards different
types of ubiquitin linkages. Ubiquitin carboxy-terminal hydrolases (UCH) family members
(four members) possess a distinct catalytic domain called the UCH domain. UCHL mem-
bers are involved in the processing of ubiquitin precursors and the removal of ubiquitin
from proteins [17–19]. DUBs of the ovarian tumor proteases (OTU) family (16 members)
contain an ovarian tumor (OTU) domain and are involved in various cellular processes,
including immune signaling, pathogen infection, and DNA damage response [20–22]. The
Machado–Joseph disease proteases (MJD) family of DUB proteins (four members) possesses
a Josephin domain, prefers K48/ K63 linkages, and is associated with neurodegenerative
disorders, particularly Machado–Joseph disease [23]. The JAB1/MPN/Mov34 (JAMM) met-
alloenzyme family (16 members) of DUBs contains a metalloprotease domain and prefers
targeting K63 ubiquitination sites. JAMM member CSN5 is a deNEDDylase [24–26]. The
MINDY family is a recent DUB addition, with two of the four family members containing a
“motif interacting with ubiquitin” (MIU) which assists in the enzymatic cleave of long K48
polyubiquitin chains [27]. Finally, a diverse group of ubiquitin-like proteases (ULPs) targets
ubiquitin-like modifiers other than ubiquitin and comprises SENP (sentrin/ SUMO-specific
protease), DeSI (deSUMOylating isopeptidase) families], and NEDD8 [28–30].

DUBs are essential for the dynamic and coordinated actions of the UPS and ensure
proper functions of virtually all cellular processes, including the control of cellular levels of
key regulatory transcription factors, growth factors, morphogens, cell cycle regulators, and
the balance of factors regulating cell survival. The enzymatic removal of ubiquitin groups
by DUBs is critical for reversible ubiquitination and the recycling of unbound ubiquitin
to the UPS and ERAD (endoplasmic reticulum-(ER) associated degradation) pathways.
Cellular DUB activity determines the coordinated regulation of both the UPS and ERAD
pathways in a tissue region- and context-specific manner [31].

Extending throughout eukaryotic cells, the ER is the largest cellular organelle and
composed of a series of sheet-like and tubular structures that form close contacts with other
organelles, in particular the nucleus and mitochondria [32]. The ER can be subdivided into
two types, the smooth and the rough ER. While the smooth ER facilitates lipid synthesis
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and hormone synthesis, the rough ER is the site of protein folding, modification, and
quality control [32]. Signal peptides direct newly synthesized proteins to the ER lumen
where ER-localized chaperones and enzymes facilitate protein folding and modifications.
Correctly folded and processed proteins are then shuttled, via transport vesicles, to the
Golgi apparatus and from there to their final destination [33]. The folding and modification
of proteins is highly dependent on the maintenance of a stable ER environment. Exposure
to stresses, such as oxygen and glucose deprivation or loss of ER calcium lowers protein
folding efficiency, resulting in the accumulation of unfolded/misfolded proteins [34]. ER
function can also be compromised by protein folding demands exceeding capacity. An
example is viral infections where the capacity of the ER to facilitate protein folding is
overwhelmed, giving rise to misfolded proteins [35]. Irrespective of the initiating stimulus,
the buildup of misfolded/unfolded proteins is commonly referred to as ER stress. Cells
combat ER stress by initiating an adaptive, highly conserved stress response referred to
as the Unfolded Protein Response or UPR. The UPR is controlled by three ER-anchored
transmembrane receptors, Inositol-requiring enzyme 1 (IRE1), protein kinase R (PKR)-like
endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6). These
three ER-based receptors monitor ER health. In an unstressed setting, each of these stress
sensors is held in an “off” position by binding their luminal domain to the ER chaperone
Grp78 (BIP, HSPA5) [36,37]. Upon ER stress, Grp78 dissociates from IRE1, PERK, and
ATF6, which stimulates their transition from inactive to active states [36,37]. Downstream
signaling pathways orchestrated by IRE1, PERK, and ATF6 function in a co-operative,
complementary manner to support the refolding of those proteins that can be refolded.
Those proteins beyond repair are removed via the ER-associated degradation or ERAD
pathway [34]. Ultimately, the objective of the UPR is to reduce ER stress, thereby restoring
ER homeostasis. A functional UPS is a critical element of this cellular quality control system
and DUBs are dynamically involved in this process.

Cancer cells frequently endure both external stressors (e.g., hypoxia and glucose de-
privation) and internal stresses triggered by their high proliferation and metabolic rate. To
thrive under such conditions and escape immune responses, cancer cells engage and coor-
dinate adaptive responses, including UPS, ERAD, UPR, and DNA damage repair [38–41].
Although these responses may initially be engaged to aid cellular stress adaptation, cancer
cells usurp and/or co-opt these pathways for their benefit in numerous ways. We recently
identified distinct gene expression changes in ubiquitin ligases and ligase adaptors in differ-
ent human brain tumors and subtypes [42,43]. Sustained UPR signaling has been reported
in diverse cancers, including breast, prostate, and brain cancers, and emerging evidence
links ERAD and UPR to an array of pro-tumorigenic processes, including angiogenesis,
metastasis, and cancer stem cell expansion [38].

DUBs are an integral part of the UPS but their role in human brain tumors is incom-
pletely understood. We gathered that understanding the role of DUBs in brain tumors could
yield new therapeutic avenues. In the present study, we have analyzed the gene expression
profiles of 99 human DUBs belonging to 7 subgroups listed in the HUGO (Human Genome
Organization) classification. The objective of the current study was to comprehensively
examine the differential gene expression of these DUBs in publicly available datasets of
selected human neuronal system tumors, including pediatric craniopharyngioma (CPh),
ependymoma (EPN), medulloblastoma (MB), adult brain tumors (astrocytoma (AS), oligo-
dendroglioma (ODG), glioblastoma (GBM), and neuroblastoma (NBT) tumors arising from
the developing sympathetic nervous system as the most common childhood extra-cranial
neoplasm [44,45]. Some of the datasets had available gene expression data of non-tumor
tissues for comparison, while other datasets had available age data for each subject. This
allowed for plotting gene expression by tumor subgroup and by age for each DUB and
enabled the comparison of gene expression in pediatric vs adult age groups. Adding novel
insight, we sought to determine whether the expression of DUB genes was selective for
specific CNS tumors, specific subgroups of CNS tumors, or specific age groups of subjects
with these brain tumors. For those datasets with survival data, we determined whether
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DUB gene expression was statistically associated with survival. Top DUB hits identified in
these bioinformatic screens were interrogated for their association with ERAD, UPR, and
DNA repair. This is the first comprehensive report with a focus on DUB family members
in selected pediatric and adult brain tumors, their relationship with ERAD, UPR, DNA
damage repair pathways, and their suitability as potential biomarkers and therapeutic
targets in defined CNS tumors. However, the function of some of the DUBs mentioned in
the current report has previously been described in relation to CNS tumorigenesis [46,47].

Microarray datasets of CNS tumors available for the current study included those of
glioma, ependymoma, medulloblastoma, craniopharyngioma, and neuroblastoma. Glioma
originate from glial cells in the brain and include astrocytoma, glioblastoma, oligoden-
droglioma, and ependymoma. AS and GBM are considered to originate from astrocytes
according to the WHO classification and astrocytoma can convert into GBM [48]. The
hypothesis that GBM can originate from neural stem cells has also been proposed [49,50].
ODG originate from oligodendrocytes, while EPN derived from a type of glial cells called
ependymocytes can be present intracranially and in the spinal cord, which affects treatment
strategies [51,52]. MB are grouped by a consensus classification into four subgroups, the
WNT group originating in the lower rhombic lip area of the hindbrain, the SHH group
originating in the upper rhombic lip area [53], while MBs in Groups 3 and 4 arise from
progenitor cells in the ventricular rhombic lip [54]. In the Cavalli dataset, each of the
four consensus groups has been further characterized for subtype-specific molecular and
clinical differences. A recent review has summarized the significance of molecular sub-
types for the diagnosis and treatment of MB [55]. CPh are non-glial tumors originating
in the hypothalamic and pituitary regions and are associated with remnants of Rathke’s
pouch. Alomari et al. (2015) have presented a case of craniopharyngioma derived from
Rathke’s cleft cyst and have reviewed the literature supporting the view that CPh originate
from Rathke’s pouch cells [56]. NBT are sympathetic nervous system tumors originating
from neural crest cells [57] and several excellent reviews discuss therapeutic strategies for
NBT [58–60].

2. Methods

We utilized the human genome list of 99 deubiquitinases to determine the expression
of these DUB genes in publicly available datasets of brain tumors. Differential expression
of DUB genes was examined in these datasets made available in the R2 Genomics Analysis
and Visualization platform (https://r2/amc/nl (accessed on 5 September 2023)). We used
the AS, GBM, ODG, and a non-tumor group in the mixed glioma dataset of Sun et al.
(Geo ID: GSE4290). Differentially expressed DUB genes were considered significant at
p < 0.001 as determined by Analysis of Variance (ANOVA) through the R2 Genomics site
and plotted using the Morpheus heatmap and cluster analysis program at the Broad In-
stitute website (https://software.broadinstitute.org/morpheus (accessed on 5 September
2023)). DUB gene expression of classic, mesenchymal, and proneural GBM subtypes was
examined in the TCGA GBM dataset (R2 ID: Tumor Glioblastoma TCGA 540). Survival
data associated with differentially expressed DUB genes were examined in the French
glioma data (GSE16022) [61]. The Pfister dataset (GSE64415) was used to examine dif-
ferentially expressed DUB genes in ependymoma. A dataset of Donson (GSE94349) was
used to examine the differential expression of DUB genes in CPh, while the datasets of
Cavalli et al. [62] (GSE85217) and Weishaupt et al. [63] (GSE124814) were used to examine
DUB gene expression in MB subgroups. The Cavalli dataset had extensive data on the
age of subjects in the various subgroups, which we used to determine the age distribution
for the most highly significant differentially expressed DUB genes. Those DUB genes
statistically associated with the survival of MB patients were also determined in the Cavalli
dataset. The Weishaupt data (Swartling dataset in the R2 Genomics database) allowed for a
comparison of genes between MB tumor tissue and non-tumor tissue. The NBT dataset of
Fischer [64] (GSE120572) was used to evaluate various treatment effects on DUB expression.
The Cytoscape program was applied to identify gene ontology (GO) pathways, includ-
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ing ERAD, DNA repair, immune response pathways, and genes coding for differentially
expressed DUBs that were associated with brain tumors.

3. Results

Cytoscape analysis of the 99 DUB genes (GO biological pathways) identified sev-
eral functional groups of DUBs involved in the deubiquitination of lysine (K) residues
K6/K11/K27/K29/K48/K63 ubiquitinated proteins. The most significant biological path-
ways, other than deubiquitination itself, included DNA repair, DNA methylation, the
regulation of ER stress and ERAD pathway, death receptor signaling, and the regulation of
immune and cytokine responses.

3.1. Adult Glioma Show Differential Expression of DUBs

In the Sun mixed glioma dataset, the expression of 51 of the 99 DUB genes (HUGO
classification) was significantly different (p < 0.001) between the 4 groups in the dataset
(non-tumor, AS, GBM, ODG). The heatmap (Figure 1) shows the gene expression profiles
of the four groups. Table 1 shows the DUB genes that were most significantly different
between the non-tumor group and each of the other three adult glioma groups. Seventeen of
the ninety-nine DUB genes were differentially expressed (p < 0.001) between AS, ODG, and
GBM (USP46, USP54, ZRANB1, USP1, OTUD7A, TNFAIP3, USP27x, USP30, EIF3H, USP49,
OTUD1, USP11, OTUB1, CYLD, USP12, USP2, USP47, in order of p value as determined
by ANOVA).
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Table 1. Top ten differentially expressed DUB genes in gliomas by group compared to non-
tumor group.

Astrocytoma 1 DUB p Value (Corrected) Chromosome Versus Non-Tumor
Group in the Sun Dataset

CYLD Usp 2.44 × 10−13 16 Down

USP12 Usp 3.73 × 10−12 13 Down

USP3 Usp 1.95 × 10−11 15 Up

OTUD7A Otu 1.26 × 10−10 15 Down

OTUB1 Otu 4.38 × 10−10 11 Down

USP8 Usp 1.69 × 10−09 15 Up

USP33 Usp 8.97 × 10−09 1 Down

STAMBPL1 Jamm 5.64 × 10−08 10 Down

EIF3F Jamm 5.94 × 10−08 11 Up

EIF3H Jamm 4.60 × 10−07 8 Up

Glioblastoma 2

USP12 Usp 5.22 × 10−20 13 Down

OTUD7A Otu 1.13 × 10−19 15 Down

ZRANB1 Otu 2.37 × 10−18 10 Down

USP46 Usp 3.60 × 10−18 4 Down

OTUB1 Otu 4.24 × 10−18 11 Down

CYLD Usp 2.34 × 10−16 16 Down

USP3 Usp 1.20 × 10−13 15 Up

USP27X Usp 5.35 × 10−12 X Down

USP30 Usp 9.20 × 10−12 12 Down

USP11 Usp 1.39 × 10−11 X Down

Oligodendroglioma 3

USP12 Usp 3.27 × 10−11 13 Down

OTUD7A Otu 3.55 × 10−10 15 Down

USP48 Usp 6.67 × 10−09 1 Down

USP33 Usp 1.37 × 10−08 1 Down

CYLD Usp 1.45 × 10−08 16 Down

USP3 Usp 1.50 × 10−08 15 Up

EIF3F Jamm 1.57 × 10−08 11 Up

OTUD3 Otu 2.46 × 10−08 1 Down

USP14 Usp 4.85 × 10−08 18 Down

OTUB1 Otu 6.68 × 10−08 11 Down
1 Total of 24 DUBs different from NT at p < 0.0001; 2 total of 43 DUBs different from NT at p < 0.0001; 3 total of
30 DUBs different from NT at p < 0.0001.

Next, we asked whether the differences in DUB gene expression between AS and GBM
were related to the progression from AS to GBM [48], which is associated with several
changes in the transcriptome [65]. ANOVA showed that the expression of two DUB genes,
USP46 and ZRANB1, differed at a high level of significance (p < 0.001) between the AS and
GBM groups (Figure 2). USP46 was among the top 100 of all differentially expressed genes
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between the AS and GBM groups in the Sun mixed glioma dataset. Of all 18,896 genes in the
French dataset, ZRANB1 and USP46 expression were ranked 3rd and 2725th, respectively,
when associated with survival. ZRANB1 belongs to the OTU class of DUBs and has been
reported as an EZH2 (enhancer of zeste homolog 2) DUB [66]. EZH2 inhibitors are currently
tested for cancer therapy and brain permeable derivatives may offer new avenues in the
treatment of brain tumors [67,68].
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Astrocytoma, N = 26, Glioblastoma, N = 77, Oligodendroglioma, N = 50). * indicates significant
difference between GBM and AS, p < 0.0001.

3.2. Chromosome 10 and DUB Expression in Astrocytic glioma

Table 2 shows DUB gene expression related to survival in the French dataset of glioma
subjects. Expression of ZRANB1, a gene located on chromosome 10, showed the most
significant differences in Kaplan Meier survival curves. In addition to ZRANB1, several
other differentially expressed DUB genes are also located on chromosome 10. The HUGO
list of DUB genes includes two DUBs located on the p arm of chromosome 10 (OTUD1
and MINDY3/FAM188A) and three DUBs that are located on the q arm of chromosome 10
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(ZRANB1, USP54, and STAMBPL1). Expression of ZRANB1 and USP54 was decreased in
the GBM group compared to the AS and non-tumor groups.

Table 2. DUB gene expression and survival data of glioma patients (French dataset).

DUB Gene Family Chromosome Chi Square
Kaplan Meier p Value Hazard

Ratio (HR) HR p Value Better
Survival

ZRANB1 Otu 10 116.69 3.36 × 10−27 0.21 4.6 × 10−27 High

FAM188A Mindy 10 68.95 1.01 × 10−16 0.53 1.4 × 10−13 High

USP34 Usp 2 63.01 2.06 × 10−15 0.30 4.4 × 10−12 High

USP49 Usp 6 63.46 1.63 × 10−15 0.55 1.9 × 10−16 High

Usp27X Usp X 57.58 3.24 × 10−14 0.43 1.6 × 10−15 High

USP54 Usp 10 51.46 7.30 × 10−13 0.68 2.5 × 10−11 High

USP51 Usp X 49.10 2.43 × 10−12 0.69 1.4 × 10−11 High

USP30 Usp 12 43.77 3.69 × 10−11 0.47 1.5 × 10−08 High

USP11 Usp X 42.18 8.33 × 10−11 0.52 2.6 × 10−10 High

OTUD7A Otu 15 38.15 6.54 × 10−10 0.69 1.3 × 10−09 High

EIF3H Jamm 8 35.16 3.40 × 10−09 0.47 7.1 × 10−10 High

USP1 Usp 1 33.71 6.39 × 10−09 1.8 1.4 × 10−08 Low

USP4 Usp 3 33.07 8.90 × 10−09 2.6 5.6 × 10−08 Low

ATXN3 MJD 14 33.10 8.75 × 10−09 0.65 7.7 × 10−06 High

USP43 Usp 17 31.76 1.74 × 10−08 0.74 1.1 × 10−08 High

USP46 Usp 4 31.45 2.05 × 10−08 0.65 9.2 × 10−08 High

TNFAIP3 Otu 6 30.86 2.77 × 10−08 1.3 6.0 × 10−07 Low

OTUD1 Otu 10 28.27 1.06 × 10−07 0.54 2.0 × 10−08 High

JOSD2 MJD 19 25.88 3.62 × 10−07 1.5 2.1 × 10−04 Low

PSMD7 Jamm 16 24.22 8.60 × 10−07 1.9 1.3 × 10−04 Low

STAMBPL1 Jamm 10 23.87 1.03 × 10−06 0.76 4.3 × 10−05 High

USP14 Usp 18 23.95 9.90 × 10−07 2.1 1.0 × 10−04 low

The loss of chromosome 10 in primary GBM or loss of the q arm of chromosome
10 in secondary GBM is a common finding [69,70]. This has led to the hypothesis that
the loss of one or more tumor suppressor genes on the q arm of chromosome 10 may
contribute to GBM development. The most significant differentially expressed pathway
between the AS and GBM group in the Sun dataset was the “D-glutamine and D-glutamate”
pathway, which was represented by differential expression of two genes, GLUD1 and
GLUD2 (glutamate dehydrogenase 1 and 2). GLUD1 is located on chromosome 10 and
codes for the mitochondrial matrix enzyme glutamate dehydrogenase 1. GLUD1 and
GLUD2 expression was lowered to 52.7% and 52.2% compared to the NT and AS groups,
respectively. While a role for specific DUBs in the regulation of GLUD1 has not been
established, among all 99 DUB genes we observed the highest correlations of GLUD1
expression with USP46 (r = 0.74, p = 1.74 × 10−30) and ZRANB1 (r = 0.70, p = 1.01 × 10−26).
This suggests a possible new role for USP46 and/or ZRANB1 in regulating GLUD1 in
astrocytic glioma (AS and GBM).
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3.3. Differential Expression of DUBs in GBM Subtypes

The differential expression of DUB genes was determined in three GBM subtypes
from a TCGA dataset in the R2 genomics platform. TNFAIP3 showed the most significant
difference (p = 7.68 × 10−09) with elevated expression in the mesenchymal GBM subtype
(Figure 3). The DUBs with the most significantly elevated gene expression in the proneural
GBM group were USP11, USP22, and USP7.
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N = 24).

3.4. Relationship between DUB Expression and Survival (French Dataset)

Survival data were not available in the Sun mixed glioma dataset. Hence, we used
the glioma dataset (GSE16011) of French et al. [61] (N = 284) to determine survival data
associated with DUB gene expression. Kaplan Meier curves showed that the expression
of 23 DUB genes was significantly associated (p < 0.001) with survival in glioma patients.
Table 2 lists the Chi square, p values, and hazard ratios for these DUB genes. The most
significantly downregulated DUB gene, ZRANB1 (as would be expected with loss of
chromosome 10 or its q arm), was associated with worse survival (Table 2).

3.5. Role of DUBs in ER Stress and ERAD Signaling in Glioma

Employing the R2 genomics platform to query the 99 DUBs for their association with
the GO category of Regulation of the ERAD pathway, we identified 3 DUB genes in this
category as differentially expressed in the glioma dataset: USP14, USP19, and USP25
(Table 3). It should be noted, however, that only USP14 was among the most significant in
Table 1. In the French dataset, high USP14 expression was associated with worse survival
(Table 2). The role of USP14 and USP19 proteins in ER stress has been illustrated in a review
by Qu et al. [31]. USP19 is reported to inhibit the unfolded protein response [71] and to
deubiquitinate the E3 ligase HRD1 [72], a component of the ERAD pathway. USP14 binds
to IRE1 and is reported to be an inhibitor of the ERAD pathway [73]. USP25 deubiquitinates
selected ERAD substrates [74]. Another DUB reported by Qu et al. to regulate ER stress-
induced apoptosis is BAP1 [31]. Differential BAP1 gene expression is also shown in Table 3.

Table 3. Differential expression of DUBs in ERAD signaling in glioma.

DUB Gene Non-Tumor
N = 23

Astrocytoma
N = 26

Glioblastoma
N = 77

Oligodendroglioma
N = 50

USP14 851.87 ± 25.31 689.66 ± 25.63 * 738.5 ± 18.13 * 647.71 ± 16.28 *

USP19 159.11 ± 6.47 206.93 ± 9.5 * 222.11 ± 6.09 * 226.03 ± 7.9 *

USP25 314.57 ± 14.19 216.77 ± 9.34 * 216.88 ± 9.18 * 209.77 ± 7.59 *

BAP1 295.14 ± 10.78 221.5 ± 7.97 * 244.66 ± 5.02 * 248.25 ± 6.88 *

USP14 (F = 12.27, p = 2.58 × 10−07), USP19 (F = 10.53, p = 2.16 × 10−06), USP25 (F = 14.59, p = 1.64 × 10−08), BAP1
(F = 11.06, p = 1.12 × 10−06). * Significantly different from non-tumor group at p < 0.001.
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3.6. DUBs in the Regulation of Immune Responses in Glioma

Among the 99 DUB genes, 4 differentially expressed genes were identified in the
Sun glioma dataset that were associated with the GO category of Regulation of the im-
mune response. This included OTUD7A, F = 69.909, p = 1.31 × 10−29, CYLD, F = 50.614,
p = 1.69 × 10−23, TNFAIP3, F = 11.84, p = 4.34 × 10−07, and USP18, F = 8.14, p = 4.21 × 10−05

(Figure 4). Notably, the expression of OTUD7A was not only the most significantly different
among the DUBs in the GO category of Regulation of immune response but was also the
most significant of any of the 512 genes in this category in the Sun dataset. OTUD7A
expression was significantly decreased in AS, GBM, and ODG (Figure 4), as was OTUB1
in all three types of gliomas compared to non-tumor tissues in the Sun dataset (Table 1).
OTUB1 deubiquitinase function was recently associated with the regulation of immune
responses and contributes to immunosuppression in cancers via the programmed death
ligand 1 (PD-L1) protein [75]. Decreased OTUB7A and OTUB1 gene expression may both
affect immune responses and DNA damage repair functions (see below) in glioma [75,76].
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response in different glioma and non-tumor brain. * p < 0.001 compared to non-tumor group.

The OTUD7A gene is located on chromosome 15q13.3. Microdeletion of this chromo-
somal region results in abnormalities of neuronal development [77,78]. CYLD is a tumor
suppressor that contributes to the regulation of NF-κB [79]. TNFAIP3 plays a role in several
aspects of the immune response, including the regulation of NF-κB and the regulation
of inflammation [80]. TNFAIP3 deletions have been associated with Epstein–Barr viral
infection in lymphomas [81]. USP18 regulates interferon signaling by binding to one of its
receptors (IFNAR2) [82].

3.7. DUBs and DNA Repair in Glioma

Ten of the ninety-nine DUB genes analyzed in the Sun dataset were differentially
expressed genes associated with the GO category of DNA repair: OTUB1, UCHL5, USP3,
USP1, USP51, COPS5, COPS6, USP10, USP47, and USP43 (in order of significance in
ANOVA). The expression of OTUB1 and UCHL5 was significantly decreased (p < 0.001)
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in AS, GBM, and ODG compared to non-tumor tissue, while the expression of USP3 was
significantly elevated (p < 0.001) (Figure 5). Expression of USP1 was markedly increased
in GBM and, to a lesser extent, in AS compared to the non-tumor group. Several DUBs,
including USP1, OTUB1, UCHL5, and USP47, have been included in a list of 16 DUBs
reported to be involved in specific DNA damage repair pathways [83]. OTUD7A (Cezanne2)
has also recently been reported to contribute to the DNA damage response in double-strand
break (DSB) repair [84] and expression of OTUD7A was substantially reduced in gliomas
compared to non-tumor brain tissue (Figure 4). While linked to several DNA repair
pathways [83], USP7 and USP24 expression was not significantly different among glioma
groups or between glioma and the non-tumor control group in the Sun dataset, suggesting
that these two DUBs may not be critical factors in DNA damage repair pathways in glioma.
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Figure 5. Differentially expressed DUB genes in the GO category of DNA repair. UCHL5, F = 21.83,
p = 4.97 × 10−12; OTUB1, F = 42.71, p = 1.12 × 10−20; USP3, F = 19.33, p = 7.56 × 10−11; USP1,
F = 16.99, p = 1.04 × 10−09. * p < 0.001 compared to non-tumor group by t-test.

3.8. DUBs in Ependymoma

The heatmap and cluster analysis shown in Figure 6 illustrate clusters of DUB gene
expression that differ significantly between the EPN subgroups of the Pfister dataset.
Of all molecular subgroups in this dataset, the largest groups were the posterior fossa
groups, Pf_Epn_a (N = 72) and Pf_Epn_b (N = 39) followed by the supratentorial group
(St_Epn_Rela) (N = 49). Among all 99 DUBs, USP30 and STAMBPL1 were most significantly
different in these 3 EPN subgroups. USP30 expression most significantly distinguished
Pf_Epn_a and Pf_Epn_b, whereas STAMBPL1 expression was decreased compared to the
other subgroups (Figure 7).
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The UPS30 protein is located on the mitochondrial outer membrane [85] and serves
as an inhibitor of mitophagy [86,87] by blocking the action of the E3 ligase PARKIN [88].
STAMBPL1 is a K63-specific DUB reported to have higher expression in cancer tissue than
in adjacent control tissues [89,90].

The heatmap of DUB expression in EPN subgroups (Figure 6) showed a cluster with
relatively elevated DUB expression in the St_Rela subgroup (red squares in heatmap) and
a cluster in which DUB expression was relatively decreased (blue squares in heatmap).
Cytoscape analysis of GO biological pathways identified several DUBs associated with
histone deubiquitination in both clusters. This included the upregulated expression of BAP1,
USP25, USP3, and USP49 (red squares), and downregulated expression of USP16, USP21,
USP22, and USP51 (blue squares) (Figure 6). Cytoscape Reactome pathway analysis of
differentially expressed DUB genes in Figure 6 identified the expression of three DUB
genes, CYLD, USP2, and USP21, to be associated with the TRAF2:RIP1 complex in tumor
necrosis factor receptor (TNFR) signaling and apoptosis. The UPS2 protein has been labeled
a “master regulator of apoptosis” since USP2 can remove ubiquitin chains from RIP1 and
TRAF2, regulate TNF-TNFR1-mediated cell death, and upregulate the transcription of
IkBα [91]. Like USP2, USP21 was also reported to deubiquitinate RIP1 [92] and the selective
USP21 inhibitor compound BAY-805 may have therapeutic potential in cancer [93]. Both
CYLD and TNFAIP3 have been shown to also contribute to the regulation of NF-κB [79,81].
Notably, the supratentorial molecular subgroup St_Se of EPN was unique in that it showed
increased expression of a cluster of four DUB genes, CYLD, USP46, USP53, and USP32
(Figure 6). This may be considered a new gene signature for this WHO grade I subependy-
moma (Se) subgroup [94]. Among the significant differentially expressed DUBs in the EPN
dataset, five DUB genes were associated with the Regulation of ERAD pathway, including
ATXN3, USP3, USP14, USP25, and OTUD2/YOD1. Since the Pfister ependymoma dataset
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did not include non-tumor subjects or survival data, these comparisons were not possible
for the DUB genes.
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3.9. DUBs in Craniopharyngioma

Of the 99 DUB genes analyzed, 39 DUBs were differentially expressed between normal
brain and CPh. Other than DUB activity itself, histone deubiquitination (USP3, USP7, USP16)
was the most significant GO pathway identified by Cytoscape.

USP13 (F = 24.25, p = 1.00 × 10−05) and USP14 (F = 11.88, p = 1.17 × 10−03) expression
were both decreased in CPh compared to non-tumor tissue (Figure 8). Of note, differential
expression of USP14 was also observed in mixed gliomas and in EPN. USP14 protein was
reported to be an inhibitor of the ERAD pathway by binding to IRE1a and inhibiting the
phosphorylation of this ER stress-activated kinase [95].
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Figure 8. Heatmap and cluster analysis of DUB genes in craniopharyngioma. Normal, N = 27;
Craniopharyngioma, N = 24.

3.10. DUB Regulation of Immune Response in Craniopharyngioma

In the dataset of CPh, the DUB genes TNFAIP3, OTUD7A, and CYLD were identified
by Cytoscape to be associated with the Regulation of immune response pathway. TNFAIP
expression was upregulated about five-fold (F = 78.84, p = 9.93 × 10−12) compared to
non-tumor tissue. TNFAIP3 has been identified as a druggable target for melanoma in
mice [96] and in inflammatory lung disease [97]. Expression of OTUD7A (aka Cezanne2)
in CPh was significantly downregulated to 6.8% of normal non-tumor values (F = 81.52,
p = 5.34 × 10−12). Located on chromosome 15, OTUD7A is one of six genes that contribute
to the 15q13.3 microdeletion syndrome, which is associated with neurodevelopmental
and psychiatric disorders [98,99]. Whether OTUD7A protein may qualify as a tumor
suppressor for the development of CPh tumors (and gliomas, see above), as these data may
suggest, requires further studies. Expression of the DUB and tumor suppressor CYLD was
significantly reduced (>50%) in CPh compared to normal brain tissue. CYLD is an inhibitor
of the immune response and NF-κB signaling [100–102].

3.11. DUBs and Medulloblastoma

Seventy-eight of the ninety-nine DUB genes were differentially expressed (p < 0.001)
among the four subgroups of MB. Table 4 shows the top ten DUB genes of each MB
subgroup most significantly different from non-tumor tissues in the Swartling dataset.
The heatmap in Figure 9 illustrates the distribution of DUB expression among the four
MB subgroups (Group 3, Group 4, SHH, and WNT) in the Cavalli dataset. The most
significant differentially expressed DUB gene by subgroups in the Cavalli dataset was USP2
(F = 271.00, p = 1.57 × 10−119) (Figure 9), which was upregulated in Group 3 MB compared
to the other subgroups. USP2 protein removes ubiquitin from several proteins, including
the E3 ubiquitin ligase MDM2 [103], cyclin D (CCND1) [104], and the circadian clock
protein PER1 [105]. While the Cavalli MB dataset does not include non-tumor controls, the
Donson dataset showed that USP2 expression was elevated compared to the non-tumor
brain. This was confirmed in the large meta-analysis of Weishaupt et al. [63] available in
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the R2 genomics site as the Swartling dataset, which identified USP2 as the most significant
differentially expressed gene in the five groups (non-tumor, Group 3, Group 4, SHH,
Wnt). The role of USP2 in the deubiquitination of clock proteins regulating the circadian
rhythm of pathways is well documented [106,107]. USP2 may function as an oncogene
in breast and gastric cancer by inhibiting autophagy and this DUB has been proposed
as a therapeutic target in breast cancer [108,109]. USP2 expression was also differentially
expressed according to age groups (F = 13.73, p = 1.01 × 10−08). The age distribution for
the four MB subgroups showed elevated USP2 expression primarily in infants and children
(Figure 10) and high expression of USP2 was associated with poor survival (Table 4). USP2
may be a lucrative therapeutic target in patients with Group 3 MB.

Table 4. Top ten differentially expressed DUB genes by MB subgroup compared to non-tumor group
in the Swartling dataset.

Group 3
(N = 233) DUB p Value vs.

Non-Tumor Chromosome Versus Non-Tumor Group in
the Swartling Dataset

USP46 Usp 1.16 × 10−57 4 Down

USP2 Usp 5.71 × 10−53 11 Up

PSMD14 Jamm 4.25 × 10−51 2 Up

USP49 Usp 1.34 × 10−36 6 Up

USP28 Usp 2.41 × 10−26 11 Down

USP30 Usp 1.29 × 10−25 12 Up

UCHL1 Uch 1.72 × 10−22 4 Down

OTUD7A Otu 6.20 × 10−22 15 Down

USP44 Usp 6.39 × 10−22 12 Down

COPS6 Jamm 2.19 × 10−19 7 Up

Group 4
(N = 530)

USP20 Usp 8.96 × 10−65 9 Up

USP28 Usp 2.28 × 10−63 11 Down

USP22 Usp 1.35 × 10−61 17 Up

USP32 Usp 1.21 × 10−58 17 Up

USP3 Usp 2.98 × 10−54 15 Down

USP30 Usp 2.19 × 10−52 12 Up

USP49 Usp 1.49 × 10−43 6 Up

USP45 Usp 9.56 × 10−36 6 Down

USP36 Usp 7.95 × 10−29 17 Up

EIF3H Jamm 1.59 × 10−27 8 Down

SHH
(N = 405)

EIF3H Jamm 4.51 × 19−135 8 Up

USP2 Usp 1.17 × 10−88 11 Down

USP20 Usp 2.26 × 10−69 9 Down

CYLD Usp 7.13 × 10−64 16 Down
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Table 4. Cont.

Group 3
(N = 233) DUB p Value vs.

Non-Tumor Chromosome Versus Non-Tumor Group in
the Swartling Dataset

USP25 Usp 4.63 × 10−40 21 Down

USP32 Usp 4.97 × 10−38 17 Down

USP33 Usp 5.42 × 10−36 1 Down

JOSD1 Mjd 2.40 × 10−30 22 Up

USP11 Usp 3.32 × 10−28 X Down

USP13 Usp 1.03 × 10−26 3 Up

WNT
(N = 118)

UCHL1 Uch 2.14 × 10−82 4 Down

USP2 Usp 3.18 × 10−56 11 Down

USP20 Usp 6.88 × 10−50 9 Down

USP32 Usp 2.23 × 10−47 17 Down

USP5 Usp 1.19 × 10−38 12 Up

COPS6 Jamm 2.59 × 10−32 7 Up

EIF3H Jamm 1.19 × 10−29 8 Up

OTUD7A Otu 1.48 × 10−29 15 Down

USP33 Usp 1.38 × 10−28 1 Down

USP28 Usp 6.05 × 10−27 11 Down
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Figure 9. Heatmap and cluster analysis of the top 12 differentially expressed DUB genes for each of
the 4 MB subgroups compared to non-tumor brain (note that due to overlap the total is less than 48).
The Swartling dataset was used to identify top genes differing from non-tumor controls. The Cavalli
dataset was used for the construction of the heatmap depicting the expression of these genes. Based
on gene expression in the MB subgroups, the most significantly elevated DUBs for each group were
Group 3—USP2; Group 4—USP20; SHH—EIF3H; WNT—USP5. Group 3, N = 144; Group 4, N = 326;
SHH, N = 223; Wnt, N = 70).
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Figure 10. Gene expression of VCPIP1, USP49, and USP2 in medulloblastoma by age and subgroups.
Orange—Group 3, Gray—Group 4, Blue—SHH, Yellow—Wnt. Of these genes, USP2 expression was
most specifically elevated in Group 3 MB infants and children compared to the other groups (Cavalli
dataset) and compared to a non-tumor group (Swartling dataset).

3.12. Survival in Medulloblastoma Subgroups and DUB Expression

Overall survival in the Cavalli dataset, as determined by the R2 genomics platform,
was best in the Wnt group, worst in Group 3, and intermediate in SHH and Group 4,
confirming previously determined survival times [62]. DUB genes that were significantly
associated with survival (p < 0.01, for Kaplan Meier curves) are listed in Table 5 and
includes DUB genes not differentially expressed between subgroups. DUB genes with the
most significant Kaplan Meier curves (high vs low) and hazard ratios included VCPIP1,
USP49, and USP2. High expression of these genes was associated with worse survival
(Table 4). While high expression of VCPIP1 was associated with worse survival in the
Cavalli dataset, expression of VCPIP1 in none of the four MB groups was significantly
higher than in non-tumor tissues in the Swartling dataset. High expression of USP49 was
observed in infants and young children in Groups 3 and 4, whereas high expression of
USP2 was primarily observed in infants and young children in Group 3 (Figure 10).

Table 5. DUB gene expression and medulloblastoma survival data (Cavalli dataset).

DUB DUB Family Chromosome Chi Square
Kaplan Meier p Value Hazard Ratio p Value for

Hazard Ratio
Better
Survival

VCPIP1 Otu 8 28.14 1.13 × 10−07 1.9 1.10 × 10−05 Low

USP49 Usp 6 26.73 2.34 × 10−07 1.9 1.30 × 10−05 Low

USP2 Usp 11 21.82 2.99 × 10−06 1.3 3.50 × 10−05 Low

USP51 Usp X 19.36 1.08 × 10−05 0.44 1.00 × 10−04 High

STAMBPL1 Jamm 10 16.70 4.37 × 10−05 0.73 3.10 × 10−04 High

PSMD14 Jamm 2 18.05 2.16 × 19−05 1.4 4.20 × 10−04 Low

ZRANB1 Otu 10 17.11 3.52 × 10−05 0.54 1.00 × 10−03 High

OTUD3 Otu 1 18.76 1.48 × 10−05 2.4 1.30 × 10−03 Low

PRPF8 Jamm 17 18.77 1.47 × 10−05 0.58 2.20 × 10−03 High

USP15 Usp 12 16.42 5.06 × 10−05 2 3.00 × 10−03 Low

USP45 Usp 6 14.82 1.18 × 10−04 1.5 3.90 × 10−03 Low

USP26 Usp X 22.77 1.82 × 10−06 7.3 5.20 × 10−03 Low

USP36 Usp 17 22.07 2.63 × 10−06 2.2 5.50 × 10−03 Low

USPL1 Usp 13 14.89 1.14 × 10−04 2.1 5.80 × 10−03 Low

USP25 Usp 21 12.36 4.39 × 10−04 1.6 8.70 × 10−03 Low

EIF3H Jamm 8 13.23 2.75 × 10−04 1.5 9.40 × 10−03 Low

COPS5 Jamm 8 9.25 2.36 × 10−04 1.9 9.90 × 10−03 Low
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3.13. Medulloblastoma DUBs and ERAD

Differential expression of several DUB genes (USP13, USP14, USP25, USP19, OTUD2
(alias YOD1)) in the Cavalli dataset was associated with the GO category of Regulation of
ERAD pathway. This list of genes includes three DUBs (USP14, USP19, USP25) shared with
the list of differentially expressed ERAD genes in glioma (Table 3). USP25 was the only
ERAD-associated DUB gene among the top ten DUB genes in the SHH MB group (Table 4).
Our data implicate both USP25 and USP13 with ERAD in the SHH group of MB (Figure 11).
In the Swartling dataset, the expression of USP25 was downregulated in the SHH group
compared to non-tumor controls (t = 14.37, p = 3.17 × 10−41), while the expression of USP13
was elevated compared to non-tumor tissues (t = 11.36, p = 1.41 × 10−27). Expression of
USP14, but not USP19 and OTUD2, was also reduced in the SHH group versus non-tumor
tissues, but at a much lower level of significance (t = 3.35, p = 8.64 × 10−04)
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Figure 11. Differential expression of ERAD-associated DUBs in different medulloblastoma subgroups
(Cavalli dataset). USP25, F = 138.98, p = 9.08 × 10−72; USP 13, F = 49.90, p = 1.93 × 10−29.

3.14. Medulloblastoma DUBs and the Immune Response

Five differentially expressed DUB genes were associated with the GO category of
Regulation of immune response in the Cavalli dataset. This included DUB genes CYLD (F = 141.44,
p = 8.53 × 10−73), PSMD14 (F = 58.20, p = 7.15 × 10−34), OTUD7A (F = 66.35, p = 4.14 × 10−38),
USP18 (F = 37.27, p = 1.78 × 10−22), and PSMD7 (F= 16.56, p = 1.96 × 10−10). Table 6 shows
the genes that were significantly elevated or decreased compared to non-tumor samples in
the Swartling dataset.

CYLD is an inhibitor of the immune response, alters NF-κB signaling, and affects the
development and Th2 conversion of Treg cells [101,102,110]. PSMD14 and PSMD7 are DUB
components of the proteasome and PSMD14 is a druggable target that specifically deubiq-
uitinates at K63 and suppresses autophagy by affecting vesicular retrograde transport from
the Golgi to the ER [111,112]. OTUD7A contributes to neuronal development [77,78] and
USP18 regulates the immune response by binding to the interferon receptor IFNAR2 [82].

3.15. Medulloblastoma DUBs and DNA Damage Repair

Twelve of the ninety-nine DUB genes were identified as differentially expressed in
MB compared to non-tumor tissue (p < 0.0001) for the GO category of DNA repair in
the Swartling dataset, including USP1, OTUB1, UCHL5, USP7, and PSMD14 (aka POH1)
(Table 7). The DUB proteins USP1, OTUB1, UCHL5, USP7, and PSMD14 were reported
to contribute to double-strand break repair, USP1 to Fanconi anemia pathway, USP1 and
USP7 to translesion repair, USP7 and USP47 to base excision repair, and USP7 and USP45 to
nucleotide excision repair [83]. In addition, the USP28 protein was also found to contribute
to the DNA damage response [113]. A highly significant reduction in USP28 expression in
Group 3, Group 4, and Wnt MB groups (Table 7) may point to an impaired DNA damage
response in these MB groups. PSMD14 was the most significantly upregulated DUB gene
in Group 3 MB (Table 7) [114]. A subtype-specific analysis revealed that PSMD14 over-
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expression was limited to selected subtypes of Group 3 (Group 3 beta and gamma) and
Group 4 (Group 4 alpha).

Table 6. DUBs and GO category of “Regulation of immune response” by MB group compared to
non-tumor group of Swartling dataset (n = 291).

DUB Family p Value Corrected FDR Versus Non-Tumor Group
in Swartling Dataset

Group 3 (n = 233)

PSMD14 Jamm 8.74 × 10−52 Up

OTUD7A Otu 1.70 × 10−22 Down

TNFAIP3 Otu 6.26 × 10−10 Up

CYLD Usp 3.54 × 10−08 Down

Group 4 (n = 530)

PSMD14 Jamm 2.23 × 10−26 Up

OTUD7A Otu 1.16 × 10−13 Down

CYLD Usp 7.04 × 10−10 Up

TNFAIP3 Otu 5.67 × 10−09 Up

SHH (n = 405)

CYLD Usp 1.95 × 10−64 Down

PSMD14 Jamm 4.95 × 10−09 Down

TNFAIP3 Otu 2.95 × 10−08 Up

PSMD7 Jamm 5.19 × 10−08 Up

Wnt (n = 118)

OTUD7A Otu 8.10 × 10−30 Down

PSMD7 Jamm 3.89 × 10−25 Up

TNFAIP3 Otu 2.40 × 10−10 Down

CYLD Usp 4.19 × 10−04 Up

PSMD14 Jamm 8.99 × 10−04 Up

Table 7. DUBS and GO category of DNA repair in MB groups compared to non-tumor group.

DUB Family p Value vs. NT
Group Swartling

Versus Non-Tumor Group
in Swartling Dataset

Group 3 vs. NT

PSMD14 Jamm 2.27 × 10−51 Up

USP28 Usp 1.07 × 10−26 Down

COPS6 Jamm 1.30 × 10−21 Up

USP47 Usp 3.96 × 10−15 Down

UCHL5 Uch 6.12 × 10−14 Up

COPS5 Jamm 1.61 × 10−10 Up

USP1 Usp 2.53 × 10−06 Up

OTUB1 Otu 3.33 × 10−05 Down
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Table 7. Cont.

DUB Family p Value vs. NT
Group Swartling

Versus Non-Tumor Group
in Swartling Dataset

Group 4 vs. NT

Usp28 Usp 8.12 × 10−64 Down

USP3 Usp 1.33 × 10−54 Down

USP45 Usp 4.54 × 10−36 Down

PSMD14 Jamm 1.45 × 10−26 Up

COPS6 Jamm 3.10 × 10−24 Up

USP1 Usp 1.48 × 10−16 Up

OTUB1 Otu 1.67 × 10−14 Down

USP7 Usp 2.65 × 10−12 Up

COPS5 Jamm 4.01 × 10−06 Down

USP47 Usp 2.16 × 10−04 Down

UCHL5 Uch 2.11 × 10−03 Up

SHH vs. NT

USP10 Usp 2.21 × 10−15 Up

PSMD14 Jamm 8.58 × 10−09 Down

COPS5 Jamm 1.16 × 10−08 Up

USP45 Usp 3.60 × 10−07 Down

UCHL5 Uch 1.30 × 10−06 Down

USP3 Usp 5.90 × 10−06 Down

COPS6 Jamm 5.98 × 10−06 Down

USP1 Usp 6.06 × 10−06 Up

USP47 Usp 6.68 × 10−04 Down

USP7 Usp 1.71 × 10−03 Up

WNT vs. NT

COPS6 Jamm 2.67 × 10−32 Up

USP28 Usp 5.39 × 10−27 Down

USP3 Usp 3.53 × 10−25 Down

USP45 Usp 2.61 × 10−22 Down

UCHL5 Usp 4.72 × 10−14 Down

USP10 Usp 7.73 × 10−11 Up

COPS5 Jamm 1.02 × 10−03 Up

PSMD14 Jamm 1.46 × 10−03 Up

OTUB1 Otu 2.89 × 10−03 Up

USP1 Usp 4.55 × 10−03 Up

3.16. DUBs in Neuroblastoma (Fischer Dataset)

The dataset of Fischer on NBT allowed the examination of DUB genes in patients
with various treatments. Intensive chemotherapy of NBT was associated with increased
expression of selected DUB genes and a decrease in several other DUB members compared
to the observation group. Intriguingly, limited chemotherapy or surgery had no significant
effect on the expression of DUB genes compared to the observation group alone (Figure 12).
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Figure 12. Treatment effects on DUB gene expression in Neuroblastoma. Intensive chemotherapy (ct)
(N = 114), intermediate ct (N = 30), limited ct (N = 18), observation (no treatment control) (N = 23),
surgery (N = 43).

Patients receiving intensive chemotherapy of their NBT showed significantly reduced
tumor tissue expression of USP24, USP34, MINDY2, USP8, JOSD1, USP52, and USP12
when compared to the observation group. The most significant differences in DUB expres-
sion between limited and intensive chemotherapy included USP24, JOSD1, and MINDY2
(Figure 13). Notably, there were many other genes in the Fischer dataset that showed
differential expression between the limited and intensive chemotherapy groups, the most
significant of them being MDGA1 (F = 128.15, p = 4.24 × 10−21) with approximately a
four-fold difference. MDGA1 is expressed mainly in neurons and astrocytes of the brain.
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3-hydroxy-5methyl-4-isoxazolepropionic acid) receptors GluA1 and GluA2, which are 
considered to mediate most of the excitatory synaptic transmission in the brain, USP46 
upregulates the intracellular trafficking, cell surface density, and signal intensity of AM-
PARs [116,117]. These receptors are critical for perivascular brain invasion, promote plas-
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Figure 13. DUB expression in limited vs intensive chemotherapy of neuroblastoma from the Fischer
dataset. Limited chemotherapy (ct), N = 18, intermediate ct, N = 30, intensive ct, N = 114. USP 24,
F = 21.10, p = 7.44 × 10−09; JOSD1, F = 18.44, p = 6.26 × 10−08; MINDY2, F = 21.61, p = 4.99 × 10−09.
* significantly different from limited ct group at p < 0.001 by t-test.
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4. Discussion

The complex functional roles of DUBs in tumor biology are gradually emerging [115].
Here, we present the first comprehensive gene expression profiling of 99 DUB family
members in 6 different brain tumor entities that span different molecular subtypes and
age groups. We also included gene expression data from different treatment groups of
NBT, the most common extracranial sympathetic nervous system tumor in children, to
better understand the emerging role of DUBs in pediatric and adult CNS tumors and the
effect of treatment on DUB expression. While we observed pronounced gene expression
changes for several DUBs, for brevity, we will only discuss those selected DUB members
with the highest differential expression. Wherever possible, we have focused on known
brain-related functions for these DUBs, with a particular emphasis on clinically relevant
pathomechanisms, such as the ERAD pathway, immune system, and DNA damage repair.

GBM displayed a distinct downregulation of USP46 and ZRANB1. Ubiquitously ex-
pressed throughout the mammalian brain, USP46 is involved in the formation of synapses
and neuronal morphogenesis by regulating both excitatory and inhibitory synaptic trans-
mission [116]. By deubiquitinating K63 ubiquitinated glutaminergic AMPARs (α-amino-
3-hydroxy-5methyl-4-isoxazolepropionic acid) receptors GluA1 and GluA2, which are
considered to mediate most of the excitatory synaptic transmission in the brain, USP46
upregulates the intracellular trafficking, cell surface density, and signal intensity of AM-
PARs [116,117]. These receptors are critical for perivascular brain invasion, promote plastic-
ity and growth of GBM, and coincide with poor prognosis [118–120]. USP46 also interferes
with the neuronal activity-dependent ubiquitination and trafficking of GABAA receptors.
Loss of USP46 coincides with reduced expression of glutamic acid decarboxylase (GAD67)
which synthesizes GABA [121]. Recently, higher expression of the non-coding (nc)RNA
USP46-AS1 has been linked to increased overall survival in glioma [122]. It is tempting
to speculate that the marked reduction in USP46 gene expression in GBM, but not AS,
coincides with the acquisition of altered receptor density in the plasma membrane and
synaptic activity during dedifferentiation from high-grade AS to GBM. GABAA receptor
activity was reported to inhibit glioma growth and the lowest levels of GABAA receptors
were reported in GBM compared to lower-grade glioma [123,124].

While the role of ZRANB1 (zinc finger RANBP2-type containing 1, TRABID) in glioma
is still unclear, it is likely multifactorial in nature. In breast cancer, this K29- and K33-specific
DUB binds, deubiquitinates, and stabilizes the enhancer of zeste homologue (EZH2) cat-
alytic component of the gene silencing Polycomb repressive complex 2 (PRC2) to promote
growth, resulting in poor prognosis [66]. USP1 in glioma [125], as well as USP7 and USP34,
also converge on EZH2 to promote tumorigenesiss [126]. Tight regulation of ZRANB1
expression is critical in glioma. Reduced expression of ZRANB1 may confer a survival
advantage to GBM by reducing UPR through the recruitment of p62 to K33-ubiquitated
protein aggregates for autophagic removal [127]. However, in solid tumors, lower ZRANB1
levels coincide with epigenetic regulation that promotes interferon and inflammatory im-
mune cell responses in the tumor microenvironment [128–130]. Lower ZRANB1 levels
also attenuate the deubiquitination of K29-linked polyubiquitinated 53BP1. Proteasomal
removal of this DNA repair factor mitigates genomic instability by preventing 53BP1 from
blocking homologous recombination repair at double-strand DNA breaks [131]. Further
studies are needed to establish the role of ZRANB1 in GBM.

Selected GBM, EPN, CPh, and MB subtypes showed distinct expression of specific
DUB genes. Among 10 differentially expressed DUBs in the 3 GBM subtypes, only TNFAIP3,
aka A20, was upregulated in mesenchymal GBM. Possessing both DUB and E3-ligase activi-
ties [132,133], TNFAIP3 is an important player in a diverse array of diseases [134] and a key
negative regulator of NFkB signaling downstream of TNF receptors, interleukin 1 receptor
(IL-1R), pathogen recognition receptors (PRRs), NOD-like receptors (NLRs), T- and B-cell
receptors, and CD40 [135,136]. TNFAIP3 regulates glioma stem cell survival, increases re-
sistance to alkylating agents, and is considered a poor prognostic marker in GBM [137,138].
While TNFAIP3 upregulation was a unique mesenchymal feature among GBM subtypes,



Biomolecules 2023, 13, 1503 23 of 31

DUB genes significantly associated with immune cell functions were identified in other
GBM subtypes, the St_se subgroup of EPN, MB, and in CPh. This included TNFAIP3,
CYLD (Cylindromatosis), another negative regulator of NF-κB signaling [102], and the criti-
cal neurodevelopmental factor and putative tumor suppressor OTUD7A/Cezanne-2 [78].
These data suggest a redundant role for several DUBs in targeting NF-κB signaling as a
mechanism to regulate inflammatory and immune responses in intra- and extracranial
nervous system brain tumors.

Among the four MB subgroups, we identified USP2 to be selectively upregulated
primarily in infants and children within Group 3 MB (Figure 9). Group 3 MB frequently have
elevated MYC levels due to MYC overexpression or MYC gene amplifications and these
patients have the worst prognosis of all MB groups with less than 50% survival [139,140].
In the Cavalli dataset, MYC expression was elevated most in the Group 3 gamma subtype.
As may be expected, USP2 DUB functions target a wide range of interconnected pathways
in a tissue-specific manner [141]. Relevant USP2 functions in tumorigenesis target the
metabolic (e.g., fatty acids) and p53 pathways, EMT, cell cycle control, and maintenance of
genome stability [141]. High USP2 levels resulted in the downregulation of several miRs,
including MYC-targeting miR-34b/c, which resulted in the deubiquitination of MDM2 and
elevated MYC levels with subsequent p53 inactivation in prostate cancer cells [142]. Hence,
it is conceivable that higher USP2 expression may contribute to higher MYC protein levels
in Group 3 MB patients.

Emerging research is starting to unravel the complex and clinically relevant relation-
ships between UPR, ER, and DNA stress signaling, chronic inflammation, and immune
responses in primary brain tumors and their microenvironment [143–146]. We identified a
selected group of DUBs (USP13, USP14, USP19, USP25, OTUD2/YOD1) associated with
the Regulation of ERAD pathway across several adult and pediatric primary brain tumors
(GBM, EPN, CPh, MB). A recent TCGA-based gene expression profiling interactive analysis
(GEPIA; http://gepia.cancer-pku.cn/ (accessed on 25 August 2023)) of low-grade glioma
and GBM identified lower expression of all but one (USP25) of these USP Dub members
in GBM [147]. There was a strong correlation between higher expression of USP14 and
worse prognosis in GBM patients [147]. In addition to its roles in the ER [73], USP14 (and
UCH37) engages in polyubiquitin chain trimming which can delay proteasomal degrada-
tion by weakening the affinity of ubiquitin chains with ubiquitin-binding receptors at the
proteasome [148]. Hence, USP14 has been targeted with a small molecule inhibitor [149]
or selected USP14 aptamers [150] to enhance proteasomal activity and degradation of
proteotoxicity. Although USP14 downregulation in several tumor types was shown to
reduce tumor burden in mice, data are lacking for brain tumors [151,152]. OTUD2/YOD1 is
another DUB with regulator functions in the ERAD pathway and is linked to injury-induced
ER stress responses [153,154]. This includes a regulatory role of the inflammatory cytokine
IL1 and p62 NFkB signaling axis through interaction with the E3 ligase TRAF6 [155], which
may contribute to OTUD2/YOD1 deubiquitinating activity in attenuating neurogenic pro-
teotoxicity [156]. In glioma, OTUD2/YOD1 has been identified as a target of miR-190a-3p.
Blocking miR-190a-3p or the overexpression of its target OTUD2/YOD1 attenuated the
proliferation and migration of glioma cells [157]. While the underlying mechanism is
currently unknown, YAP and TAZ, the transcriptional coactivators and effectors of the
Hippo signaling pathway, have been identified as downstream targets of an miR21-OTUD2-
YAP/TAZ axis in hepatocellular carcinoma [158], thus, potentially linking OTUD2/YOD1
to glioma stem cell maintenance and proliferation [159].

Among the selected DUBs significantly linked to the DNA damage repair pathway, the
glioma and MB datasets shared several DUBs, including USP1, USP47, UCHL5, and OTUD1,
which cover five major DNA damage repair pathways (BER, NER, FA, TLS, DSB) [83].
USP1 targets FANCD2/FANCI to regulate the Fanconi anemia pathway (FA) [160] and,
together with USP7, targets translesional DNA repair (TLS) [161,162]. USP7, a DDR-
associated DUB exclusively altered in MB, and USP47 target the base excision repair
pathway (BER) [163,164], while USP7 and USP45 have regulatory roles in nucleotide ex-

http://gepia.cancer-pku.cn/


Biomolecules 2023, 13, 1503 24 of 31

cision repair (NER) [165,166]. UCHL5 and OTUD1 were reported to increase or decrease
double-strand break repair (DSB), respectively [167,168]. Expressed among the top genes
in Group 3 MB and highly significantly associated with poor survival in MB Groups 3 and
4 (Tables 4 and 5), PSMD14 (aka POH1) was also significantly associated with immune
responses and DNA repair, particularly in MB Groups 3 and 4 (Tables 6 and 7). PSMD14
was shown to fortify tumor cells against DNA-damaging drugs by promoting a switch
from error-prone non-homologous end-joining to homologous recombination [169,170].
This identifies proteasomal PSMD14 as a key DUB in regulating ubiquitin conjugation in re-
sponse to DNA damage and exemplifies the intricate relationships between the proteasome
and DNA damage responses.

Changes in DUB expression also occurred during the treatment of extracranial NBT
sympathetic nervous tumors. Our analysis of a dataset from NBT undergoing different
treatment options identified significantly reduced expression of seven (USP24, USP34,
MINDY2, USP8, JOSD1, USP52, USP12) DUBs in the treated versus non-treated NBT
group. Intriguingly, USP24, JOSD1, and MINDY2 showed the most significant downregula-
tion during intensive versus limited chemotherapy (Figure 12). USP24 has recently been
identified as a novel tumor suppressor in NBT that targets collapsin response mediator
protein 2 (CRMP2), which promotes axon growth, guidance, and neuronal polarity but
also affects T cell polarization and migration [171,172]. Deubiquitination of CRMP2 by
USP24 ensured proper spindle pole assembly and blocked chromosomal instability and
aneuploidy observed upon USP24 knockdown in NBT [173]. A glimpse into possible
additional cellular strategies in response to intensive treatment regimes in NBT cells comes
from findings that USP24 downregulation increases autophagy flux in cells [174]. The
biological roles of Machado–Joseph DUB member JOSD1 are complex [23]. While data on
JOSD1 in NBT are lacking, JOSD1 can deubiquitinate and stabilize Snail protein to promote
EMT and tissue invasion of lung cancer cells [175]. A small molecule inhibitor of JOSD1
was shown to induce cell death of JAK2-V617F-positive primary acute myeloid leukemia
(AML) cells [176]. Downregulation of JOSD1 in treated NBT may also affect regulatory
mechanisms of interferon-1 mediated inflammatory cytokine responses [177]. The role
of the evolutionarily conserved MINDY1/2 family of DUBs in brain tumors is currently
unknown. However, MINDY1 DUB activity promotes the proliferation of bladder cancer
cells by stabilizing MINDY1 interaction partner YAP protein and critical transcriptional
regulator of the Hippo pathway. YAP overexpression in MINDY1-depleted cells was able
to rescue this proliferation [178]. In human breast cancer cells, MINDY1 stabilizes estrogen
receptor alpha (ERa) and promotes Era-mediated proliferation [179].

5. Summary and Conclusions

In the current study, we have identified DUB coding genes and biological pathways
that are statistically associated with CNS tumors. Several DUBs were specific for a particular
CNS tumor or subgroup/subtype and others were common to two or more tumors. The
histone deubiquitination GO pathway was over-represented in glioma, EPN, MB, CPh, and
NBT datasets. The DNA synthesis in DNA repair and regulation of ERAD pathways were
over-represented in DUB transcriptomes of MB and EPN, while various aspects of the
immune response were associated with differential expression of DUBs in CNS tumors.
For datasets that included survival data (mixed glioma and MB datasets), we identified
DUB genes associated with significant hazard ratios. In conclusion, the role of DUBs
as relevant modulators of cellular and immunoregulatory pathways in brain tumors is
evolving. Selective DUB targeting strategies may provide important synergistic therapeutic
potential in the future.
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