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Abstract: Osteoporosis (OP), a prevalent skeletal disorder characterized by compromised bone
strength and increased susceptibility to fractures, poses a significant public health concern. This
review aims to provide a comprehensive analysis of the current state of research in the field, focusing
on the application of proteomic techniques to elucidate diagnostic markers and therapeutic targets
for OP. The integration of cutting-edge proteomic technologies has enabled the identification and
quantification of proteins associated with bone metabolism, leading to a deeper understanding of the
molecular mechanisms underlying OP. In this review, we systematically examine recent advancements
in proteomic studies related to OP, emphasizing the identification of potential biomarkers for OP
diagnosis and the discovery of novel therapeutic targets. Additionally, we discuss the challenges and
future directions in the field, highlighting the potential impact of proteomic research in transforming
the landscape of OP diagnosis and treatment.
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1. Introduction

Osteoporosis (OP), a prevalent and debilitating skeletal disorder, poses a significant
public health concern globally, particularly among aging populations [1–3]. Characterized
by compromised bone strength and increased fracture risk, OP not only diminishes individ-
uals’ quality of life but also imposes substantial economic burdens on healthcare systems.
The traditional diagnostic methods and treatment strategies for OP have long served as the
cornerstone of clinical management. Conventional diagnostic approaches primarily rely on
bone mineral density (BMD) measurements obtained through dual-energy X-ray absorp-
tiometry (DXA), supplemented by clinical risk assessment tools such as FRAX [4–7]. While
DXA remains the gold standard for OP diagnosis, its limitations in assessing bone quality
and fracture risk highlight the need for complementary approaches. Likewise, current treat-
ment modalities predominantly focus on anti-resorptive agents, such as bisphosphonates,
and anabolic agents, like teriparatide, aimed at mitigating bone loss and enhancing bone
formation. However, despite their efficacy in reducing fracture risk, these treatments are
not devoid of limitations, including potential adverse effects and suboptimal response rates.
Thus, there exists a pressing demand for novel diagnostic methodologies and therapeutic
interventions that can provide more accurate risk stratification, personalized treatment
strategies, and improved patient outcomes.
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The application of proteomic approaches in OP research presents a compelling ratio-
nale rooted in the complex and dynamic nature of bone biology [8,9]. Traditional methods
often fail to capture the intricate molecular mechanisms underlying bone metabolism and
homeostasis, limiting our understanding of disease pathogenesis and hindering the de-
velopment of effective diagnostic markers and therapeutic targets. Proteomics, with its
ability to comprehensively analyze the entire repertoire of proteins expressed in a biolog-
ical system, offers unprecedented insights into the intricate protein networks governing
bone health [10]. By elucidating the proteomic landscape of OP, researchers can identify
potential biomarkers for early disease detection, unravel novel pathways implicated in
bone remodeling, and pinpoint therapeutic targets for precision medicine interventions.
Furthermore, proteomic technologies enable the exploration of post-translational modifica-
tions (PTMs) and protein–protein interactions, providing a deeper understanding of the
molecular events driving disease [11–14]. This review will delineate the rationale for lever-
aging proteomic approaches in OP research, highlighting their potential to revolutionize
diagnosis, prognosis, and treatment strategies for this debilitating disease.

2. Proteomic Technologies in Osteoporosis Research

In recent years, proteomic technologies have emerged as powerful tools for unraveling
the complexities of OP. We delve into a diverse array of proteomic methodologies, includ-
ing mass spectrometry (MS)-based approaches, gel-based and gel-free techniques, and
the integration of bioinformatics tools for data analysis and interpretation, as illustrated
in Figure 1. By elucidating the bone proteome and uncovering molecular mechanisms
underlying OP, proteomic studies hold great promise for revolutionizing the diagnosis,
treatment, and management of this prevalent skeletal disease.
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Figure 1. Summary view of proteomic analysis and application in osteoporosis. Proteomic analysis
involves the comprehensive study of proteins expressed by cells, tissues, or biofluids, providing
insights into their structure, function, and interactions. In the context of osteoporosis, proteomic
techniques like mass spectrometry and protein microarrays systematically identify and characterize
proteins associated with bone metabolism and homeostasis. By comparing protein expression patterns
between healthy and osteoporosis patients, researchers can pinpoint biomarkers indicative of disease
progression or treatment response.

2.1. Mass Spectrometry-Based Proteomics

Mass spectrometry (MS) has emerged as a powerful tool in OP research, enabling
comprehensive analysis of the bone proteome. MS-based proteomics facilitates the identi-
fication and quantification of proteins involved in bone metabolism, providing valuable
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insights into disease mechanisms and potential therapeutic targets. For instance, liquid
chromatography–tandem mass spectrometry (LC-MS/MS) allows for the identification of
hundreds of proteins in bone tissues and biofluids, uncovering novel biomarkers associated
with OP pathogenesis [15–17]. Moreover, targeted MS techniques, such as selected reaction
monitoring (SRM) and parallel reaction monitoring (PRM), enable precise quantification of
specific proteins of interest, offering opportunities for biomarker validation and person-
alized medicine approaches in OP research [18–20]. MS-based proteomics also facilitates
the characterization of post-translational modifications (PTMs) in bone proteins, providing
insights into their functional roles and regulatory mechanisms in OP [21–23]. Overall,
MS-based proteomics hold great promise for advancing our understanding of osteoporosis
and identifying diagnostic markers and therapeutic targets for the disease.

2.2. Gel-Based and Gel-Free Proteomic Techniques

Gel-based and gel-free proteomic techniques complement MS-based approaches by
enabling protein separation, enrichment, and analysis [24–27]. Bone metabolism is balanced
by bone-forming osteoblasts and bone-resorbing osteoclasts. Gel-based and gel-free pro-
teomic approaches help enhance our comprehension of post-genomic mechanisms under-
lying bone metabolic dysfunctions in OP [28–31]. Researchers using two-dimensional gel
electrophoresis (2-DE) and isotope-coded affinity tags (ICAT) analysis identified 23 spots in
2-DE and 19 proteins in ICAT, which were expressed differently during osteoclast differen-
tiation. These two methods gave us closely related but different information about proteins,
suggesting they are complementary or at least supplementary methods [32]. Additionally,
gel-free techniques such as shotgun proteomics and label-free quantification methods offer
high-throughput analysis of complex protein mixtures, expanding the coverage of the
bone proteome [33–35]. These techniques enable the discovery of novel biomarkers and
signaling pathways associated with OP pathogenesis, enhancing our understanding of
disease mechanisms. Furthermore, gel-based and gel-free proteomic approaches provide
complementary information on protein abundance, PTMs, and protein–protein interac-
tions, contributing to a comprehensive characterization of the bone proteome in health
and disease.

2.3. Bioinformatics Tools for Proteomic Data Analysis and Interpretation

The vast amount of data generated from proteomic experiments requires sophisticated
bioinformatics tools for data processing, analysis, and interpretation. Bioinformatics plat-
forms offer solutions for protein identification, quantification, functional annotation, and
pathway analysis, facilitating the extraction of meaningful insights from complex proteomic
datasets. Database search algorithms, including Mascot [36,37], SEQUEST [38,39], and
MaxQuant [40,41], are commonly used for peptide identification, while label-free or stable
isotope labeling-based quantification methods rely on bioinformatics tools for accurate
protein quantification. Moreover, bioinformatics tools enable the functional annotation
and pathway analysis of identified proteins, shedding light on the biological processes
perturbed in OP. Gene Ontology (GO) [42,43] analysis categorizes proteins based on their
biological process (BP), molecular function (MF), and cellular component (CC), while path-
way analysis tools such as Kyoto Encyclopedia of Genes and Genomes (KEGG) [44,45]
and Reactome [46,47] elucidate the interconnected signaling pathways dysregulated in OP.
Ingenuity Pathway Analysis (IPA) [48,49], STRING [50,51], and the Database for Annota-
tion, Visualization and Integrated Discovery (DAVID) [52] provide functional annotation
and enrichment analysis, revealing biological pathways and protein–protein interaction
(PPI) networks associated with OP pathogenesis. Integrating bioinformatics tools with pro-
teomic technologies enhances the discovery of diagnostic markers and therapeutic targets
for osteoporosis, facilitating translational research efforts aimed at improving patient care.
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3. Proteomic Insights into Bone Metabolism
3.1. Identification of Key Proteins Involved in Bone Formation and Resorption

Proteomic approaches have greatly facilitated the identification and characterization
of key proteins involved in bone formation and resorption, which are critical processes in
maintaining bone homeostasis. Various studies have utilized MS-based proteomic tech-
niques to analyze bone tissues, cell cultures, and biofluids to identify proteins associated
with osteoblastogenesis, osteoclastogenesis, and bone remodeling pathways. For instance,
in a study exploring the proteins bound to the osteocalcin OSE2 sequence of the mouse
osteocalcin promoter, TRPS1 was identified as a crucial regulator of osteocalcin transcrip-
tion [53]. Human mesenchymal stem cells from bone marrow (BM-hMSCs) are widely
recognized as ideal candidates for bone tissue engineering. Proteomic analysis revealed
that extracellular calcium ions (Ca2+) notably enhanced the proliferation of BM-hMSCs.
Furthermore, it suggested that the MAPK signaling pathway might be involved in the
Ca2+-induced osteogenic differentiation of BM-hMSCs [54]. Estrogen is known to play a
significant role in inhibiting osteoclast differentiation and protecting against osteoporosis-
related bone loss, particularly in postmenopausal women. A proteomic analysis elucidated
estrogen’s inhibitory effect on osteoclasts, highlighting its role in promoting apoptosis,
suppressing differentiation, and preventing the polarization of osteoclasts [55]. The pro-
teomic profile of osteoclast membrane proteins identified Nhedc2 as a key player in proton
transport within osteoclasts, thereby regulating their function [56]. Similarly, a proteomic
analysis of serum-derived exosomes from individuals with neurofibromatosis type 1 con-
genital tibial pseudarthrosis demonstrated their detrimental impact on bone by promoting
osteoclastogenesis and inhibiting osteoblastogenesis [57]. Additionally, a proteomic investi-
gation identified LBP and CD14 as pivotal proteins involved in interactions between blood
and biphasic calcium phosphate microparticles [58]. These proteomic insights provide
valuable knowledge of the molecular mechanisms underlying bone metabolism, offering
potential targets for therapeutic interventions in OP [59–62].

3.2. Quantitative Proteomics in Assessing Dynamic Changes in Bone Proteome

Quantitative proteomic techniques have emerged as powerful tools for assessing
dynamic changes in the bone proteome under physiological and pathological conditions.
Stable isotope labeling-based methods, such as tandem mass tag (TMT) [63,64] and isobaric
tags for the relative and absolute quantitation (iTRAQ) [65], allow for the simultaneous
quantification of thousands of proteins across multiple samples, enabling the comprehen-
sive analysis of bone proteome alterations [66–68]. Several quantitative proteomic studies
have investigated changes in protein expression profiles during bone development, aging,
and osteoporosis progression [18,59,69]. Recently, a novel mass spectrometric workflow
has been introduced to explore the bone proteome, offering deep coverage and quantifica-
tion strategies. This approach unveils key components like extracellular matrix proteins,
bone-specific proteins, and signaling molecules while also identifying post-translational
modifications and senescence factors relevant to age-related bone diseases [70]. Moreover,
quantitative proteomic analyses have been instrumental in elucidating the effects of thera-
peutic interventions, such as bisphosphonate treatment, on the bone proteome, providing
insights into their mechanisms of action and potential side effects [71].

3.3. Proteomic Studies on the Bone Extracellular Matrix

Extracellular matrix (ECM) dynamics represent an emerging yet understudied hall-
mark of aging and longevity [72]. The bone ECM encompasses mineral deposits on exten-
sively crosslinked collagen fibrils alongside numerous non-collagenous proteins. Many of
these proteins are pivotal in governing bone formation and regeneration through signaling
pathways, contributing crucial regulatory and structural functions [73]. Proteomic studies
focusing on the bone ECM have shed light on the composition, organization, and remodel-
ing dynamics of this essential structural component. The bone ECM provides a dynamic
scaffold for bone cells and plays a crucial role in regulating bone architecture, mineral-
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ization, and mechanical properties. Proteomic analyses of the bone ECM have identified
numerous ECM-associated proteins, including collagens [74,75], proteoglycans [76,77],
glycoproteins [76,78], and matricellular proteins [79], which contribute to ECM integrity
and function. For instance, studies have identified collagen isoforms and post-translational
modifications that influence bone matrix assembly and mineralization [80,81]. Additionally,
proteomic analyses have revealed ECM proteins involved in cell–ECM interactions and sig-
naling pathways, such as integrins and focal adhesion kinases, which play pivotal roles in
regulating osteoblast and osteoclast behavior [82–86]. Understanding the composition and
regulation of the bone ECM through proteomic approaches provides valuable insights into
the pathogenesis of osteoporosis and offers potential targets for ECM-targeted therapies to
enhance bone strength and integrity.

3.4. Advancements in Proteomics Related to Rare Bone Diseases

In research on musculoskeletal health in children and adolescents, proteomic and
transcriptomic studies have identified the skeletal muscle “secretoma,” consisting of sev-
eral myokines with endocrine and paracrine functions [87]. Additionally, these studies
offer a comprehensive overview of the pathobiology of fibrodysplasia ossificans progres-
siva (FOP), highlighting advances in molecular genetics and proteomic research [88,89].
Furthermore, proteomic analysis has been instrumental in identifying predictive plasma
biomarkers, such as ceruloplasmin and immunoglobulins, for metastatic Ewing’s sarcoma
in children [90]. Moreover, label-free quantitative proteomics analysis of fluconazole-treated
Dental Pulp Mesenchymal Stem/stromal cells from CA-II-deficient osteopetrosis patients
has revealed potential treatment avenues for osteopetrosis by identifying differentially
expressed proteins, including ATP1A2, CPOX, Ap2 alpha, RAP1B, and members of the
RAB protein family [91]. These above findings underscore the pivotal role of proteomic
analysis in elucidating molecular mechanisms and identifying therapeutic targets for rare
bone diseases.

4. Diagnostic Markers in Osteoporosis
4.1. Blood and Urinary Biomarkers

Blood and urinary biomarkers are pivotal in diagnosing osteoporosis, offering valu-
able insights into bone turnover and fracture risk prediction. These biomarkers encompass
molecules associated with both bone formation, such as osteocalcin (OC) and bone alkaline
phosphatase (BALP), and bone resorption, including C-terminal telopeptide of type I colla-
gen (CTx) and N-terminal telopeptide of type I collagen (NTx). Elevated levels of these
biomarkers in serum and urine have been consistently correlated with heightened fracture
risk and bone loss in individuals with osteoporosis [92–94]. Additionally, assessing the ratio
of bone resorption to formation markers, such as the osteoprotegerin/receptor activator
of nuclear factor kappa-B ligand (OPG/RANKL) ratio, provides further valuable infor-
mation regarding bone metabolism status and fracture risk [95,96]. This comprehensive
analysis of blood and urinary biomarkers serves as a critical component in the multifaceted
approach to diagnosing and managing OP, enabling clinicians to better understand disease
progression and tailor treatment strategies effectively. Furthermore, this compilation holds
significant importance as it consolidates the advancements in proteomic technology ap-
plied to OP biomarker research. Proteomic approaches offer the potential to identify novel
diagnostic markers and proteomic signatures for the early detection of OP. By analyzing
the protein expression profiles in serum, urine, and bone tissues, proteomic studies have
identified candidate biomarkers associated with OP pathogenesis and fracture risk. Inte-
grating proteomic signatures with traditional diagnostic markers may improve the accuracy
and sensitivity of OP diagnosis, enabling early intervention and prevention strategies. By
summarizing recent findings in Table 1, researchers and clinicians gain valuable insights
into the evolving landscape of diagnostic and prognostic markers for OP. This synthesis
facilitates a deeper understanding of the molecular mechanisms underlying bone turnover
and fracture risk, paving the way for more precise diagnostic approaches and targeted
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therapeutic interventions. Additionally, it underscores the potential for proteomic technol-
ogy to unravel novel biomarkers that may enhance early detection, risk stratification, and
personalized management strategies for individuals at risk of OP-related complications.

Table 1. Summary of proteomic studies identifying biomarkers for osteoporosis.

Biomarkers Sample Type Proteomic Technology Summary Refs

MYH14, IGLC1, MEX3B,
and FBLN1 Serum LC-MS

This cohort study identified potential protein
biomarkers associated with osteopenia (ON)
and OP using LC-MS proteomics. Notably,
MYH14, IGLC1, MEX3B, and FBLN1 were

highlighted as key markers showing
dysregulation in low BMD progression, with a
focus on inflammatory pathways such as TNF,

TLR4, and IFNG.

[97]

Lysozyme C, Glucosidase,
Disulfide Isomerase A5 Plasma LC–MS/MS, PRM

The expression of protein Lysozyme C was
negatively related to BMD, while the

expression of Glucosidase and Disulfide
Isomerase A5 was positively related to

BMD values.

[19]

Sox2, Oct3/4, Nanog,
and E-cadherin

Blood-derived stem
cells (BDSCs) Proteome Profiler Array

Embryonic markers Sox2, Oct3/4, Nanog, and
E-cadherin, which showed decreased

expression during osteoblastic differentiation
induced by rapamycin under

microgravity conditions.

[98]

ABI1
Peripheral blood

monocytes
(PBMs), plasma

LC-MS/MS, Western
Blotting (WB), ELISA

ABI1 was significantly down-regulated in PBM
in Chinese elderly men with extremely low vs.
high BMD, as well as in osteoporotic fracture
(OF) patients vs. non-fractured (NF) subjects;

the plasma ABI1 protein has superior
performance in discriminating osteopenia and

healthy subjects.

[99]

17 proteins Serum exosomes LC–MS

A total of 188, 224, and 185 proteins were
identified in the normal, ON, and OP groups,

respectively. There were 17 proteins
significantly dysregulated in the ON and

OP groups.

[34]

CHD1, PNP Serum 4-D label-free proteomics,
ELISA

Serum-level CHD1 and PNP have the potential
power as effective indicators for the diagnosis

of postmenopausal osteoporosis (PMOP)
[100]

Ubiquitylomes Whole blood
high-performance liquid
chromatography (HPLC),

LC-MS/MS

This study identified differential ubiquitination
patterns in whole blood between healthy

postmenopausal women and PMOP patients,
revealing potential biomarkers associated with
PMOP. Key findings include dysregulation in

ubiquitin-conjugating enzyme activity,
enrichment in pathways such as

ubiquitin-mediated proteolysis, and
identification of potential diagnostic targets in

whole blood.

[101]

An 18-peptide
multidimensional OP

urinary proteomic
profile biomarker

Urine capillary electrophoresis
coupled with MS (CE-MS)

This study developed and validated an
18-peptide multidimensional urinary

proteomic profile (OSTEO18) biomarker for
osteoporosis in heart transplant recipients,

showing promising diagnostic performance
with improved accuracy compared to known

risk factors.

[102]

VDBP Serum 2-D gel
electrophoresis, ELISA

This study identified 27 spots of interest when
comparing low BMD versus normal BMD
postmenopausal women, and low serum
vitamin D-binding protein (VDBP) levels

correlate with low BMD.

[103]
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Table 1. Cont.

Biomarkers Sample Type Proteomic Technology Summary Refs

PSMB9, AARS, PCBP2,
and VSIR Plasma exosome LC-nano-MS/MS, PRM

This study identified 45 differentially expressed
proteins, and 4 of them (PSMB9, AARS, PCBP2,
and VSIR) associated with osteoporosis were

further verified.

[18]

Fibrinogen, vitronectin,
clusterin, coagulation

factors, and
apolipoprotein

Extracellular
vesicles (EVs) nano-HPLC-ESI-MS/MS

The proteomic comparison between osteopenic
and healthy controls EVs evidenced a decrease
in fibrinogen, vitronectin, and clusterin and an

increase in coagulation factors and
apolipoprotein, which was also upregulated in

OP EVs.

[104]

IL-6, LT-α, FLT3LG, CSF1,
and CCL7 Serum Target 48 Cytokine Panel

This observational study identified several
serum cytokines, including Interleukin 6 (IL-6),

Lymphotoxin-alpha (LT-α), Fms-related
tyrosine kinase 3 ligand (FLT3LG), Colony

stimulating factor 1 (CSF1), and Chemokine
(C-C motif) ligand 7 (CCL7), as potential

markers associated with hip fracture status in
older adults.

[105]

PKM2 PBMs LC-MS/MS
This study discovered 59 DEPs and validated

the significant upregulation of pyruvate kinase
isozyme 2 (PKM2) with OP.

[106]

ITIH4 Serum Protein chip SELDI
TOF-MS

This study identified specific serum protein
peaks, notably fragments of

interalpha-trypsin-inhibitor heavy chain H4
precursor (ITIH4), as potential biomarkers for

discriminating between postmenopausal
women with high or low/normal

bone turnover.

[107]

AMFR Plasma Protein microarray, WB

Decreased levels of autocrine motility factor
receptor (AMFR) were identified and validated

in the blood plasma of female
osteoporosis patients.

[108]

SOD, A1AT Urine (Rats) 2-D gel, MS spectrometry

This study identified superoxide dismutase
(SOD) as a down-regulated protein and

alpha-1-antitrypsin (A1AT) as an upregulated
protein in the urine of ovariectomized rats.

[109]

20 proteins Serum LC-IMS-MS

This study identified 20 proteins associated
with accelerated BMD loss in older men, with
five proteins also linked to incident hip fracture.
Notable proteins included CD14, SHBG, B2MG,
TIMP1, CO7, CO9, and CFAD, suggesting their
potential as biomarkers for future research in

bone biology and fracture prediction.

[110]

Four proteins Serum
MALDI-TOF MS

combined with WCX
magnetic beads

This study identified four potential serum
protein biomarkers for PMOP, including m/z

peaks at 3167.4, 4071.1, 7771.7, and 8140.5,
using MALDI-TOF MS combined with weak

cationic exchange (WCX) magnetic beads.

[111]

NPM1, APMAP, COX6A1,
and ACP5 Femur (Rats) LC-MS/MS

A total of 47 differentially expressed proteins
(DEPs) were identified in

glucocortocoid-induced osteoporosis (GIOP)
rats. Protein NPM1, APMAP, COX6A1, and

ACP5 showed a close relationship with
pathogenesis of GIOP, which could serve as

potential biomarkers of GIOP.

[112]

CSC1-like protein,
PTPN11, SLC44A1,

and MME

Human bone marrow
stromal cells

(BMSCs)
LFQ nLC-MS/MS

This study identified dysregulated proteins,
including CSC1-like protein, PTPN11,

SLC44A1, and MME, in human bone marrow
stromal cells exposed to
simulated microgravity.

[113]
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Table 1. Cont.

Biomarkers Sample Type Proteomic Technology Summary Refs

12 candidate biomarkers Serum Label-free LC-MS/MS

A panel of 12 candidate biomarkers was
selected, of which 1 DEP (RYR1) was found

upregulated in the osteopenia and OP groups,
8 DEPs (APOA1, SHBG, FETB, MASP1, PTK2B,

KNG1, GSN, and B2M) were upregulated in
OP and 3 DEPs (APOA2, RYR3, and HBD)
were down-regulated in osteopenia or OP.

[114]

IL-7, CXCL-12, CXCL-8 Serum Olink® Target 48
Cytokine Panel

This study identified IL-7 and CXCL-12 as
biomarkers associated with better functional

recovery at three months after discharge, while
CXCL-8 was associated with an increased risk

of readmission in older adults with
hip fractures.

[115]

HSP27 PBMs 4-plex iTRAQ coupled
with LC-MS/MS

Levels of heat shock protein 27 (HSP27) were
elevated in low-BMD conditions in both

premenopausal and postmenopausal women.
[23]

Two proteins Serum MALDI-TOF-MS

This study identified two potential serum
protein markers, with mass-to-charge ratios of
1699 Da and 3038 Da, for screening osteopenia

in postmenopausal women.

[116]

HNP-1 Salivary fluid MALDI TOF MS

Higher concentrations of α-defensin human
neutrophil peptide-1 (HNP-1, a peptide

released by neutrophils) were associated with
lower BMD in postmenopausal women.

[117]

Four proteins Plasma (Rats) ESI-Q-TOF-MS,
ESI-QqLIT-MS

This study identified four plasma proteins,
including mannose-binding lectin-C, major

urinary protein 2, type I collagen alpha 2 chain,
and tetranectin, as significantly elevated in

ovariectomized mice (ovx) compared to sham
mice. Among these proteins, tetranectin

showed a marked upregulation of almost 50
times in the ovx mice.

[20]

GHR, IGFBP2, GDF15,
EGFR, CD14, CXCL12,

MMP12, and ITIH3
Plasma 5 K SomaScan version 4.0

aptamer-based assay

This study identified several circulating
proteins associated with incident hip fractures,

including proteins related to the growth
hormone/insulin growth factor system (GHR
and IGFBP2), as well as GDF15, EGFR, CD14,

CXCL12, MMP12, and ITIH3.

[118]

PINP Plasma or serum (Rats) LC-MS/MS

Circulating PINP levels in rats showed
age-dependent changes, decreased with

prednisolone treatment, and increased with
parathyroid hormone (PTH) treatment,

suggesting its potential as a biomarker for bone
physiology in rat models of osteoporosis.

[119]

22 proteins Serum LC–MS/MS

22 proteins, including PHLD, SAMP, PEDF,
HPTR, APOA1, SHBG, CO6, A2MG, CBPN,

RAIN APOD, and THBG, were found to
significantly correlate with BMD in OP.

[15]

CDH-13 Plasma (Mice) MS

This study identified seven circulating proteins,
including ANTXR2, CDH-13, CD163, COMP,
DKK3, periostin, and secretogranin-1, which

decrease with age in mice. Among these,
CDH-13 was found to inhibit osteoclast

differentiation and delay age-related bone loss
in aged mice.

[120]

Proteomic profiling of
human bone from

different anatomical sites
Bone LC-MS/MS

Results from this study revealed distinct
protein profiles between alveolar bone (AB),

iliac cortical (IC) bone, and iliac spongiosa (IS).
AB exhibited an ECM protein-related

fingerprint, while IS and IC displayed an
immune-related proteome fingerprint.

[121]

Note: in Table 1, those not labeled “Rats” or “Mice” for the sample type are all human specimens.
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4.2. Potential Integration with Imaging Techniques for Comprehensive Diagnosis

The integration of proteomic biomarkers with imaging techniques holds promise
for comprehensive diagnosis and risk assessment of OP. DXA remains the gold standard
for assessing BMD and diagnosing OP; however, it has limitations in predicting fracture
risk and assessing bone quality. Complementary imaging techniques such as quantitative
computed tomography (QCT) [122–125], high-resolution peripheral quantitative computed
tomography (HR-pQCT) [126–128], and magnetic resonance imaging (MRI) [129–131] pro-
vide additional information on bone microarchitecture, volumetric BMD, and bone strength.
By integrating proteomic biomarkers with advanced imaging modalities, clinicians can
obtain a comprehensive evaluation of bone health status, including both structural and
molecular aspects. For instance, the multicenter prospective cohort study developed a
comprehensive fracture risk assessment tool incorporating proteomic, genomic, and clinical
factors with the objective of enhancing fracture prediction accuracy across diverse popula-
tions. By integrating proteomic data from blood samples with imaging techniques, such
as HR-pQCT, the study seeks to improve the diagnosis and management of OP and OF,
ultimately advancing personalized medicine approaches for fracture prevention [132]. This
multidimensional approach may enhance the accuracy of OP diagnosis, risk stratification,
and treatment monitoring, ultimately improving patient outcomes.

5. Therapeutic Targets and Drug Discovery
5.1. Proteomic Identification of Novel Therapeutic Targets

Proteomic approaches play a pivotal role in identifying novel therapeutic targets for OP
by unraveling the intricate molecular mechanisms underlying bone metabolism [15,133,134].
By analyzing the proteomic landscape of bone tissues, cell cultures, and biofluids, re-
searchers can identify dysregulated proteins and pathways associated with OP pathogen-
esis. For instance, a study has identified seven circulating proteins, including ANTXR2,
cadherin-13 (CDH-13), CD163, COMP, DKK3, periostin, and secretogranin-1, which de-
crease with age in mice. Among these, CDH-13 was found to inhibit osteoclast differen-
tiation and delay age-related bone loss in aged mice, suggesting its potential therapeutic
role in preventing osteopenia [120]. Another study illustrated, through proteomic analysis,
that estrogen promotes autophagy in human osteoblasts during differentiation to promote
survival and mineralization by upregulating RAB3 GTPase-activating protein [135,136].
Furthermore, through proteomic techniques and functional validation, ubiquitin C-terminal
hydrolase 1 (UCHL1) was shown to stabilize the transcriptional coactivator with PDZ-
binding motif (TAZ) by deubiquitination, inhibiting osteoclast formation. These findings
collectively highlight UCHL1 as a potential therapeutic target for osteoporosis by modulat-
ing bone remodeling processes [137].

Traditional Chinese medicine (TCM) has demonstrated efficacy in treating human
diseases over more than two millennia, underscoring its enduring value in healthcare.
Proteomic studies serve as powerful tools in elucidating the mechanistic basis of TCM ther-
apies, offering valuable insights into the molecular pathways underlying their therapeutic
effects. In an osteoporosis study, researchers employed proteomic analysis, specifically
iTRAQ technology, to identify potential therapeutic targets associated with deer antler
extract. Through comprehensive serum protein profiling and bioinformatics analysis, they
revealed a complex interaction network involving various proteins and signaling pathways
related to bone formation and remodeling [138]. Another investigation utilized proteomic
analysis to explore the effects of Er-Xian Decoction (EXD) on osteoblastic and osteoclastic
cells. Their findings demonstrated a significant modulation of protein expressions associ-
ated with osteoblastic proliferation, differentiation, and apoptosis, as well as osteoclastic
protein folding and aggregation [139]. Metabolomics combined with proteomics analysis
of the femur provided a comprehensive interpretation of the changes in PMOP under
salidroside treatment [140]. Furthermore, a study investigating the mechanism of action of
Bugu Shengsui Decoction in treating osteoporosis revealed that the decoction promotes
osteogenesis via the PI3K-AKT pathway, highlighting its potential as a therapeutic target
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for osteoporosis [141]. By targeting these dysregulated proteins and pathways, novel thera-
peutic interventions can be developed to restore bone homeostasis and prevent fractures in
osteoporotic patients.

5.2. Evaluation of Proteomic Profiles in Drug Development and Personalized Medicine

Proteomic data serve as valuable resources for evaluating the efficacy and safety of
potential drug candidates in drug development [142,143]. Proteomic data are uniquely
valuable for predicting drug responses and discovering biomarkers since drugs primarily
interact with proteins in target cells rather than with DNA or RNA [144]. By integrating
proteomic analyses with preclinical and clinical studies, researchers can assess the effects
of candidate drugs on the bone proteome and identify molecular mechanisms underlying
their therapeutic actions. For example, studies have identified serum proteome markers
associated with the response to antiosteoporosis drugs, teriparatide and denosumab, in
osteoporosis patients. Proteomic analysis revealed significant changes in protein levels
post-treatment, particularly in pathways related to insulin-like growth factor 1 (IGF-I) and
the innate immune system, suggesting their involvement in drug response [145]. Another
study comprehensively investigated the anti-osteoporotic mechanism of icariin by integrat-
ing proteomics and NMR metabonomics, and the results revealed significant alterations in
proteins and metabolites related to various pathways, including bone remodeling, energy
metabolism, and signaling pathways [146]. Moreover, proteomic analyses can identify
biomarkers of drug response and adverse effects, enabling personalized treatment strate-
gies and improving patient outcomes [147–149]. Integrating proteomic data into the drug
development process enhances the understanding of drug mechanisms, accelerates the
identification of promising candidates, and minimizes the risk of treatment-related compli-
cations. Furthermore, genomic or proteomic profiling can identify patients at high risk of
treatment failure or adverse drug reactions, facilitating early intervention and personalized
monitoring strategies [133,150,151]. Overall, personalized medicine approaches based on
proteomic insights have the potential to revolutionize osteoporosis management by im-
proving treatment efficacy, minimizing side effects, and reducing fracture risk in vulnerable
patient populations.

6. Challenges and Future Directions
6.1. Limitations and Challenges in Proteomic Studies of Osteoporosis

Despite the promise of proteomic technologies in unraveling the complexities of osteo-
porosis, several limitations and challenges hinder their application and interpretation. One
significant challenge is the heterogeneity of bone tissues and the dynamic nature of bone
metabolism, which can introduce variability in proteomic analyses. Sample collection and
processing methods, including sample storage conditions and protein extraction protocols,
may also impact the reproducibility and reliability of proteomic data [152,153]. Moreover,
the complexity of the bone proteome, including the presence of low-abundance proteins
and PTMs, poses analytical challenges for protein identification and quantification [154,155].
Additionally, the standardization of proteomic workflows, data analysis pipelines, and
quality control (QC) measures is essential to ensure the robustness and reproducibility of
proteomic studies in osteoporosis research [156,157].

6.2. Integration of Multi-Omic Data for a Holistic Understanding

To overcome the limitations of proteomic studies and achieve a comprehensive un-
derstanding of osteoporosis, the integration of multi-omic data is imperative. Combining
proteomic data with genomic, transcriptomic, metabolomic, and epigenomic datasets can
provide a holistic view of the molecular mechanisms underlying osteoporosis pathogenesis
and treatment response. The integration of multi-omics data enables the identification
of key regulatory pathways, biomolecular networks, and potential therapeutic targets
that may not be evident from individual omics analyses alone [158–160]. For example,
integrating proteomic and transcriptomic data can elucidate the relationship between gene
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expression and protein abundance, revealing post-transcriptional regulatory mechanisms
in osteoporosis [133,161,162]. Similarly, the integration of proteomic and metabolomic
data can uncover metabolic pathways dysregulated in osteoporosis and identify metabolic
biomarkers associated with disease progression and fracture risk [146]. Overall, the in-
tegration of multi-omics data holds promise for advancing our understanding of osteo-
porosis pathophysiology and facilitating the development of personalized therapeutic
strategies [163,164].

6.3. Future Directions and Potential Impact on Clinical Practice

Looking ahead, several future directions in proteomic research have the potential to
transform clinical practice in osteoporosis management. Firstly, advancements in proteomic
technologies, such as improved instrumentation, sample preparation methods, and data
analysis algorithms, will enhance the sensitivity, specificity, and throughput of proteomic
studies in osteoporosis. Secondly, the development of targeted proteomic assays, including
MRM and PRM, will enable the accurate quantification of specific protein biomarkers in
clinical samples, facilitating their translation into diagnostic tests and therapeutic moni-
toring tools [165–167]. Additionally, the integration of proteomic biomarkers into clinical
decision-making algorithms and risk assessment models may improve the accuracy of
osteoporosis diagnosis, fracture prediction, and treatment selection. Furthermore, we
recognize that various factors, including study design, sample size, patient demographics,
and methodological variances, play crucial roles in influencing the identification and val-
idation of biomarkers in proteomic screening approaches. These elements contribute to
the observed discrepancies in biomarker identification across different studies, as exem-
plified by the case of CDH-13 in the above reference. It is imperative to critically evaluate
these factors to discern the clinical significance of putative biomarkers in OP. Finally, the
implementation of personalized medicine approaches based on proteomic profiling may
enable tailored interventions targeting individual patient needs and disease characteristics,
ultimately improving patient outcomes and reducing the burden of osteoporosis-related
fractures [168,169]. We emphasize the necessity for additional research endeavors aimed at
validating and replicating findings across independent cohorts. Robust study designs and
methodologies are essential for elucidating the true clinical relevance of these biomarkers
in the intricate pathogenesis and management of OP. By addressing these considerations,
we aim to provide a more comprehensive understanding of the potential implications of
our findings in the field of OP research.

7. Conclusions

In summary, proteomic research has emerged as a powerful tool for unraveling the
complex molecular mechanisms underlying osteoporosis, offering valuable insights into dis-
ease pathogenesis and potential therapeutic targets (Figure 1). Through proteomic analyses
of bone tissues, biofluids, and circulating cells, researchers have identified novel diagnostic
markers, therapeutic targets, and molecular pathways implicated in osteoporosis develop-
ment and progression. The identification of key proteins involved in bone metabolism, such
as regulators of osteoblast and osteoclast activity, has provided a deeper understanding of
bone homeostasis and remodeling processes. Moreover, proteomic studies have facilitated
the discovery of potential biomarkers for the early detection of osteoporosis and prediction
of fracture risk, enabling timely intervention and personalized treatment strategies. Despite
the challenges and limitations inherent in proteomic studies, including sample heterogene-
ity and analytical complexity, ongoing advancements in proteomic technologies and data
integration approaches hold promise for furthering our understanding of osteoporosis and
translating proteomic insights into clinical practice.

The transformative potential of proteomic research in osteoporosis extends beyond
diagnosis to encompass therapeutic discovery and personalized medicine approaches. By
identifying dysregulated proteins and pathways associated with osteoporosis pathogenesis,
proteomic studies have unveiled promising therapeutic targets for drug development and
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intervention. The integration of multi-omics data, including genomics, transcriptomics,
and metabolomics, offers a holistic understanding of osteoporosis at the molecular level,
facilitating the development of targeted therapies and personalized treatment regimens.
The translation of proteomic biomarkers into clinical practice has the potential to revolu-
tionize osteoporosis management by improving diagnostic accuracy, guiding treatment
selection, and monitoring treatment response. Ultimately, proteomic insights into osteo-
porosis promise to advance patient care, reduce the burden of osteoporotic fractures, and
enhance the quality of life for individuals affected by this debilitating disease.
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