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Abstract: Metabolic dysfunction-associated steatohepatitis (MASH) is one of the major risk factors
for chronic liver disease and hepatocellular carcinoma (HCC). The incidence of MASH in Western
countries continues to rise, driving HCC as the third cause of cancer-related death worldwide. HCC
has become a major global health challenge, partly from the obesity epidemic promoting metabolic
cellular disturbances but also from the paucity of biomarkers for its early detection. Over 50% of HCC
cases are clinically present at a late stage, where curative measures are no longer beneficial. Currently,
there is a paucity of both specific and sensitive biological markers for the early-stage detection of HCC.
The search for biological markers in the diagnosis of early HCC in high-risk populations is intense.
We described the potential role of surrogates for a liver biopsy in the screening and monitoring of
patients at risk for nesting HCC.
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1. Introduction

Primary liver cancer comprises two major histological types, hepatocellular (HCC)
and intrahepatic cholangiocarcinoma (ICC). HCC accounts for 90% of primary liver cancers,
with more than 840,000 cases globally [1,2]. Risk factors for the development of HCC
include, among others-chronic hepatitis B virus (HBV), chronic hepatitis C virus (HCV),
metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-related liver
disease (caused by excessive alcohol consumption), cirrhosis, hemochromatosis, primary
sclerosis cholangitis, primary biliary cirrhosis, autoimmune hepatitis, Wilson’s disease,
Alpha-1 antitrypsin deficiency, dietary aflatoxins and algal hepatotoxins in water. HBV and
HCV are being displaced as the leading cause by the inflammatory evolution of MASLD
(metabolic dysfunction-associated steatohepatitis or MASH) [3]. HCC is known for its
poor prognosis, probably because >50% of patients are diagnosed at a late stage. Early
diagnosis is critical for having access to effective therapeutic options such as liver resection
or liver transplantation as well as locoregional radio-ablative therapies, i.e., transarterial
chemoembolization (TACE) and Yttrium-90 trans arterial radioembolization (Y90). At early
diagnosis, most patients show a 5-year survival rate of about 59% compared to <15% in the
advanced stage [4].
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The current recommendation for the screening of HCC in high-risk populations, en-
dorsed by the American Association for the Study of Liver Disease (AASLD) involves
ultrasound (US) with or without alpha-feto protein (AFP) measurement at 6-month inter-
vals [5]. Authors have argued that it is a simple, cost-effective, and noninvasive imaging
modality available worldwide [6,7]. Nevertheless, the imaging by the US is operator de-
pendent, adding to the changing growth pattern of tumors in their sonographic appearance
from hypoechoic to isoechoic with a hypoechoic rim as tumor size increases. A meta-
analysis by Tzartzeva et al. showed that in the asymptomatic patient, the US as imaging
modality had a pooled sensitivity of 84% in detecting HCC [8]. However, its sensitivity
drops to 47% in early-stage HCC. Presently, AFP is the most widely used biological marker
for HCC (see Table 1). At a threshold of 20 ng/mL, it has a sensitivity of 63% and a
specificity of 84% [5]. Other imaging modalities (multiphasic CT and MRI) have been
shown to improve sensitivity from 66 to 82% and specificity to >90% for the detection of
at least 1 cm in diameter hepatic nodules [9]. Albeit, the financial burden, adverse events
(radiation), and lack of availability in specific geographical areas in development make
CT/MRI imaging a non- cost-effective screening strategy.

Although a liver biopsy is not recommended for screening in patients with end-stage
liver disease (ESLD), histological diagnosis may be indicated in non-cirrhotic patients with
risk factors when their imaging is inconclusive for HCC. Liver biopsy is also required in pa-
tients who are not candidates for curative therapies before the start of systemic therapy [10].
The sensitivity of liver biopsy varies between 66–93% based on tumor size, operator ex-
perience, and needle size with specificity and a positive predictive value above 95% [11].
In complex cases, the accuracy of a liver biopsy is enhanced by using a combined panel
of immunochemistry markers such as glypican 3 (GPC 3), heat shock protein 70 (HSP 70),
glutamine synthetase (GS), and in some instances a panel of antibodies [1,12,13]. Compli-
cations from a percutaneous liver biopsy include pain, bleeding, gallbladder perforation,
hemothorax, haemobilia, bile peritonitis, and pneumothorax. Severe bleeding within 2–4 h
after biopsy occurred in less than 2% of patients [14], while mortality has been reported in
1 per 10,000 patients [11,15,16], and malignant needle tracking occurrence at a 2.7% overall
rate, or 0.9% per year [17].

The molecular pathogenesis of HCC is complex and heterogenous, and conventional
biopsy cannot always be done because of its invasiveness. Furthermore, the information
obtained from a single biopsy may be inadequate and may not be entirely representative of
the pathology due to tumor heterogenicity and sample bias. Sequential liver biopsies have
been proposed to monitor tumor evolution, but besides being impractical, they add risk
to the patient for adverse events. An alternative approach is to determine biomarkers in
plasma that define liver pathology. A liver liquid biopsy may provide a genetic/metabolic
profile for a liver cancerous lesion and the opportunity to follow growth evolution in
terms of regression, or recurrence. In this review, we aimed to discuss the actual status of
biomarkers for HCC, including their limitations and possible new areas for further research.

Table 1. Biomarkers and detection performance for HCC early detection. (Adapted and modified
from Parikh et al., 2020) [18].

Biomarker Abbreviation Biomarker Name Early Detection Performance AUC ROC for Early Detection

AFP Alpha-fetoprotein Sensitivity: 39–64%
Specificity: 76–97% 0.75–0.82

AFP-L3
Lens culinaris

agglutinin-reactive fraction of
alpha-fetoprotein

Sensitivity: 49–62%
Specificity: 90% 0.66–0.76

DCP Des-gamma-carboxy
prothrombin

Sensitivity: 34–40%
Specificity: 81–98% 0.72
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Table 1. Cont.

Biomarker Abbreviation Biomarker Name Early Detection Performance AUC ROC for Early Detection

OPN Osteopontin Sensitivity: 49%
Specificity: 72% 0.73

GPC-3 Glypican-3 Sensitivity: 55%
Specificity: >95% 0.793

GP-73 Golgi protein 73 Sensitivity: 62–79%
Specificity: 62–88% Not Available

2. Concept

A liver liquid biopsy (LLBx) is a minimally invasive test that measures liver-originated by-
products in plasma, i.e., proteins, circulating tumor cells, cell-free RNA, metabolomic markers,
microRNA, and extracellular vesicles that precede morphological liver changes during the
progression/regression of a benign or malignant liver disease process (Figure 1) [19,20]. It
diminishes the financial burden and potential complications of tissue biopsies, but also can
be performed sequentially defining disease evolution. This concept in a liver process has
been validated for liver fibrosis, by correlating the grade of liver fibrosis with plasma liver
enzymes in multiple clinical trials, i.e., Fib-4 [21–27]. The MELD score (modeling for end-
stage liver disease) predicts mortality at 90 days in patients listed for liver transplantation,
and it is the standard for liver graft allocation in the US and abroad [28–30]. Nevertheless,
a reliable LLBx that predicts the development of HCC prior to its detection by imaging,
remains to be determined and validated. We will review the candidacy of biomarkers for
the early detection of HCC.
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Figure 1. Potential biological markers for a liquid biopsy. Proteins, extracellular vesicles containing
most of them RNA, circulating tumor cells, free DNA, and metabolomic markers are the main
candidates for the development of a plasma liver construct for the early detection of HCC. Modified
and adapted from Mocan et al., 2020 [20].

3. Proteins
3.1. Alpha-Feto Protein (AFP)

AFP is a glycoprotein that resembles albumin and is produced by the fetal liver and
yolk sac during embryonic development but is absent in adult life. AFP was identified in
human fetal serum in 1956 [31], it has 590 amino acids organized in three domains that
undergo conformational changes based upon temperature, pH, and osmolality. It was
introduced in clinical practice as a biomarker in the 1990s [32], when it was described as a
carrier for different ligands. Thus, AFP can alter and enhance signal transmission pathways,
explaining its role in modulating cell growth in fetal life and oncogenesis [31,33,34]. Two
isoforms of AFP have been described: native AFP (nAFP) and tumor AFP (tAFP).

nAFP is responsible for stimulating cell and tissue growth in the fetal stage. In adults,
only a trace concentration (5–8 ng/mL) is available and helps to condition hematopoiesis
and cell regeneration [31,33,34]. tAFP is synthesized by neoplastic hepatocyte signaling and,
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in turn, it drives the growth of cancerous cells, block apoptosis, and increase drug resistance
(Figure 2) [35,36]. tAFP signal pathway follows the activation of the cAMP-PKA enhancing
the expression of the c-jun, c-fos, and RAS oncogene promoting cell cycle transition from G1
to S phase and initiating angiogenesis [31,33,34]. In addition, by binding with phosphatase
and tensin homolog (PTEN), tAFP causes the activation of the PI3K/P-AKT/mTOR path-
way disabling the cell’s autophagy capacity [34,37,38]. Furthermore, the binding of tAFP
to caspase 3 blocks the signal pathway from caspase 8 to 3, thereby inhibiting apoptosis.
The anti-apoptotic effect is enhanced by its ligand capacity to both the hormone response
element (HRE) and DNA damage-inducible protein 153/C/EBP homologous protein/DNA
damage-inducible transcript 3 (GADD153/CHOP/DDIT3) [33,37]. tAFP has an effect on
the expression of other proteins that play roles in metastasis, including keratin-19, EpCAM
(epithelial cell adhesion molecule), matrix metalloproteinases 2 and 9 (MMP 2/9), and CXC
chemokine receptor 4 (CXCR4) [36].
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Figure 2. Molecular interactions of AFP. During fetal life, nAFP interacts at the membrane level with
its receptor to promote cell proliferation and apoptosis inhibition. tAFP promotes cell division, organ
invasion, and distal tumors. Modified and adapted from Li et al., 2020 [36].

The threshold of tAFP varies depending on the prevalence of HCC in the population
at risk [39]. Patients with non-tAFP HCC have better overall survival. They have smaller
tumor sizes, superior liver function, a lower rate of tumor recurrence, and undergo liver
transplantation at a higher rate [39–41]. Trevisani et al. using a cut-off of 20 ng/mL in a
population with 5% HCC prevalence, found for tAFP a negative predictive value of 97% and
a positive predictive value of 25% [39]. Patients with advanced HCC and tAFP < 400, had
higher rates of partial or complete response to immune checkpoint inhibitors and a lower
rate of disease progression compared to patients with tAFP > 400 ng/mL [40]. Patients
with failure to normalize tAFP after liver transplantation for HCC, had a higher recurrence
rate [41]. A retrospective study of 422 HCC patients who underwent liver transplantation
confirmed that consistently high tAFP values (> 15 ng/dL) is an independent predictive
factor for poor HCC outcome [7].

AFP is expressed by approximately 73% of patients with HCCs, making it eligible to
be used as a marker for T-cell-mediated immunotherapy. AFP-directed vaccine for HCC
is currently being studied in animals and clinical trials. Hanke et al. found that 62.5% of
vaccinated mice with AFP-expressing plasmid-DNA rejected subcutaneous syngeneic AFP-
expressing p815 tumors at a higher rate when compared to control animals (62.5% vs. 16.7%,
respectively, p < 0.03), suggesting that AFP-specific DNA vaccination inhibit the growth
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of AFP-expressing tumors without affecting liver regeneration [42]. Other studies in mice
models have shown that AFP may be used as a potential self-antigen to induce cytotoxic
lymphocyte and CD4 (+) T cell-mediated regression of HCC-expressing AFP [43–45]. The
creation of AFP-epitope optimization will enhance the activation of AFP-specific CD8 T
cells which will lead to the cross-recognition of native AFP epitopes on HCC tumor cells
generating an antitumor effect [46]. A phase I/II clinical trial reported the possibility
of expanding AFP-specific CD8 T cell response in advanced HCC patients with high
circulating levels of AFP after immunization with AFP peptide-pulsed autologous dendritic
cells [47]. tAFP can be elevated in other embryonic tumors and in some benign liver
conditions, that usually implicate liver regeneration. Therefore, high levels of tAFP are
used in combination with imaging studies to confirm the diagnosis [48–50].

3.2. Des-Gamma-Carboxy Prothrombin (DCP)

This protein results from an acquired defect, in malignant cells of the posttranslational
carboxylation in the prothrombin precursors. It is also known as prothrombin induced
by vitamin K absence-II (PIVKA-II). Secretion of DCP is independent of tAFP, hence it is
described as a useful tool for HCC surveillance [51]. However, its use remains controversial.
Studies have shown that DCP presented the highest diagnostic value for discriminating
HCC vs. control with an adjusted AUC of 0.82 (95% CI 0.64–0.80), higher than the traditional
tAFP (AUC = 0.72, 95% CI 0.70–0.82, p = 0.045) [52]. Additionally, DCP was shown to
be significantly better than tAFP or AFP-L3 in differentiating HCC from cirrhosis with a
sensitivity of 86% and specificity of 93% [53]. DCP has also demonstrated usefulness in
tumor progression and prognosis. In a prospective study on 685 HCC patients, AFP and
DCP showed similar discrimination (55.8 and 54.2%, respectively) while AFP-L3 was lower
(34.1%) [54]. In addition, HCC AFP-negative patients (approximately 30%) appear to be
DCP-positive and these patients usually display malignant lesions possessing a distinct
margin, few nodules, and a larger size of >3 cm with moderate to poor differentiation [55].
Furthermore, a higher level of DCP is associated with intrahepatic metastasis, hepatic
tumor vein thrombosis, and portal vein tumor invasion, driving a correlation between HCC
stages and survival [56]. Studies have suggested that DCP may play a role in the release of
angiogenesis molecules in HCC, and vascular endothelial cells [6,56].

The half-life in the plasma of DCP is shorter than AFP (40–72 h vs. 5–7 days, re-
spectively). DCP levels may be affected in intrahepatic cholestasis, prolonged obstructive
jaundice, vitamin K deficiency, patients taking warfarin, and therapy with antibiotics [57].
Since DCP is produced by vitamin K shortage, extrinsic supplementation of the vitamin
may decrease the serum levels of DCP and even reduce the HCC burden. In the nude mice
bearing HCC, vitamin K2 (2–40 uM) significantly decreased DCP production and inhibited
HCC growth, invasion, and migration of tumor cells [58]. Using PRF/PLC/5/hepG2 cells,
Vitamin K2 effects were confirmed to have no effect on hepatocyte viability [59]. Given the
potential promise of DCP, it is currently approved by the FDA for use in the determination
of HCC [5,56]. Japan has recommended the combined use of DCP and AFP [6]. Neverthe-
less, Choi et al. disagree with the addition of DCP to AFP for increasing HCC detection [53].
The AASLD has no recommendations on DCP for surveillance and diagnosis of HCC [6,56].

3.3. AFP-L3 (Lens Culinaris Agglutinin-Reactive Fraction of Alpha-Fetoprotein)

AFP-L3 is one of the fractions of the AFP separated by its affinity to the lectin Lens
culinaris agglutinin (LCA) [60]. Elevated levels of AFP-L3 predicted HCC even in the
absence of elevated tAFP [61]. AFP-L3 has a sensitivity of 56% with a specificity of 96%
and can be detected in the serum of about 35% of patients with small HCC (<2 cm) [58].
AFP-L3 specificity is advantageous in being able to decipher HCC from another benign
liver disease in the presence of elevated AFP [59]. However, due to its low sensitivity,
it does not seem suitable for the first-line screening of early HCC. A cut-off value of 5%
was associated with lower overall survival, and a higher risk of HCC recurrence, even in
those with AFP value of less than 20 ng/mL [62,63]. Just as DCP, AFP-L3 is also associated
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with intrahepatic metastasis and portal vein invasion which explains its usefulness in the
monitoring of treatment response and HCC recurrence [64,65]. With continuous efforts
being made to improve the performance of AFP-L3 by combining it with other biomarkers,
some method like the GALAD score which entails age, sex, AFP, AFP-L3, and DCP has
shown significant improvement in diagnostic performance for early-stage HCC.

3.4. Glypican-3 (GPC-3)

GPC-3 protein belongs to the family of heparin sulfate proteoglycans and is anchored
to the plasma membrane by a glycosylphosphatidylinositol ligand. It regulates cell prolif-
eration and survival during embryonic development and plays a pivotal role as a tumor
suppressor. The Glypican family comprises six members (GPC1-GPC6), all of which
have a cysteine-rich repeat domain at similar positions. GPC3 is abundantly expressed
in the placenta and fetal tissues, i.e., liver, lungs, and kidneys but its expression is signif-
icantly reduced in adult organs. Although GPC-3 is downregulated in breast, ovarian,
and lung cancers, it is upregulated in HCC [66,67]. GPC mRNA is hardly detectable in
non-cancerous adult liver but over-expressed in HCC tissue [68]. The GPC-3 released by
HCC cells is detected as the serum GPC-3 (sGPC3) and is measured using the enzyme-
linked immunosorbent assay (ELISA). sGPC-3 levels in 25 healthy volunteers showed
significantly lower levels when compared to 115 HCC patients who underwent curative
partial hepatectomy (110.12 vs. 405.16 pg/mL, respectively; 185.52 pg/mL was set as the
upper limit of normality) [69].

GPC-3 can be detected in HCC patients that are AFP and DCP seronegative (50
and 33%, respectively). Its expression is independent of tumor size and can exhibit a
sensitivity of 56% in patients with early-stage tumors (<3 cm) [70]. Newly diagnosed
HCC patients (n = 449) with serum GPC-3 > 150 pg/mL had lower overall survival (16;
95%CI: 13–24 months) than those with GPC-3 ≤ 150 pg/mL (36; 95%CI: 30–56 months,
p < 0.001) [69]. Higher expression of GPC-3 in HCC cells has been found to correlate
to poorer prognosis for those with curative hepatectomy [71,72]. GPC-3 also has some
role to play in immunotherapy. Codrituzumab/GC33/RO5137382 (GC33) is a humanized
monoclonal antibody that binds to human GPC-3 expressing HCC cell line with an in vivo
cytotoxic activity against tumor cells. In a phase-1 trial, 20 patients were enrolled and
treated with GC33. Although the maximum tolerated dose was not reached, only a few
non-severe adverse events such as constipation, hyponatremia, headache, and fatigue were
documented [73].

3.5. Osteopontin (OPN)

This is an integrin-binding glycol-phosphoprotein expressed in epithelial cells and is
believed to be involved in the regulation of migration, invasion, and metastasis of tumor
cells. OPN expressions have been reported to be significantly higher in HCV-related HCC
patients compared to healthy individuals [74]. OPN levels have also been correlated to
advanced HCC stage, vascular invasion, lymph node metastasis, and poor prognosis. In
a meta-analysis study, pooled sensitivity, specificity, and diagnostic odds ratio for OPN
vs. tAFP were 0.813 vs. 0.639 (95% CI: 0.671–0.902 vs. 0.538–0.729), 0.874 vs. 0.959 (95% CI:
0.778–0.932 vs. 0.909–0.982), and 30.047 vs. 41.518 (95% CI: 8.845–102.067 vs. 13.688–125.929),
respectively. In addition, pooled sensitivity, specificity, and diagnostic odds ratio for
OPN+tAFP were 0.856 (95% CI: 0.760–0.918), 0.738 (95% CI: 0.630–0.823), and 16.718 (95%
CI: 7.950–35.156), respectively [75]. Another meta-analysis comparing OPN and AFP in the
evaluation of HCC reported a similar trend [76].

3.6. Survivin and Smac-Diablo
3.6.1. Survivin

Survivin, an oncofetal protein is a member of the inhibitor of apoptosis protein (IAP)
family and chromosomal passenger complex. It is a pivotal protein in many molecular
pathways in the cell [77,78]. Primarily, it inhibits apoptosis, drives cell proliferation,
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and promotes angiogenesis [77,79]. The expression of survivin is upregulated in HCC
and other forms of cancer when compared to normal tissues and its high expression
is associated with carcinogenesis [77,79]. Interestingly, the presence of survivin can be
detected from the extracellular fluid (ECF) of cancer patients and accumulating data
indicates that measurement of survivin level in the ECF could be a potent diagnostic
biomarker for early detection, diagnosis, and prognosis of various types of cancer and
foretell clinical outcome to various anti-neoplastic therapies [77,80]. Assessment of survivin
level in the urine of patients with bladder cancer has been shown to be a simple, but
effective diagnostic technique for detecting new or recurrent bladder tumors [80,81]. In
addition, circulating breast cancer cells expressing survivin mRNA in peripheral blood,
were present in more than 50% of breast cancer patients and absent in healthy subjects,
correlating its presence with metastasis and recurrent breast tumors [80,82]. The evaluation
of serum levels of survivin in cancer patients could be an effective diagnostic biomarker
for early detection of tumors and disease progression [83,84]. Intriguingly, preliminary
data from our group, under approved IRB protocols, has demonstrated an increased level
of survivin in the plasma samples of MASH-related HCC patients compared to MASH
patients and normal subjects, which correlated positively with the clinicopathological
parameters of the patients. The plasma level of survivin in these patients was able to
effectively discriminate between MASH patients and those that have developed cancers.
Taken together, plasma survivin is a putative effective biomarker for early detection of
MASH-related HCC and perhaps, as a screening tool in high-risk communities.

3.6.2. Smac/DIABLO

The second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-
binding protein with low isoelectric point (pl) (SMAC/DIABLO), is a proapoptotic protein
that is released from the mitochondria into the cytosol following various apoptotic stim-
uli. In the cytosol, SMAC binds and neutralizes inhibitors of apoptosis proteins (IAPs),
promoting the activation of caspases and apoptosis [79,85]. SMAC is down-regulated in
HCC tumor tissues in comparison to normal tissues, thus aiding hepatocarcinogenesis
via decreased apoptosis [79,86,87]. In ovarian cancer patients, despite SMAC not being a
secretory molecule, it can be detected in the serum and its circulating level could be a useful
diagnostic and prognostic biomarker in cancer. Furthermore, the circulating level of SMAC
was downregulated in patients with bladder cancer when compared to control subjects.
The decreased serum level of SMAC correlated negatively with both the progressive cancer
stage and early recurrence of tumors in these patients, indicating that serum levels of
SMAC may be a prognostic biomarker for bladder cancer [88]. Dobrzycka et al. showed in
patients with serous ovarian cancer, a positive correlation between decreased SMAC serum
levels and poor prognosis, predicting their clinical outcome [89]. In malignancy, reduced
apoptosis occurs, with the low release of SMAC in circulation [88,89]. Our data, under
approved IRB protocols, revealed an increased circulating level of SMAC in the plasma
samples from MASH patients when compared to normal subjects. Nevertheless, SMAC
levels were not significantly different from patients with MASH-related HCC. SMAC is
also identified as a potential biomarker for MASH progression to HCC.

4. Liver Apoptotic Activity-Cytokaretin-18 Fragment

It is well-documented that elevated hepatocyte apoptosis is a prominent feature of
MASH. During apoptosis, activation of the executioner caspases, especially caspases 3
and 7 results in the cleaving of certain substrates in the cell, including cytokeratin-18
(CK-18), which is the major intermediate filament in the liver. The resulting caspase-
cleaved cytokeratin -18 fragments circulate in the peripheral blood of MASH patients and
its plasma/serum level has been correlated with the severity of MASH [90,91]. Feldstein
et al. reported that CK-18 fragments are highly elevated in the blood of MASH patients
and serve as an independent predictor of MASH, detecting the presence of MASH with
a specificity >90%, and a negative predictive value of 80% [90]. Our preliminary data,
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under approved IRB protocols, concurred with the findings where caspase-cleaved CK-18
fragments plasma levels were heightened in MASH patients in comparison to healthy
controls, but not statistically different from those with MASH-related HCC. This finding
further establishes the circulating level of caspase-cleaved CK-18 fragments as a valuable
diagnostic biomarker for MASH progression.

5. Cell Autophagy Activity

Autophagy is an evolutionarily conserved mechanism, that involves a lysosome-
mediated intracellular degradation and recycling pathway [92]. It has roles in a variety
of pathophysiological processes, mainly where there is a high protein turnover. Cell au-
tophagy regulates metabolism and cell protein renewal [93,94]. During aging, autophagy
actively participates in the elimination of toxic proteins and defective organelles [95]. Au-
tophagy has a dynamic role in both the promotion and prevention of cancer through
cell survival or tumor initiation blockage [96–98]. Autophagy is affected in HCC patho-
genesis and possesses a potential role in tumorigenesis and treatment resistance [99,100].
Microtubule-associated protein 1 light chain 3 (LC3) and Beclin-1 are autophagy marker
genes associated with the pathogenesis of liver diseases [101,102], and are reported as hav-
ing controversial roles in the pathogenesis of HCC [103–105]. LC3 has been associated with
vascular invasion and poor tumor survival [102,103,106], insinuating autophagy-related
proteins may predict tumor survival in patients with combined hepato-cholangio carci-
noma [107]. Furthermore, LC3B has been found to be positively correlated with cytokeratin
19-labeled ductular reaction in the development of cirrhosis [108], and vascular invasion
and lymph node metastasis in HCC [109]. LC3A has also been reported as a marker for
HCC progression [110]. UNC51-like kinase 1 (ULK1), a mammalian serine/threonine
protein kinase that plays a crucial role in the initiation of autophagy, was also identified
as a novel prognostic biomarker for HCC [111]. Plasma extracellular vesicles expressing
LC3B have been reported as a diagnostic marker to predict HCC [112]. The absence of LC3,
hypoalbuminemia, high alanine aminotransferase (ALT), and major liver resection were
associated with HCC mortality [113].

6. DNA/RNA
6.1. Circulating Tumor Cells (CTCs)

CTCs are shed cells from a malignant nest in proliferation providing the foundation
for metastatic disease. Since their discovery in 1869, researchers have shown that CTCs
can undergo an epithelial–mesenchymal transition (EMT), resembling stem cell-like char-
acteristics that enable cell self-renewal and differentiation [114]. Cell search defined CTC
as a circulating nucleated cell larger than 4 µm, expressing epithelial proteins (EpCAM,
cytokeratin’s 8, 18, or 19) but negative for leucocyte-specific antigen CD45 [115]. The cell
search system (FDA-only validated assay) is used in detecting CTC in HCC. It is important
to note that the earlier the cancer stage, the lower the number of circulatory CTCs. Also,
when this marker is in the circulatory system, it undergoes apoptosis because of loss of
adhesion to the extracellular matrix, the hemodynamic shear forces, target drugs, and
attack of the body’s immune system. Therefore, less than 0.01% of CTCs released into
circulation survive to produce metastasis [116]. This can limit the detection of an early
cancer diagnosis. The half-life of this marker is 1–2.4 h and the detection in the patient’s
blood after months to years of primary tumor resection could indicate tumor recurrence or
metastasis [45].

CTCs are believed to be determinants of metastasis and recurrence in cancers, but
CTCs may also play a role in determining disease prognosis. There have been multiple
parameters in defining a CTC-positive cell assay. Some studies defined it as “≥1 CTC”
while others “≥2 CTC”, or “≥5 CTC [2]. In HCC patients, CTC-positive is associated with
lower overall survival and disease-free survival and poor clinical characteristics, and larger
CTC numbers correlate to poorer prognosis [2]. CTCs may also predict tumor recurrence.
A total of 123 HCC patients had their blood samples tested (CTCs+ in 66.67%) prior to
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liver resection and one month thereafter [117]. Patients with CTC’s > 2 developed HCC
recurrence earlier when compared to patients with CT < 2 (p < 0.001). Another study
showed that CTC count ≥16 and mesenchymal-CTC (M-CTC) percentage ≥2% prior to
resection were significantly associated with early recurrence, multi-intrahepatic recurrence,
and lung metastasis [118]. In 49 patients high CTC/Treg levels showed a significantly
higher risk of developing postoperative HCC recurrence than those with low CTC/Treg
levels (66.7% vs. 10.3%, p < 0.001) [119]. Authors concluded that the number of EpCAM
mRNA+ CTCs and Treg/CD4+ cells showed a significant correlation as prognostic factors of
postoperative HCC recurrence.

6.2. Circulating Tumor DNA (Ctdna) and Cell-Free DNA (Cfdna)

CtDNA is released from primary or metastatic tumors while cfDNA is a double-
stranded DNA, released from dying nonmalignant host cells and lymphocytes. Thus,
ctDNA represents only a fraction of the total cfDNA with DNA dilutions from neighboring
non-cancerous cells. The detection of tumor-specific mutations on circulating cfDNA
indicates the presence of ctDNA [120]. ctDNA modal size is 167 bp, shorter than cfDNA;
however, a 90–150 bp range is sometimes used in the selection of fragments to improve
detection [121]. ctDNA can be difficult to detect due to dilution with cfDNA, and short
half-life (16 min–2.5 h). Some characteristics possessed by ctDNA, i.e., cancer-derived
viral sequences, single nucleotide mutations, and methylation changes can be used to
differentiate it from circulating cfDNA [122,123]. Quantitative ctDNA changes reflect
disease activities, response to treatment, or tumor recurrence. Previous studies showed
that CfDNA differentiates HCC patients from healthy control with a sensitivity of 90.2%
and specificity of 90.3% using a cut-off value of 18.2 ng/mL, and its levels were positively
associated with tumor size (p = 0.012) [124]. Furthermore, elevated cfDNA was significantly
associated with intrahepatic spreading or vascular invasion (p = 0.035) and overall survival
(p = 0.071). At a higher cut-off level (73 ng/mL), ctDNA discriminated HCC patients from
HCV carriers and controls (sensitivity of 69.2% and specificity of 93.3%), and its levels
were associated with tumor differentiation and size but not with gender, TNM stage or
levels of other proteins (tAFP and DCP) [125]. Ren et al. showed that the cfDNA levels
were significantly associated with HCC size (p = 0.008) and TNM stage (p = 0.040), and
negatively associated with disease-free survival (DFS at 3 years, p = 0.017) and overall
survival (OS, p = 0.001) [126]. A combined measurement of cfDNA with tAFP may increase
the HCC detection rate [127]. A case–control study by Lewin et al. used DNA methylation
markers (mSept9) in 60 HCC patients and 103 cirrhotic patients without HCC; 46/60 HCC
and 37/103 cirrhotic patients tested positive to mSept9 with sensitivities of 76.7% and
64.1%, respectively. All patients also had AFP results which showed a sensitivity of 36%
and specificity of 95% using a cuff-off value of >20 ng/mL; however, when combined with
a methylated biomarker panel, sensitivity improved to 68% with specificity at 97% [128].

6.3. Cell-Free Messenger RNA

Cell-free messenger RNAs were initially thought to be of low diagnostic value in HCC,
because of their low quantity and ease of degradation by blood ribonucleases. Nonetheless,
recent studies have shown they are incorporated into exosomes, micro-vesicles, and multi-
vesicles (see below).

6.4. Non-Coding RNAs (ncRNAs)

Messenger RNAs that do not code for protein are transcribed into ncRNAs as long
ncRNA (LncRNA) or short ncRNA (SncRNA). Metastasis-associated Lung Adenocarci-
noma Transcript 1 (MALAT1) and Sprouty Receptor Tyrosine Kinase Signaling Antagonist
4-Intronic Transcript 1 (SPRY4-1T1) LncRNAs (with an average length of 21–25 nucleotides)
are increased in the serum of HCC patients and are found to correlate with the grade of
HCC differentiation [129]. Other LncRNA (XLOC014172, LINC00152, and RP11-160H22.5)
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have been found to be able to distinguish HCC from chronic hepatitis, cirrhosis, or controls
(normal liver) [130].

An example of a SncRNA is the miRNAs (longer than 200 nucleotides), which are
small, dysregulated RNAs (19–25 nt) protected from endogenous RNA activity. miRNA
regulates several cell processes like development, differentiation, metabolism, and cell
death, and has acted as a useful biomarker in HCC detection. Various characteristics of
miRNA have been described and these include resisting apoptosis and immune destruction,
promotion of inflammation and gene mutation and instability, and playing a role in angio-
genesis [131–137]. The authors studied miRNAs (miR-21, miR-141, and miR-122) and found
elevated levels in lymphoma, prostate, and liver injury [138]. miR-221 has been found to be
expressed by tumor cells like breast, colorectal, and glioblastoma with a report showing its
ability to enhance tumor progression and shorten the mean time to death in a mouse model
of liver cancer. Li et al., however, reported elevated serum levels and expression of miR-221
in HCC patients, correlating higher expressions with tumor size and stage compared to
those with low expression [139]. Oncofetal miRNA, miR-500 was abundantly expressed in
the serum of HCC patients and tended to decrease following surgical treatment [127]. Shen
et al. compared miRNAs by ethnicity and discovered higher levels in Asians compared to
non-Asians, with some having a different expression pattern [140]. MiR-125b-5p was found
to be associated with HCCs for both Turks and Chinese people; however, its expression
was downregulated in Chinese patients and upregulated in Turks. These ethnic differences
were believed to be due to heterogenous pathogenesis, diet, environmental exposures,
and lifestyles. The diagnostic value of miRNA could be limited when screened alone.
miR-21 has a sensitivity and specificity of 60% and 83%, respectively, when screened alone
but when combined with AFP improved to a sensitivity and specificity of 81% and 77%,
respectively [141].

6.5. Epigenetic Changes

Genome-wide studies, from the use of next-generation DNA sequencing, have ex-
plored a multitude of genetic and epigenetic aberrations associated with the process of
liver carcinogenesis [142]. As the liver constantly adapts to highly variable environmental
conditions and is subjected to constant repair and regeneration, undesirable changes in the
liver epigenome drive uncontrolled cell proliferation, invasion, and metastasis that leads
to HCC progression [143,144]. Major epigenetic modifications include DNA methylation,
histone modifications, and altered expression of non-coding RNAs [145]. The prognostic
role of one of the most widely studied epigenetic modifications, DNA methylation, has been
reported in HCC [146–149]. In patients with HCC after hepatectomy, serum insulin-like
growth factor-binding protein 7 (IGFBP7) methylation status possesses potential prognostic
value for recurrence and survival [150]. Plasma hypomethylation of long interspersed
nucleotide elements-1 (LINE-1) was found to be associated with worse survival in pa-
tients with HCC [151]. Evidence suggests that hypo-methylation of promoters of CTCFL
(CCCTC-binding factor-like), a member of the cancer-testis antigen family, can be used as a
noninvasive biomarker to monitor HCC prognosis [152]. Methylation of a tumor suppres-
sor gene, Septin 9 (SEPT9), can serve as a promising circulating epigenetic biomarker for
HCC diagnosis [153].

A predictive model of circulating tumor DNA carrying cancer-specific genetic and epi-
genetic aberrations was constructed from patients’ cell-free samples with HCC vs. normal
controls, and the model showed high diagnostic specificity and sensitivity for HCC [154]. In
addition, another study has demonstrated the diagnostic value of serum G-protein-coupled
bile acid receptor Gpbar1 (TGR5) methylation in HCC and chronic hepatitis B patients [155].
A multicenter, case–control study developed a blood-based biomarker panel of methylated
DNA and protein markers with high sensitivity for early-stage HCC detection to increase
treatment opportunities and reduce mortality (NCT03628651) [156,157]. Oncoguard Liver™
uses an algorithm based on sex, age, and alpha-fetoprotein (AFP) along with methylated
homeobox A1 (HOXA1), empty spiracle homeobox 1 (EMX1), and TSPY-like 5 (TSPYL5) to
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improve early detection of HCC [156,157]. HelioLiver Test™, a multi-analyte blood test,
combines cell-free DNA methylation patterns, clinical variables, and protein tumor markers
for HCC detection (NCT05059665) [158]. The study measured cell-free DNA methylation
levels in 28 genes having 77 CpG sites. Hence, future studies are warranted to explore aber-
rant epigenetic modifications as promising noninvasive biomarkers to sensitively detect
early HCC development.

7. Extra Cellular Vesicles (EV)

Exocytosis of cytoplasmic synthetized vesicles containing a variety of biological
compounds, i.e., mRNAs, hybrid miRNAs, proteins, and lipids, is part of cell physiol-
ogy in health and disease. Based on their biogenesis and size they are designated as
exo/ectosomes, micro-vesicles, and apoptotic bodies. Exosomes are small membrane-
enclosed vesicles (typically below 30–120 nm in diameter) generated by the inward budding
of the membrane (endocytosis) while ectosomes are formed by the outward blebbing of
the plasma membrane released by proteolytic cleavage (exocytosis) into the extracellular
compartment. While micro-vesicles are bigger in size, ranging from 100 nm to 1 µm, and
are derived from the budding of the membrane, apoptotic bodies have the largest diameter
(1 to 5 µm) and are formed by compartmentalization of the cell after nuclear material
dissolution (programmed cell death) [159].

Exosomes are heterogenous and contain cell-specific proteins and nucleic acids (mR-
NAs, miRNAs, and ncRNAs), reaching up to 3 million units/µL in peripheral blood [159].
In 2012, the Exocarta database described 11,261 proteins, 2375 mRNAs, and 764 miRNAs
associated with exosomes [160], some of them used by cancer cells to reprogram adjacent
healthy cells [161]. In chronic liver disease, which involves systemic inflammation, an
increased number of EVs derived from inflammatory cells (CD8 and CD4+ cells) have
been reported. They have been found to be increased in chronic HCV and alcohol-induced
but decreased in MASH [162–164]. Alcohol- or HCV-induced cirrhosis has been shown to
have elevated levels of leuko-endothelial (CD31+/41−), lymphocyte (CD4+), pan-leukocyte
(CD11a+), erythrocyte (CD235a+), and cytokeratin-18 (CK18) positive micro-vesicles [165].
To overcome a low specificity barrier that comes from myeloid cell derived EVs released
following a variety of inflammatory conditions, some groups have sought to screen for the
levels of specific liver progenitor cell markers, i.e., vanin-1 and cytokeratin-18 [166].

8. Cell Oxi-Redox: The Glutathione System

The tri-peptide glutathione (glutamate–cysteine–glycine=GSH) and its oxidized disul-
fide counterpart (GSSG) form a redox couple which is part of the line of defense of many
cell types against oxidative damage by reactive oxygen species. In rats, the small pool of
plasma GSH/GSSG is derived mostly from the liver because the amount of GSH released
in plasma + bile is equal to the rate of GSH synthesis in the liver [167]. It had been pro-
posed to use the labeling kinetics of plasma GSH from 2H-enriched body water as a proxy
for the kinetics of labeling of liver GSH. Interestingly, we showed that the production of
2H-enriched GSH by human livers is significantly higher in controls than in cirrhotics or
patients with HCC [168]. Indeed, glutathione sp. was one of the biological markers able to
differentiate controls from patients with ESLD and HCC.

9. Metabolomics

The metabolic profile from measuring low molecular metabolites in biological samples
(e.g., blood, urine, bile, ascites, tissue, etc.) may provide signatures of health and specific
disease processes. It has offered a unique approach to identifying unique biomarkers
elucidating biochemical pathways in human malignancy. The liver is a metabolic organ
that processes proteins, lipids, and carbohydrates after absorption from the intestine.
Nevertheless, the study of metabolomic profiles in chronic liver disease is in its infancy. The
most frequently reported metabolites in chronic liver disease are bile acids. Higher serum
bile acids have been found in patients with cirrhotic HCC patients compared to healthy
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individuals [127,169–171]. Nine lyso-phosphatidylcholines (LPCs, LPC C16 : 0, LPC C18 : 0,
and LPC C18 : 2; LPC C18 : 0 and LPC C16 : 0) have been reported to be decreased in the
serum of HCC patients [172]. Differences in LPC’s may be explained by the overexpression
of lysophospha-tidylcholine acyltransferase 1 (LPCAT1), which converts LPC C16 : 0 to
phosphatidylcholine 18 : 1 [172,173]. Petterson et al. showed that lignoceric acid (24:0) and
nervonic acid (24:1) were absent in plasma from patients with HCC [174]. A trend was
reported towards increased urinary levels of free carnitine in HCC patients when compared
with healthy control or cirrhotics [170]. However, renal impairment was not considered in
these studies. Serum carnitine levels in HCC, when compared to healthy adults, exhibit a
specific pattern that includes increased free carnitine levels, decreased short- to medium-
chain acylcarnitine, and increased long-chain acylcarnitine C18:1 and C18:2. Others have
shown different carnitine profile levels in cirrhosis from varied etiologies. Krahenbuhl
et al. reported an increase in plasma long-chain acylcarnitine in viral hepatitis cirrhosis
compared to alcohol-induced liver cirrhosis that showed elevated levels of both the long-
and short-chain acylcarnitines [175].

Metabolic signatures of HCC have been developed in VX2 rabbit and HCV ferret
models for HCC [176–178]. In human plasma, glutathione sp., glucose, lactate, and glyc-
erol discriminate patients with ESLD from controls and patients with HCC [168]. Other
amino acids and lipids may play a major role in selecting a more sensitive and specific
signature. Our preliminary work in the MASH and MASH-HCC mouse models showed
promising results.

10. Glycosylated Protein Markers

Recent data have identified aberrant glycosylation of proteins in malignant cells as
one of the principal hallmarks of cancer initiation and progression [179]. In HCC, there is
an increased level of fucosylation, sialylation, and branching structures in serum among
HCC patients with and without advanced fibrosis [179–182], driving aberrant protein’s
glycosylation as a biomarker for HCC [179]. Current tumor-related glycosylated markers
for HCC include:

Fucosylated Kininogen and alpha-1 antitrypsin (AAT). Fucosylated kininogen has
been shown to be a biomarker for early detection of HCC. Albeit, it is not very efficient as a
standalone marker, but when combined with AFP and other clinical signatures, it provides
a robust performance with an AUC ROC of 0.97 [18]. Wang and his co-workers developed
the Doylestown algorithm (a logistic regression algorithm that incorporates AFP, age, sex,
alkaline phosphatase, and alanine aminotransferase) for early detection of HCC [183].
Their study showed that for HCC patients with AFP < 10 ng/mL, the Doylestown did not
improve the detection rate of HCC (AUROC of 0.6417 for the Doylestown algorithm and
0.6313 for the AFP alone) compared to those with high AFP (10–100,000 ng/mL), where
AUROC was 0.579 for AFP alone and 0.700 for the Doylestown algorithm. Nevertheless,
their later report showed that the addition of lectin reactive low molecular weight kininogen
to the algorithm increased performance and degree of sensitivity and specificity in the early
detection of HCC, especially in those with AFP levels of <20 ng/mL [184]. Furthermore,
patients with cirrhosis and HCC had higher levels of both AAT and kininogen than those
with cirrhosis alone, and combining kininogen and AAT with AFP and Golgi protein 73
resulted in an increased sensitivity of 95%, a specificity of 70%, and AUROC of 0.94 for the
detection of HCC [185].

Ceruloplasmin. Most of the serum markers of HCC are produced by the liver, includ-
ing ceruloplasmin. The ratio of fucosylated glycopeptides from ceruloplasmin (CERU) has
also been found to be elevated in patients with alcoholic hepatitis, HBV, and HCV [186].
Lin et al. found a significant elevation of fucosylated ceruloplasmin in HCC (35 cirrhotic vs.
27 early-stage MASH-HCC, p = 0.0486), raising the possibility of a fucosylation ratio as a
potential marker for early detection of MASH-related HCC [186]. Casaril et al. reported on
159 patients (110 cirrhosis and 49 HCC), where they found in serum a significantly higher
level of copper and CERU compared to their cirrhotic counterparts [187].
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Glycosylated Haptoglobin (Hp). Haptoglobin (Hp), an acute-phase response protein
secreted by the liver, functions to modulate renal iron loading and prevent kidney dam-
age by releasing iron [188]. Previous studies have shown that serum haptoglobin (Hp),
containing four N-glycosylation sites is a reporter molecule for aberrant glycosylation
in tumorigenesis, including hepatocarcinogenesis and could serve as a highly specific
biomarker for HCC [189]. Fucosylated as well as sialylated glycan structures of serum
Hp have been shown to be significantly elevated in patients with HCC when compared
to cirrhotics without tumors [188,189], Zhu et al. demonstrated a significant elevation of
five N-glycopeptides at sites N184 and N241 during the progression of MASH to HCC
(p < 0.05), with an AUC of 0.733 and 0.775, respectively. When combined with AFP, the
two panels improved the sensitivity of early MASH-HCC detection from 59% (AFP alone)
to 73%. The heightened bi-fucosylation level of Hp effectively discriminated early-stage
HCC patients from cirrhosis and thus serves as a potential biomarker for early detection
as well as for predicting HCC in cirrhotic patients [190]. Ang et al. reported significantly
higher serum concentrations of Hp in HCC patients, hypothesizing an improved diagnostic
accuracy of HCC with the combined use of Hp and AFP [191].

Other glycosylated markers for HCC include fucosylated proteins such as hemopexin,
fetuin-A, serum paraoxonase 1, and histidine-rich glycoprotein. Increase levels of these
markers have been observed in the serum of HCC patients via the use of techniques such
as direct glycan sequencing or lectin-based procedures [18,179].

11. Methods for Identification of HCC Biomarkers

According to the World Health Organization, a biomarker is defined as: “Any sub-
stance, structure, or process that can be measured in the body or its products and influence
or predict the incidence of outcome or disease [192,193].” Understandingly, most of the
biomarkers discussed above are measured in the body fluids (e.g., plasma, serum, and
urine) of HCC patients to serve as signatures that detect or predict cancer initiation and
progression. Historically, the various methods used for the detection of these biomarkers in
extracellular fluids include enzyme-linked immunosorbent assay (ELISA), immunoassays,
microarrays, chemiluminescence, and immunoblotting techniques [179,194]. Furthermore,
most recently, lectin-based assays and mass-spectrometry have emerged as very useful
diagnostic techniques for biomarker evaluation. Lubman and co-workers have shown that
mass-spectrometry is a valuable diagnostic tool, especially for glycosylated markers in
HCC detection and diagnosis [179,189,190].

12. Future Directions

Integrating driving proteins, DNA-based, and metabolites in the progression of MASH
to ESLD and HCC as biomarkers, is a promising undertaking for the modeling of algorithms
in the screening for early-stage HCC detection in high-risk populations. Early-stage HCC
detection will improve overall survival, decrease financial burden, and improve individual
quality of life. Ideally, the LLBx construct will be performed within 24 h, as a routine test
with a positive and negative predictive value over 90%. It also would not only discriminate
patients with early HCC, but also treatment response and early recurrence.
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Abbreviations

AASLD: American Association for the Study of Liver Disease; AFP: alpha-fetoprotein; AFP-L3:
Lens culinaris agglutinin-reactive fraction of alpha-fetoprotein; AKT: Protein Kinase B; ALT: alanine
aminotransferase; AUC: area under the curve; cAMP: cyclic adenosine monophosphate; cfDNA: cell-
free DNA; CHOP: C/EBP homologous protein; CTCFL: CCCTC-binding factor like; ctDNA: circulat-
ing tumor DNA; CTCs: circulating tumor cells; CT: computed tomography; CXCR4: CXC chemokine
receptor 4; DCP: Des-gamma-carboxy prothrombin; DDIT3: DNA damage-inducible transcript 3; DFS:
disease-free survival; DNA: deoxyribonucleic acid; EpCAM: epithelial cell adhesion molecule; EMT:
epithelial–mesenchymal transition; EMX1: empty spiracle homeobox 1; ESLD: end-stage liver disease;
ELISA: enzyme-linked immunosorbent assay; ECF: extracellular fluids; EV: extracellular vesicles;
Fib-4: fibrosis index based on 4 factors; GADD153: DNA damage-inducible protein 153; GALAD
score: (gender, age, AFP-L3, AFP, DCP) model score; GC33: Codrituzumab/GC33/RO5137382;
GPC 3: Glypican 3; GSH: reduced glutathione; GSSG: oxidized glutathione; GS: glutamine syn-
thetase; HBV: Hepatitis B virus; HCV: Hepatitis C virus; HCC: hepatocellular carcinoma; HSP 70:
heat shock protein 70; HOXA: Homeobox A, HRE: hormone response element; ICC: cholangiocar-
cinoma; IAP: inhibitor of apoptosis protein; IGFBP7: insulin-like growth factor-binding protein 7;
LC3: microtubule-associated protein 1 light chain 3; LC3A: microtubule- associated protein 1 light
chain 3 alpha; LC3B: microtubule-associated protein 1 light chain 3 beta; LINE-1: long interspersed
nucleotide elements-1; LncRNA: long non-coding RNA; LPCs: lyso-phosphatidylcholines; LPCAT1:
lysophospha-tidylcholine acyltransferase 1; MELD: Model for End-stage Liver Disease; MALAT1:
Metastasis-associated Lung Adenocarcinoma Transcript 1; mTOR: mammalian target of rapamycin;
MASH: metabolic dysfunction-associated steatohepatitis; MASLD: metabolic dysfunction-associated
steatotic liver disease; MMP 2/9: matrix metalloproteinases 2 and 9; mRNA: messenger ribonucleic
acid; miRNAs: MicroRNAs; MRI: magnetic resonance imaging; nAFP: native alpha-fetoprotein;
ncRNAs: non-coding RNAs; OPN: osteopontin; PKA: protein kinase A; PI3K: phosphatidylinosi-
tol 3-kinase; PTEN: phosphatase and tensin homolog; ROI: reactive oxygen intermediates; RNA:
ribonucleic acid; SMAC/DIABLO: second mitochondrial activator of caspases/direct inhibitor of
apoptosis-binding protein with low isoelectric point (pl); SncRNA: short non-coding RNA; SEPT9:
Septin 9; SPRY4-1T1: Sprouty Receptor Tyrosine Kinase Signaling Antagonist 4-Intronic Transcript 1;
TACE: transarterial chemoembolization; TGR5: G-protein-coupled bile acid receptor (Gpbar1); TNM:
(Tumor, Node, Metastasis Staging System); tAFP: tumor alpha-fetoprotein; TSPYL5: testis-specific
Y-encoded-like protein 5; ULK1: UNC51-like kinase 1; US: ultrasound; Y90: Yttrium-90 transarte-
rial radioembolization.
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