
Citation: Yang, W.; Ao, M.; Sun, J.;

Wang, G.; Li, Y.; Li, C.; Shao, Z.

Adaptive Parallel Scheduling Scheme

for Smart Contract. Mathematics 2024,

12, 1347. https://doi.org/10.3390/

math12091347

Academic Editor: Antanas Cenys

Received: 24 March 2024

Revised: 24 April 2024

Accepted: 25 April 2024

Published: 29 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Adaptive Parallel Scheduling Scheme for Smart Contract
Wenjin Yang 1,2, Meng Ao 2, Jing Sun 3, Guoan Wang 1, Yongxuan Li 1, Chunhai Li 4,* and Zhuguang Shao 2,*

1 School of Cyberspace Science & Technology, Beijing Institute of Technology, Beijing 100081, China;
wenjinyang@bit.edu.cn (W.Y.); dylanwang@bit.edu.cn (G.W.); liyongxuan@bit.edu.cn (Y.L.)

2 Tencent Inc., Shenzhen 518055, China; mengao@tencent.com
3 School of Computer Science, University of Auckland, Auckland 1023, New Zealand; jing.sun@auckland.ac.nz
4 Guangxi Engineering Research Center of Industrial Internet Security and Blockchain,

Guilin University of Electronic Technology, Guilin 541004, China
* Correspondence: chunhaili@guet.edu.cn (C.L.); leonzgshao@tencent.com (Z.S.)

Abstract: With the increasing demand for decentralized systems and the widespread usage of
blockchain, low throughput and high latency have become the biggest stumbling blocks in the
development of blockchain systems. This problem seriously hinders the expansion of blockchain and
its application in production. Most existing smart contract scheduling solutions use static feature
analysis to prevent contract conflicts during parallel execution. However, the conflicts between
transactions are complex; static feature analysis is not accurate enough. In this paper, we first build
the dependency between smart contracts by analyzing the features. After numerous experiments,
we propose a conflict model to adjust the relationship between threads and conflict to achieve high
throughput and low latency. Based on these works, we propose adaptive parallel scheduling for
smart contracts on the blockchain. Our adaptive parallel scheduling can distinguish conflicts between
smart contracts and dynamically adjust the execution strategy of smart contracts based on the conflict
factors we define. We implement our scheme on ChainMaker, one of the most popular open-source
permissioned blockchains, and build experiments to verify our solution. Regarding latency, our
solution demonstrates remarkable efficiency compared with the fully parallel scheme, particularly in
high-conflict transaction scenarios, where our solution achieves latency levels just one-twentieth of
the fully parallel scheme. Regarding throughput, our solution significantly outperforms the fully
parallel scheme, achieving 30 times higher throughput in high-conflict transaction scenarios. These
results highlight the superior performance and effectiveness of our solution in addressing latency
and throughput challenges, particularly in environments with high transaction conflicts.

Keywords: parallel scheduling; smart contract; blockchain

MSC: 68M14

1. Introduction

The rapid advancement of blockchain technology has led to an increasing number of
individuals preferring to construct their projects on this decentralized system [1]. The way
of creating services on the blockchain involves the usage of smart contracts. The concept of
smart contract was first proposed by Nick Szabo [2] in the early 1990s. A smart contract is
a self-executing contract with the terms of the agreement between buyer and seller being
directly written into lines of code. The code and the protocols contained are deployed onto
the blockchain.

It is also essential to mention that blockchain technology still faces numerous challenges.
One of the most critical issues is its low performance and latency [3]. The widespread
utilization of blockchain (such as non-fungible token NFT [4] and cryptocurrency [5]) has
resulted in the deployment and numerous invocations of smart contracts on this decentralized
platform. This high demand has exacerbated the situation, causing blockchain systems to

Mathematics 2024, 12, 1347. https://doi.org/10.3390/math12091347 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12091347
https://doi.org/10.3390/math12091347
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math12091347
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12091347?type=check_update&version=1


Mathematics 2024, 12, 1347 2 of 17

become slower and more burdensome. Consequently, the low performance and the high
latency of smart contracts may scarcely enhance the transaction processing speed on the
blockchain and limit the scope of its implementation.

Throughput and latency reflect the number of transactions a block can contain and
the time it takes for a block to be finalized, which heavily depends on the consensus
and smart contract execution strategy applied. Many high-performance schemes, such as
DumboBFT [6], Phantasm [7], and HCA [8,9], aim to expand the throughput and reduce
the finalization time via consensus mechanisms. Although these consensus algorithms
greatly improve the throughput and latency of a blockchain system, conflicts between
smart contracts and the transaction re-execution still impact performance, especially with
the deployment of numerous smart contracts. To address the issue of smart contract
execution, scholars have proposed various creative schemes. Dickerson et al. [10] proposed
a new method for miners and validators for executing smart contracts in parallel based
on software transactional memory technology. Singh et al. [11] proposed a technique
for executing smart contract transactions concurrently. Yu et al. [12] proposed a parallel
smart contract model, which improves performance through multi-thread processing of
the smart contracts that have no shared variables. Bartoletti et al. [13] proposed a static
approximation of swappability based on a static analysis of the sets of keys read/written by
transactions. Most proposed methods use static analysis to find the conflict between smart
contracts. It is challenging when dynamic cross-contract invocations occur. Moreover, there
is randomness and complexity in the process of cross-contract calls, and the results of static
analysis may lead to high rollback rates and low parallelism in actual scenarios. Facing
these challenges, after researching related work, we propose three research questions that
we focus on.

RQ1 How to solve cross-contracts calling conflicts in parallel execution? During parallel
execution, conflicts can easily occur due to cross-contract calls, necessitating the re-
execution of conflicting transactions, which can lower overall efficiency or even result
in worse performance than serial execution. Simply employing parallel execution is
not sufficient, and adjustments to the execution process are necessary.

RQ2 How to dynamically adjust the scheduling of smart contracts to achieve parallel
execution? Static analysis of smart contracts is challenging when dynamic cross-
contract invocations occur since the contract access patterns are not predictable [14].
The conflict between transactions is complex, and static analysis from smart contracts
is not enough. The execution strategy based on static analysis and dynamically
adjusted during execution is the most efficient solution.

RQ3 How to improve the implementation of parallel scheduling to achieve efficient
usage of space and time? When implementing parallel scheduling in permissioned
blockchains like ChainMaker, we have found it necessary to optimize the data struc-
ture for efficiency. It is crucial to consider how to better implement this technology in
engineering practice.

To answer these research questions, in this paper, we propose adaptive parallel schedul-
ing for smart contracts. Our scheme analyzes the characteristics of smart contracts in fields
and the setting of smart contracts on ChainMaker to build a contract dependency based on
the characteristics in an actual deployment. During the actual execution of transactions,
moreover, regarding conflicts between transactions and the number of parallel threads,
we propose a conflict model that can be used in adaptive execution. What is more, we
propose a conflict factor as an indicator to describe the degree of conflict between contracts.
During the transaction process, we adaptively update the conflict factors and classify strong
conflict contracts and weak conflict contracts by a conflict threshold. For strong conflict con-
tracts, we use serial execution. For weak conflict contracts, we still use parallel execution.
According to this, we build and update the transaction DAG and execute the transactions.
After the execution, we build the transaction execution processing to update the execution



Mathematics 2024, 12, 1347 3 of 17

strategy. In the experiment, we proposed two indicators, transaction parallelism score and
transaction parallelism rate, to build a more detailed evaluation of transaction parallelism.
What is more, we use bitmap, which is more efficient in both space and time to optimize
our schemes in the experiment. We implement our scheme on ChainMaker [15], and the
results show that our scheme meets our expectations.

This paper makes the following contributions.

• Smart contract dependency DAG from static analysis. By analyzing the relationship
of the field characteristics of smart contracts, we build the contract dependency by
constructing a contract dependency DAG.

• Conflict model from numerous experiments. We build a conflict model that describes
the relationship between the conflicts of transactions and the number of parallel
threads during the actual execution of transactions. Through a large number of experi-
ments, we construct the distribution of the number of threads when TPS is optimal.

• Dynamically parallel scheduling. We propose an adaptive smart parallel schedul-
ing that adapts the conflict factors and dynamically adjusts the serial and parallel
scheduling of contracts based on conflict factors.

• Technical optimization in actual implementation. We use a bitmap to improve the
usage of space and time, and we implement this scheme on ChainMaker and obtain
the expected results.

This paper is outlined as follows: In Section 2, we review the backgrounds of the
blockchain, smart contracts, and previous related works. In Section 3, we define some
indicators and structs we use. In Section 4, we introduce our scheme in detail. In Section 5,
we implement our scheme on ChainMaker and analyze the results. In Section 6, we give a
conclusion about this paper.

2. Related Work

The throughput rate of the blockchain is mainly subject to the following two aspects:
one is the execution of the consensus mechanism, and another is the execution of smart
contracts. The improvement of the consensus mechanism increases the throughput rate
of the blockchain, like DumboBFT [6], Phantasm [7], and HCA [8,9]. However, with the
continuous enrichment of smart contract content and the increasing number of transactions
calling smart contracts, only using a better consensus mechanism is not enough. The
execution of a transaction is generally the most time-consuming phase of the entire block-
processing workflow. Therefore, the execution of smart contracts is becoming another
key bottleneck [16], especially the mechanism of the serial execution of smart contract
transactions, which greatly limits the throughput rate of the blockchain system.

Inspired by the scheme of the database system, most of the existing solutions on paral-
lel scheduling in smart contracts apply a directed acyclic graph (DAG) [17] to blockchain to
avoid the conflict of competitive transactions.

Dickerson et al. [10] proposed that nodes need to classify smart contracts into those
that can be processed in parallel and those that can only perform serial computation by
using the software transaction memory method. In particular, miners execute transactions
in one block in parallel, using abstract locks and inverse logs to dynamically discover
conflicts and to recover from inconsistent states.

Singh et al. [11] proposed a technique to execute smart contract transactions concur-
rently. The scheme is achieved by employing optimistic software transactional memory
systems (STMs), primarily utilized by miners. In their scheme, a miner constructs a block
comprising a set of transactions, a conflict graph, the hash of the previous block, and the
final state of each shared data object. Furthermore, the study introduces a concurrent
validator that is designed to re-execute the same smart contracts in the same manner
in parallel.

Yu et al. [12] proposed a parallel smart contract model. This scheme uses multi-
thread technology to implement the proposed model, where transactions are executed in
parallel. Then they proposed a transaction splitting algorithm to resolve the synchronization



Mathematics 2024, 12, 1347 4 of 17

problem. Their scheme still has many problems to be solved. They do not have a functional
way to obtain shared variables in each transaction. Not all smart contracts with shared
variables will conflict when called by transactions. Only judging the conflicts between
smart contracts by shared variables is not accurate.

Bartoletti et al. [13] proposed a static approximation of swappability based on a static
analysis of the sets of keys read/written by transactions. Then they put forth a strategy
for miners to execute multiple smart contracts concurrently. Their technique involves
employing parallel computation once the node has calculated the order in which the smart
contracts will be executed beforehand.

Jin et al. [18] proposed a two-phase concurrency control protocol to optimize both
phases. The primary executes transactions in parallel and generates a transaction depen-
dency graph with high parallelism for validators. Then, a graph partition algorithm is
devised to divide the original graph into several sub-graphs to preserve parallelism and
reduce communication costs.

Piduguralla et al. [19] implemented a directed acyclic graph (DAG)-based parallel
scheduler framework in Hyperledger Sawtooth V1.2.6 for the parallel execution of smart
contract transactions. This framework represents transaction dependencies in blocks
through a parallel DAG data structure, which helps in throughput optimization.

Relevant prior works are based on preset conditions and assumptions to execute the
smart contracts in parallel. Static analysis lacks flexibility, and over time, static analysis
approaches may require periodic updates to adapt to new conditions and data. Facing this
problem, we use an adaptive smart contract model to dynamically adjust the serial and
parallel scheduling of contracts in our scheme. By deploying and conducting experimental
verification on ChainMaker v3.0.0, our scheme can effectively improve the parallelism of
transaction execution and has performance advantages in throughput and latency.

3. Preliminaries

In this section, we briefly introduce the current blockchain and the key feature field
of smart contracts. Namespace, the key field in the setting of smart contracts, can be used
to find conflicts between smart contracts. What is more, we introduce the read–write set,
which is the most important indicator to verify the execution results of the contract.

3.1. Blockchain and Smart Contracts

Blockchain technology, characterized by its decentralized nature, has significantly
enhanced the functionality and applications of smart contracts. Blockchain can be mainly
divided into two types: permissionless blockchain and permissioned blockchain [20]. A
permissionless blockchain is a type of blockchain that allows anyone to participate in the
network without requiring explicit permission or approval from a central authority. A
permissioned blockchain is a type of blockchain where access to the network is restricted
and controlled by a central authority or a consortium of entities. Unlike permission-
less blockchains, where anyone can participate in the consensus process, permissioned
blockchains require potential participants to obtain permission to join the network. This
can include the ability to read, submit transactions, or participate in the consensus process.

Smart contracts are self-executing contracts with the terms of the agreement directly
written into lines of code. They operate on blockchain platforms, ensuring a high level of
security and trust in the digital environment. Smart contracts run on blockchain technology,
which ensures they are immutable and distributed, meaning once deployed, they cannot
be altered and are accessible to all parties involved. There are many feature fields of smart
contracts. We introduce the two most important fields: namespace and read–write set.

3.2. Namespace

In a blockchain system, each contract typically sets its own namespace, which serves
as a basis for distinguishing the data stored in the current contract from that of other
contracts. In practice, the contract name is often used as the namespace, so we can regard



Mathematics 2024, 12, 1347 5 of 17

the namespace as a way to distinguish smart contracts. In a key-value-based blockchain
storage system, the NameSpace is often used as a prefix for the key, ensuring that the keys
of different contracts do not interfere with each other during actual storage.

As Figure 1 shows, there are two smart contracts on chain1 named ‘Save’ and ‘Transfer’.
The storage namespaces of these two contracts are ‘/chain1/Save/’ and ‘/chain1/Transfer’.

chain1

Save Contract

Tranfer Contract

Store Key
Save Contract
(/chain1/Save/)

Tranfer Contract
(/chain1/Transfer)

Figure 1. Smart contract and storage namespace.

3.3. Read–Write Set

The read–write set of contracts refers to the set of read-and-write data generated
during the execution of a contract, which is abbreviated as RWSet. The structure of the
read–write set is shown in Figure 2.

Figure 2. The structure of the read–write set.

In contract operations, each time data are read from the ledger, a read set (ReadSet) is
generated. When data need to be written to the ledger, a write set (WriteSet) is generated.
ReadWriteSet is closely related to the blockchain ledger storage, and therefore their own
Keys also use the contract NameSpace for isolation, which can mask the interference
between ReadWriteSets of different contracts.

The structure of ReadSet is shown in Figure 3. ReadSet is mainly used to determine
whether there is a data (version) conflict between concurrent transactions after the con-
current execution of contract transactions. If there is a conflict, the dependency between
transactions needs to be reflected in the DAG structure, and the execution order of the
conflicting transactions needs to be adjusted and re-execute the contract.

Figure 3. The structure of ReadSet.



Mathematics 2024, 12, 1347 6 of 17

The structure of WriteSet is shown in Figure 4. After the transaction is executed
normally, if the world state changes, WriteSet will record detailed change records.

Figure 4. The structure of WriteSet.

4. Design

In this section, we first introduce the system model of our scheme. Before proposing
the scheme, we introduce some necessary components, such as DAG-based structs and
conflict factors, that we define. Then we present our scheme and the algorithms we use.

4.1. System Model

We focus on permissioned blockchain systems such as ChainMaker. Our scheme
has six parts: smart contracts, transaction pools, dependency build process, transaction
DAG build process, transaction parallel execution, and transaction execution process.
Figure 5 shows the system model and workflow. First, we build the dependency DAG of
smart contracts based on the relationship between cross-contract calls. Then, we build the
transaction DAG and parallel execute the transactions. After the execution, the execution
processing part checks the executed transactions and processes the conflicts. Based on the
results, we update the dependency DAG and re-execute the conflict transactions.

Smart
Contract Dependency 

Build

H

F

E D

C
B

AG

Parallel Execution

Execution Processing

Dependency DAG

(1) (2)

(3)

(5)

(6)

Tran

Tran

Smart
Contract

Transaction DAG

(3)

 Transaction
DAG Build

(4) (4)

(6)

Figure 5. The system model and workflow of our scheme.

4.2. Components

Before we show our scheme, some necessary components should be introduced first.

4.2.1. Contract Dependency DAG

Contract dependency DAG is denoted as G = (V , E), where V represents a set of
smart contracts and E represents a set of relationships, each of which consists of two smart



Mathematics 2024, 12, 1347 7 of 17

contracts. The relationship means that the contract calls the pointed contract internally.
There is only the unidirectional relationship in the contract dependency DAG; i.e., if
contract A calls contract B (denoted by A → B), then no relationship exists from contract B
to contract A (denoted by B → A).

4.2.2. Transaction DAG

Transaction DAG is denoted as G = (V , E), where V represents a set of transactions
that invoke contracts and E represents a set of orders. From node A to node B (denoted
as A → B), the edge represents that transaction B is executed in series after transaction A
is completed. This edge indicates the serial execution order between transactions A and
B. Like the transaction-dependent DAG graph, each edge of the transaction DAG is also
one-way. All the transactions in the same transaction DAG should be serially executed.

4.2.3. Conflict Factors

The conflict between contracts can be described by the conflict factor, which describes
the probability of conflict between two contracts and has a range of [0, 1].

We will build a sliding window for two contracts. When the transactions of these
contracts conflict, we mark the conflict transaction as 1 and mark the non-conflict transaction
as 0. Then we move the sliding window one position to the left, fill in the last position with
the token, and update the number of conflicts and the conflict factor (Figure 6).

1

Sliding Window
 BitMap

0conflict number: 3

1 1 10 0 0 0 00 0 0 0

conflict factor: 0.25

Figure 6. The sliding window to calculate the conflict factor.

For a smart contract, the conflict factor can be used as a characteristic of the contract’s
interdependence. Contracts with a high conflict factor are defined as strongly dependent
contracts and are processed in a conflicting manner when constructing the transaction
DAG. Contracts with a low conflict factor are defined as weakly dependent contracts and
are processed in a non-conflicting manner when constructing the transaction DAG. Based
on the conflict relationship of contract A in the above figure, the threshold value of the
conflict factor for strongly dependent contracts is set to 0.6.

4.2.4. Transaction Parallelism Score/Rate

Transaction parallelism score describes the degree of parallelism of transactions in
a block.

f (n, m) =

{
n/m (m < n)
0 (m = n)

(1)

In the equation, n represents all the transactions in the block, and m represents the
number of transactions in the longest chain of the transaction DAG. When m = n, all
the transactions in this block should serially execute. For the same number of blocks, the
greater the transaction parallelism, the higher the score.

According to the equation of transaction parallelism score, for two blocks containing
100 transactions and 10 transactions, assuming that all transactions in both blocks are
parallelizable, their transaction parallelism scores are 100 and 10, respectively. However, if
the CPU parallel processing capability is sufficient, their actual execution time requires the
longest execution time for any transaction. In order to determine the parallelism of two
blocks, we propose the transaction parallelism rate.

f ′(n, m) =

{
(n − m)/m (m > 1)
1 (m = 1)

(2)



Mathematics 2024, 12, 1347 8 of 17

When m = 1, all the transactions can parallel execute. If all the transactions in the
block are serial (m = n), then the transaction parallelism rate is 0; that is, no transaction can
parallel execute.

4.3. Conflict Model

During the actual execution of a transaction, regarding conflicts between transactions
and the number of parallel threads, there is usually the following relationship between
them, as shown in Figure 7:

TPS

Number of
threads

f(1/128)

f(1/64)

f(1/32)

f(1/16)

f(1/8)

f(1/4)

f(1/2)
f(1)

f(x): TPS function with actual conflict rate x

TPS optimal thread distribution

Figure 7. Estimated relationship between transaction conflicts and number of threads.

The process is shown in Appendix A. Regarding the above relationship, in summary,
there are two main points:

• Under the low transaction conflict model, the number of threads is proportional to
TPS; that is, in an environment with low transaction conflicts, the higher the number
of threads within a certain range, the better.

• Under the high transaction conflict model, the number of threads is inversely propor-
tional to TPS; that is, in an environment with high transaction conflicts, the lower the
number of threads within a certain range, the better.

The gray area in Figure 7 is the distribution of the number of threads when TPS is
optimal. In practice, this range can be obtained through multiple tests. After obtaining this
range, we can use this range as the rule during an actual transaction execution to determine
the number of threads based on conflict situations.

4.4. Smart Contract Dependency Build

Our scheme builds the smart contract dependency from the relationship between
cross-contract calls. Through careful analysis and demonstration, we propose a set of
conflict contracts that consist of four parts:

• The contract itself;
• The contract’s descendant contracts (child contracts and grandchild contracts, etc.);
• The contract’s parent contracts (parent contracts, grandfather contracts, etc.);
• Other parent contracts of the contract’s descendant contracts.

As you can see in Figure 8, this is an example of smart contract dependency. Taking
contract C as an example, contract C internally invokes contract A and contract B, but since
other contracts also have corresponding operations, the actual conflicting contract set of contract
C is {A, G, B, E, F, H}. That means that only contract D does not conflict with contract C.



Mathematics 2024, 12, 1347 9 of 17

contract Call contract Conflicting contract set Parallel contract set

A - C、F、H、G B、D、E

B - C、F、H、E A、D、G

C A、B A、G、B、E、F、H D

D - E、H A、B、C、F、G

E B、D D、B、C、F、H A、G

F C C、A、G、B、E、H D

G A A、C、F、H B、D、E

H E、F E、D、B、F、C、A、G -

C

A

B

DE

F

G

H

Cross-contract call

Figure 8. Example of smart contract dependency.

The blockchain system needs to load all contracts on the current chain when the chain
starts and initialize the dependencies of all contracts in the memory of the scheduling
module. The details are shown as follows:

First, the blockchain system starts and initializes the scheduling module and con-
tract dependency DAG. Then, the system will obtain the list of smart contracts from
the blockchain.

Second, traverse smart contracts and use the graphs.AddNode function to build. The
process of the AddNode algorithm is shown in Algorithm 1.

Algorithm 1 AddNode

1: ContractNode[] = graph.Contract.DependentContracts
2: Node = {Children: children, Parents: nil, ConfilctNodes: children}
3: if isZero(len(graph.Roots)) then
4: graph.Roots.Init(node)
5: else
6: for child in node.Children do
7: it.ConflictNodes.add(child.ConflictNodes)
8: child.Parents.add(it)
9: if Roots.Exit(child) then

10: Roots.remove(child)
11: end if
12: end for
13: for conflictNode in node.ConflictNodes do
14: conflictNode.ConflictNodes.add(node)
15: end for
16: Roots.add(node)
17: Contracts.update()
18: Conflicts.cache.update()
19: end if

As depicted in Algorithm 1, our proposed method manages the addition of nodes to
adaptively adjust the dependency graph and handle conflicts among contracts. Initially, we
initialize the contract nodes from the graph’s dependent contracts (Line 1). Subsequently,
a new node is created with its children defined, no parents initially and its conflict nodes
set to its children (Line 2). If the graph lacks roots, the newly created node is initialized
as the root (Lines 3–4). We then process each child of the new node by adding the child’s
conflict nodes to the new node’s conflict nodes, adding the new node to the child’s parents,
and removing the child from the roots if it exists there (Lines 6–12). Following this, the
conflict nodes of the new node have the new node added to the conflict nodes (Lines 13–15).
Finally, the new node is added to the roots (Line 16), and the contracts and conflict cache of
the graph are updated (Line 17).



Mathematics 2024, 12, 1347 10 of 17

According to this smart contract dependency, we can build the transaction DAG,
which is important for the parallel scheduling of smart contracts. We will introduce the
steps for building the transaction DAG in the following subsection.

4.5. Transaction DAG Building

The generation of the transaction DAG model in the block depends on the correspond-
ing contract relationships between transactions. There are two key points to building a
transaction DAG model:

1. The transaction DAG construction order depends on the order in which transactions are
packaged in the block. The earlier the order, the more likely it is to be executed first.

2. When each transaction is added to the transaction DAG, it is judged whether it has a
dependency relationship with all previous transactions. If it exists, it is added to the
latest dependent transaction set.

Then we can build the transaction DAG as follows:
First, initialize the transaction DAG. Then traverse the list of transactions and build

the map between the name of the contract and the set of txid. From this map, you can
obtain the set of txid that invoke the contract. According to the map of txid and contract
dependency, we can find all the conflict transactions of one transaction immediately. Then
we can build the list of preorder conflict transactions, that is, the list of transaction IDs that
conflict with it for transaction txId1, among all transactions smaller than it.

While traversing the list of transactions, we can select the transactions of the contracts
that have no conflicts with any contracts and set these transactions as separate root nodes.

When building the transaction DAG, we can simplify the transaction DAG. For exam-
ple, transactions A, B, and C have conflicts A → B, and C is behind and conflicts with A
and B. In this situation, we can only set C behind B and do not need to set C behind A in the
transaction DAG. This process can simplify the transaction DAG and limit the cost of time.

4.6. Transaction Parallel Execution

After building the smart contract dependency and transaction DAG, it is time to exe-
cute the transaction in parallel. Before this, we need to set transactions into the channel that
is used to distribute transactions. The processes responsible for the transaction execution
will receive and process these transactions.

In order to parallel execute the transactions, the node builds and starts a process pool.
Every separate DAG will be executed in one process. This method makes the transactions
that have no conflict parallel executed in different processes. The conflict transactions will
be executed in the same process.

4.7. Transaction Execution Processing

The transaction execution processing algorithm can check the executed transactions
and process the conflicts. If the transaction has a conflict with the read–write set, we should
update the smart contract dependency of this transaction and update the transaction DAG.
After these steps, we need to re-execute the conflict transactions until all the transactions
are successfully executed.

Then we develop the transaction execution processing algorithm. As shown in Algorithm 2,
our proposed scheme can process the results of transactions to adaptively adjust the transaction
DAG and the execution of transactions. First, we initialize the executed transactions and set
the field of transactions as true (Line 2). Then we traverse all the completed transactions in
reverse order (Line 4). If the transaction conflicts with the read–write set, we update the
transaction DAG and mark the field of the transaction as false (Lines 5–7). After judging
the conflict, we update the contract dependency window (Line 9).



Mathematics 2024, 12, 1347 11 of 17

Algorithm 2 ExectionProcessing

1: for transaction.isExecuted() do
2: transaction.isDone = True
3: end for
4: for transaction in DoneTxs do
5: if RWSet.isConflict(transaction) then
6: TransactionDAG.update(transaction)
7: transaction.isDone = False
8: end if
9: ConflictTable.RelationMap[contract1][contract2] = isConflict

10: ConflictFactorWindow.update(contract1,contract2)
11: if globalSlidingWindows.needReCul() then
12: globalSlidingWindows.flag = True
13: end if
14: end for
15: if DoneTxs.isEmpty() then
16: TransactionDAG.prune(transaction)
17: processPool.add(root)
18: DoneTxs.add(transaction)
19: if block.judgeTxs(DoneTxs.length()) and midDAG.isEmpty() then
20: BlockDone()
21: end if
22: else
23: transaction.reSend()
24: end if
25: Algorithm End

When updating the smart contract dependency, we need to use the sliding window to
record the execution results of transactions that invoke the smart contract. In this step, we
add one bit for the sliding window to record. For transactions that are detected as conflicts,
we write ‘1’ in this bit; otherwise, we write ‘0’. Then we calculate the conflict factor of these
two contracts (Line 10). This step is the key point of adaptation in the algorithm.

Then we judge whether the global sliding window meets the conditions for calculating
the conflict rate; if so, we should mark the global sliding window as to be recalculated
(Lines 11–13).

If all the executed transactions are processed, we prune the transaction DAG and the
node (Line 16) and add the new root to the process pool that is used to execute transactions
(Line 17). If the length of the set of ‘DoneTxs’ meets the condition and there are no
transactions to be distributed, we package the block (Line 19–21). If there are transactions
that are not processed, we redistribute these transaction nodes (Line 23). All the algorithm
is ended.

5. Evaluation

In this section, we introduce the experiment of our adaptive parallel scheduling
scheme. Based on the comparative experiment, we evaluate the performance of our
scheme by some evaluation indicators, such as latency and throughput. By analyzing the
experimental data, we demonstrate that our protocol meets expectations and solves the
research questions we proposed in Section 1.

5.1. Experiment Setup

We introduce the basic information about our experiment setup.
Baseline. We compared our scheme with a fully parallel scheduling scheme that can be

recognized as the traditional scheme. In the fully parallel scheduling scheme, the smart contracts
are executed in parallel, and the contracts that have conflicts will be re-executed again.



Mathematics 2024, 12, 1347 12 of 17

TextBed. We deployed two scheduling schemes in Tencent Cloud environments for
our experiments. The compute service instance from Tencent Cloud is equipped with an
AMD EPYC 7K62 48-Core Processor CPU, 16 GB of RAM, and CentOS.

Implements. We implemented our proposed adaptive parallel scheduling scheme
and conducted a comparative analysis of the latency and throughput. ChainMaker is an
open-source library written in Golang that implements an assemblable architecture for
permissioned blockchain [21]. We forked the code of ChainMaker and rewrote the smart
contract scheduling module based on the logic of our scheduling scheme.

Testflow. We built a TestChain with a single node and solo consensus algorithm. Solo
is a test mode of ChainMaker that is used to conduct full-process testing except network
and consensus modules for developers. We conducted six sets of experiments at varying
conflict rates. Each set of experiments was designed with transaction conflict rates set at
0%, 20%, 40%, 60%, 80%, and 100%. In each experimental set, we designated the fully
parallel setting as the control group and our proposed scheme as the experimental group.
Experiments were conducted separately for both the control and experimental groups, with
latency and throughput being recorded for each.

5.2. Evaluation Results

In this experiment, we randomly generate a batch of transactions, and each set of
transactions has a different degree of conflict. Experiments under different transaction
conflict rates can test the adaptability and effectiveness of scheduling solutions in various
situations. We use average latency and throughput that are always used as evaluation
indicators to describe the adaptability and effectiveness of a scheduling scheme. In order
to obtain more accurate experimental data, we set tens of thousands of transactions in
experiments with different transaction conflict rates and recorded valid data to calculate
average experimental results. For average latency, as shown in Figure 9, our scheduling
scheme maintains a relatively stable and fast latency level (around 100 ms). Especially, in a
high transaction conflict rate, our scheme has more than 20 times improvement in latency
compared with the fully parallel scheme. The reason for this result is that, in the case of a
high transaction conflict rate, conflicting transactions in the fully parallel scheme need to
be executed multiple times to ensure the atomicity and non-tamperability of the blockchain
system. Multiple executions lead to higher latency. Our solution can adaptively adjust the
transaction scheduling strategy according to the degree of transaction conflict to produce a
more efficient execution plan.

For throughput, as shown in Figure 10, our solution also has stable and high-level
throughput under different transaction conflict rates. As the transaction conflict rate in-
creases in the experiment, the throughput of the fully parallel scheme decreases significantly,
almost exponentially. Based on the advantages of adaptively adjusting the scheduling
strategy, our scheme can maintain stable and efficient throughput (around 860 TPS) even
when the conflict rate increases.

Final Results. By conducting experiments under the transaction conflict rate, we can
intuitively observe that our solution has greater advantages in both latency and throughput.
From the perspective of latency data, in the case of high transaction conflict rate, our solu-
tion is one-twentieth of the average time consumption of the fully parallel scheme. From the
perspective of throughput data, our scheme is 30 times better than the fully parallel scheme
under the condition of high transaction conflict rate. These data all show that our solution
has more advantages in transaction scheduling based on the following characteristics:

• Smart contract dependency DAG from static analysis;
• Conflict model from numerous experiments;
• Dynamically parallel scheduling;
• Technical optimization in actual implementation.



Mathematics 2024, 12, 1347 13 of 17

0 20 40 60 80 100
Conflict Rate (%)

0

500

1000

1500

2000

2500

Av
er

ag
e 

la
te

nc
y(

m
s)

102.61 88.97

270.06

103.28

698.06

101.56

1417.83

116.2

2201.08

113.14

2781.29

117.89

Comparison of Fully Parallel and Our Scheme at Different Conflict Rates
Fully Parallel
Our Scheme

Figure 9. The latency comparison between fully parallel and our scheme.

0 20 40 60 80 100
Conflict Rate (%)

0

200

400

600

800

1000

1200

TP
S

825.11

945.27

370.049

826.18

142.896

882.67

70.327

848.599

45.144

879.315

35.975

846.904

Comparison of Fully Parallel and Our Scheme at Different Conflict Rates
Fully Parallel
Our Scheme

Figure 10. The throughput comparison between fully parallel and our scheme.

6. Conclusions

We propose an adaptive parallel scheduling scheme for a smart contract. By analyzing
the features of a smart contract and the setting of a smart contract on ChainMaker, we
build the smart contract dependency that can be used as the execution strategy. Then
we propose a conflict model from the actual execution of transactions. Based on the
conflict factor we define, we build the transaction DAG and execute the transactions.
After the execution, we adaptively update the conflict factor and the transaction DAG
to make a better execution strategy. The implementation on ChainMaker shows that our
adaptive parallel scheduling scheme achieves 30 times the throughput of the traditional
fully parallel scheme and one-twentieth of the average latency. Apart from the efficiency
our scheme can achieve, the following are the two additional scientifically significant
features: (i) Adaptability: our scheme merges static analysis and dynamic scheduling to



Mathematics 2024, 12, 1347 14 of 17

achieve adaptability. (ii) Applicability: our scheme can be migrated to other DAG-based
blockchain platforms by adjusting the data structure and implementation interface.

In the future, we will focus on adding artificial intelligence methods to the field
of smart contract transaction scheduling, and use AI to train more adaptive scheduling
strategies. What is more, we will try to add an intermediate layer in the architecture to
achieve cross-platform compatibility.

Author Contributions: Methodology, W.Y.; software, Z.S.; writing—original draft, W.Y.; writing—
review & editing, J.S., C.L. and Z.S.; visualization, G.W. and Y.L.; funding acquisition, M.A. All
authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Key Research and Development Program of China
under Grant No. 2021YFB2701203, National Natural Science Foundation of China (NSFC) under Grant
No. 62172040, and Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing.

Data Availability Statement: The data presented in this study are available in this article.

Conflicts of Interest: The authors declare no conflicts of interest. Authors Meng Ao and Zhuguang
Shao were employed by the company Tencent Inc. The remaining authors declare that the research
was conducted in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest. The Tencent Inc. had no role in the design of the study; in the
collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Appendix A. Experiments of Conflict Model

After a lot of research, we found that before a block is generated to generate a DAG,
the scheduling module will execute all transactions in the block in advance and generate a
transaction read–write set. If transactions are executed serially, there will be no conflicts
between transactions. However, conflicts will occur if executed in parallel. For example,
the same account transfers funds to two other accounts in two transactions. If executed
in parallel, the two transactions will read the same account balance. Assuming that the
transaction conflict rate of a certain block is particularly high, then since most transactions
conflict, the execution efficiency of the scheduling module will be very low. However,
assuming that the transaction conflict rate of a certain block is particularly low, most trans-
actions will not conflicts; then a moderate increase in thread pool capacity will significantly
improve overall performance. We designed a set of experiments and proposed the conflict
model used in this article based on the experimental results.

Then we propose a dynamic thread pool adjustment method. Initially, the block
transaction pool and the dynamic thread pool are initialized, with an initial capacity set
for the latter. To regulate the thread pool capacity dynamically, a DescendCoefficient is
defined. Subsequently, a sliding window bitmap is created to continually update and
maintain the conflict rate throughout the adjustment process. Transactions are continuously
retrieved from the block transaction pool for execution. After each transaction execution, the
sliding window bitmap is updated to capture the recent conflict rate. The system monitors
whether all bits in the sliding window have been updated, indicating the completion of a
window’s worth of transaction count since the last conflict rate calculation. If so, the latest
conflict rate is calculated. Based on this rate, adjustments to the thread pool capacity are
made: if the conflict rate increases, the pool capacity is decreased proportionally using
DescendCoefficient; conversely, if it decreases, the capacity is increased. Prior to any
modifications, upper and lower bounds are enforced to ensure that the new pool capacity
remains within permissible limits. Finally, the thread pool capacity is updated, allowing
for an optimized resource allocation to effectively manage transaction processing in the
blockchain network. This adaptive approach ensures that the system remains responsive to
varying transaction loads, thereby enhancing overall system performance and scalability.
The algorithm process diagram is shown in Figure A1.



Mathematics 2024, 12, 1347 15 of 17

Figure A1. The algorithm process of dynamic thread pool adjustment.

To evaluate our dynamic thread pool adjustment method, we built an experiment on a
computer service instance from Tencent Cloud. The instance was equipped with Linux, Intel
Xeon Fold 6230 CPU@2.10 GHz, and 256 GB memory. The experimental setup for the conducted
test is as follows: Client configuration parameters were established, including a concurrent
thread count of 50,000, with each thread making a single call to the designated contract ‘evm–
balance’ using the ‘Invoke’ execution method, resulting in an increment of asset value of 1. The
blockchain environment was configured with Solo consensus on a single node, utilizing 80 CPU
cores. Each block was designed to accommodate up to 10,000 transactions, with a maximum
block size of 20 MB and a maximum block interval set at 10 s.

Furthermore, a dynamic adjustment scheme was implemented to regulate the thread
pool capacity based on observed conflict rates. Specifically, when the conflict rate fell below
0.05, the thread pool capacity was increased by a factor of 3, capped at a maximum value
equivalent to the block size of 10,000 transactions. Conversely, if the conflict rate surpassed
0.2, the thread pool capacity was reduced by one-fourth, with the minimum threshold set
at 2 threads.

The experiment data are shown in Figure A2. The table depicts a comprehensive anal-
ysis of test parameters with varying conflict transaction ratios. The vertical axis represents
the proportion of conflicting transactions, denoted, for instance, as 1/4, indicating that
within a batch of sent transactions, only one out of four transactions encounters conflicts.
This scenario is akin to randomly generating Invoke transactions from four different ac-
counts, where the transactions’ read–write sets do not overlap. On the horizontal axis,
various test parameters are enumerated. The final column illustrates the dynamic thread
pool scenario, while the preceding columns represent scenarios with fixed thread pool
sizes. Within the graphical content area, each row corresponds to a different test parameter
configuration. Shades of green indicate favorable outcomes, whereas shades of red signify
less desirable results. The last row aggregates data for different conflict transaction ratios,
providing the average transactions per second (TPS) across the tested configurations.



Mathematics 2024, 12, 1347 16 of 17

Figure A2. The experiment result of the conflict model. (Shades of green indicate favorable outcomes,
whereas shades of red signify less desirable results).

From the test results, it is evident that the dynamic thread pool demonstrates excellent
performance across all conflict scenarios. Specifically, in situations of complete conflict,
the efficiency of the dynamic thread pool surpasses that of a fixed thread pool with a size
of 10240 by a factor of 2.2. Conversely, in scenarios with minimal conflict, the dynamic
thread pool outperforms a single thread setup by a factor of 1.43. These data underscore
the effectiveness of the dynamic thread pool in adapting to varying levels of transaction
conflicts, thereby enhancing overall system efficiency and throughput in the blockchain
environment.

References
1. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. Decentralized Business Review. 2008. Available online: https:

//bitcoin.org/bitcoin.pdf (accessed on 8 April 2024).
2. Szabo, N. Formalizing and securing relationships on public networks. First Monday 1997, 2, e548. [CrossRef]
3. Alrubei, S.M.; Ball, E.A.; Rigelsford, J.M.; Willis, C.A. Latency and performance analyses of real-world wireless IoT-blockchain

application. IEEE Sens. J. 2020, 20, 7372–7383. [CrossRef]
4. Wang, Q.; Li, R.; Wang, Q.; Chen, S. Non-fungible token (NFT): Overview, evaluation, opportunities and challenges. arXiv 2021,

arXiv:2105.07447.
5. Mukhopadhyay, U.; Skjellum, A.; Hambolu, O.; Oakley, J.; Yu, L.; Brooks, R. A brief survey of cryptocurrency systems. In

Proceedings of the 2016 14th Annual Conference on Privacy, Security and Trust (PST), Auckland, New Zealand, 12–14 December
2016; pp. 745–752.

6. Guo, B.; Lu, Z.; Tang, Q.; Xu, J.; Zhang, Z. Dumbo: Faster asynchronous bft protocols. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, Virtual, 9–13 November 2020; pp. 803–818.

7. Zhang, Z.; Liu, X.; Feng, K.; Wan, M.; Li, M.; Dong, J.; Zhu, L. Phantasm: Adaptive Scalable Mining Toward Stable BlockDAG.
IEEE Trans. Serv. Comput. 2023, early access. [CrossRef]

8. Zhang, Z.; Liu, X.; Li, M.; Yin, H.; Zhu, L.; Khoussainov, B.; Gai, K. HCA: Hashchain-based Consensus Acceleration via Re-voting.
IEEE Trans. Dependable Secur. Comput. 2023, 21, 775–788. [CrossRef]

9. Zhang, Z.; Feng, K.; Chen, X.; Liu, X.; Sun, H. RHCA: Robust HCA via Consistent Revoting. Mathematics 2024, 12, 593. [CrossRef]
10. Dickerson, T.; Gazzillo, P.; Herlihy, M.; Koskinen, E. Adding concurrency to smart contracts. In Proceedings of the ACM

Symposium on Principles of Distributed Computing, Washington, DC, USA, 25–27 July 2017; pp. 303–312.
11. Anjana, P.S.; Kumari, S.; Peri, S.; Rathor, S.; Somani, A. An Efficient Framework for Optimistic Concurrent Execution of Smart

Contracts. arXiv 2018, arXiv:1809.01326.
12. Yu, W.; Luo, K.; Ding, Y.; You, G.; Hu, K. A parallel smart contract model. In Proceedings of the 2018 International Conference on

Machine Learning and Machine Intelligence, Vienna, Austria, 25–26 July 2018; pp. 72–77.

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://doi.org/10.5210/fm.v2i9.548
http://dx.doi.org/10.1109/JSEN.2020.2979031
http://dx.doi.org/10.1109/tsc.2023.3322203
http://dx.doi.org/10.1109/TDSC.2023.3262283
http://dx.doi.org/10.3390/math12040593


Mathematics 2024, 12, 1347 17 of 17

13. Bartoletti, M.; Galletta, L.; Murgia, M. A true concurrent model of smart contracts executions. In Proceedings of the International
Conference on Coordination Languages and Models, Valletta, Malta, 15–19 June 2020; pp. 243–260.

14. Li, H.; Chen, Y.; Shi, X.; Bai, X.; Mo, N.; Li, W.; Guo, R.; Wang, Z.; Sun, Y. FISCO-BCOS: An Enterprise-grade Permissioned
Blockchain System with High-performance. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, Denver, CO, USA, 12–17 November 2023; pp. 1–17.

15. Chainmaker. Available online: https://chainmaker.org.cn/home (accessed on 8 April 2024).
16. Liu, J.; Li, P.; Cheng, R.; Asokan, N.; Song, D. Parallel and asynchronous smart contract execution. IEEE Trans. Parallel Distrib.

Syst. 2021, 33, 1097–1108. [CrossRef]
17. Digitale, J.C.; Martin, J.N.; Glymour, M.M. Tutorial on directed acyclic graphs. J. Clin. Epidemiol. 2022, 142, 264–267. [CrossRef]

[PubMed]
18. Jin, C.; Pang, S.; Qi, X.; Zhang, Z.; Zhou, A. A high performance concurrency protocol for smart contracts of permissioned

blockchain. IEEE Trans. Knowl. Data Eng. 2021, 34, 5070–5083. [CrossRef]
19. Piduguralla, M.; Chakraborty, S.; Anjana, P.S.; Peri, S. An Efficient Framework for Execution of Smart Contracts in Hyperledger

Sawtooth. arXiv 2023, arXiv:2302.08452.
20. Miller, A. Permissioned and permissionless blockchains. In Blockchain for Distributed Systems Security; Wiley-IEEE Press: Hoboken,

NJ, USA, 2019; pp. 193–204.
21. ChainmakerCode Homepage. Available online: https://git.chainmaker.org.cn/ (accessed on 8 April 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://chainmaker.org.cn/home
http://dx.doi.org/10.1109/TPDS.2021.3095234
http://dx.doi.org/10.1016/j.jclinepi.2021.08.001
http://www.ncbi.nlm.nih.gov/pubmed/34371103
http://dx.doi.org/10.1109/TKDE.2021.3059959
https://git.chainmaker.org.cn/

	Introduction
	Related Work 
	Preliminaries
	Blockchain and Smart Contracts
	Namespace
	Read–Write Set

	Design
	System Model
	Components
	Contract Dependency DAG
	Transaction DAG
	Conflict Factors
	Transaction Parallelism Score/Rate

	Conflict Model
	Smart Contract Dependency Build
	Transaction DAG Building
	Transaction Parallel Execution
	Transaction Execution Processing

	Evaluation
	Experiment Setup
	Evaluation Results

	Conclusions
	Appendix A
	References 

