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Abstract: In this paper, we present sufficient conditions for Hyers–Ulam-Rassias stability of nonlinear
implicit higher-order Volterra-type integrodifferential equations from above on unbounded time
scales. These new sufficient conditions result by reducing Volterra-type integrodifferential equations
to Volterra-type integral equations, using the Banach fixed point theorem, and by applying an
appropriate Bielecki type norm, the Lipschitz type functions, where Lipschitz coefficient is replaced
by unbounded rd-continuous function.
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1. Introduction

In 1940, Stanislaw Ulam [1] formulated a generally applicable definition of stability.
He wrote that “For every equations one can ask the following question. When is it true that the
solution of an equation differing slightly from the given one must of necessity be close to the solution
of the given equation?”. Among those was the question concerning the stability of group
homomorphisms. Hyers [2] solved the problem for the case of approximately additive
mappings between Banach spaces. So, the stability concept proposed by Ulam and Hyers
was named Hyers–Ulam stability. Afterwards, Rassias [3] introduced new ideas of Hyers–
Ulam stability using unbounded right-hand side in the involved inequalities, depending
on certain functions, therefore introducing the so-called Hyers–Ulam–Rassias stability.

In 2007, Jung [4] proved, using a fixed point approach, that the Volterra nonlinear
integral equation is Hyers–Ulam–Rassias stable on a compact interval under certain condi-
tions. Then, several authors [5–7] generalized the previous result on the Volterra integral
equations on infinite interval in the case when the integrand is Lipschitz with a fixed
Lipschitz constant. In the near past, many research papers have been published about
Hyers–Ulam stability of Voltera integral equations of different types, including nonlinear
Volterra integrodifferential equations, mixed integral dynamic systems with impulses,
etc. [8–12].

The theory of time scales analysis has been rising fast, and has gained a lot of interest.
The pioneer of this theory was Hilger [13]. He introduced this theory in 1988, with the
inspiration to unify continuous and discrete calculus. For the introduction to the calculus
on time scales and to the theory of dynamic equations on time scales, we recommend
the books by Bohner et al. [14,15] and Georgiev [16]. In addition, the basic concepts and
definitions of the time scale calculus are used in the article, which are described in Section 2.
Furthermore, we used the traditional symbols and mathematical expressions adopted in
the theory of time scales.
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To the best of our knowledge, the first ones who pay attention to Hyers–Ulam stability
for Volterra integral equations on time scales are Andras et al. [17] and Hua et al. [18].
However, they restricted their research to the case when an integrand satisfies the Lipschitz
conditions with some fixed Lipschitz constant.

In 1956, Bielecki published a remark [19] in which he gave a new method for proving
the global existence and unity of solutions of differential equations. His method has
been applied to a wide range of classes of integral, integrodifferential and many other
functional equations. For a review of the results obtained by the mentioned method, and
many applications in various mathematical problems, see [16,20,21] and references therein
for details.

Tisdell et al. [22,23] gave the basic qualitative and quantitative results to nonlinear
Volterra integral equations on time scales in the case when the integrand is estimated by
the Lipschitz type function with a fixed Lipschitz constant

x(t) = f (t) +
∫ t

t0

k(t, s, x(s))∆s, t0, t ∈ IT = [t0,+∞) ∩T.

Reinfelds et al. [24–27] generalized previous results by analysing the case where the
integrand can be evaluated by the Lipschitz type function and the corresponding Lipschitz
coefficient can be unbounded rd-continuous function. Using the exponential function
defined at the time scale calculus, it was possible to introduce the appropriate Bielecki
norm to evaluate the corresponding expressions in the proofs.

Several authors [28–32] consider first order explicit and implicit Volterra integrodiffer-
ential equations on intervals, and also on time scales in which the integrand is Lipschitz
with a fixed Lipschitz constant

x∆(t) = f
(

t, x(t), x∆(t),
∫ t

t0

k(t, s, x(s), x∆(s))∆s
)

, t0, t ∈ IT = [t0,+∞) ∩T, x(t0) = x0.

Sikorska-Nowak [33] uses Henstok–Kurzweil–Pettis delta integral on compact time
scale IT = [0, t0] ∩ T, t0 ≥ 0.

Let us note that many integrodifferential equations can be reduced to Volterra-type
integral equations. Motivated by the above results, Reinfelds et al. [34] consider implicit
Volterra integrodifferential equations on an arbitrary time scale T

x∆(t) = f (t) +
∫ t

t0

k(t, τ, x(τ), x∆ (τ))∆τ, x(t0) = x0.

Hyers–Ulam–Rassias stability of higher-order Volterra integrodifferential equations
have been studied in the cases when t ∈ (t0,+∞) [35,36]. Article [35] uses the Laplace
transform method, while [36] uses the equation in explicit form.

In this paper, we consider nonlinear implicit k-th order Volterra-type integrodifferential
equations from above on unbounded time scale IT = [t0,+∞) ∩T

x∆k
(t) = f

(
t, x(t), x∆(t), . . . , ∆k(t),

∫ t

t0

k(t, s, x(s), x∆(s), . . . , x∆k
(s))∆s

)
(1)

with initial conditions

x∆i
(t0) = xi, i = 0, 1, 2, . . . , k − 1, t0, t ∈ IT = [t0,+∞) ∩T (2)

where x ∈ Rn is n-dimensional linear real space with the Euclidean norm | · |. Let us
note that

x∆i
(t) = xi +

∫ t

t0

x∆i+1
(s)∆s, i = 0, 1, 2, . . . , k − 1.
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We define a new map z : IT → Rn(k+1), where

z(t) = (z0(t), z1(t), . . . , zk(t)) =
(

x(t), x∆(t), . . . , x∆k
(t)
)

=

(
x0 +

∫ t

t0

x∆(s)∆s, x1 +
∫ t

t0

x∆2
(s)∆s, . . . , xk−1

+
∫ t

t0

x∆k
(s)∆s, f

(
t, x(t), x∆(t), . . . , x∆k

(t),
∫ t

t0

k(t, s, x(s), x∆(s), . . . , x∆k
(s))∆s

))
.

So, we have general implicit Volterra-type integral equation,

z(t) = F
(

t, z(t),
∫ t

t0

K(t, s, z(s))∆s
)

, t0, t ∈ IT = [t0,+∞) ∩T, (3)

with integrand K : IT × IT ×Rn(k+1) → Rn(k+1)

K(t, s, z(s)) =
(

x∆(s) . . . , x∆k
(s), k(t, s, x(s), x∆(s), . . . , x∆k

(s))
)

,

where z : IT → Rn(k+1) is the unknown map and F(·, z, w) : IT → Rn(k+1) is the rd-
continuous map.

The main aim and innovation of the paper is the reduction of higher-order nonlinear
implicit Volterra-type integrodifferential equations from above on unbounded time scales
to Volterra-type integral equations without using repeated integration, which allows to
find universal and, at the same time, conditionally simpler proofs for many basic properties
of the Volterrra-type equations, including to prove the Hyers–Ulam–Rassias stability. In
addition, repeated integration is quite inconvenient, and can be applied to explicit equa-
tions [32,36]. It can be applied by further deriving the implicit equation and imposing
additional conditions on the smoothness of the right-hand side of equations [37].

2. Elements of the Time Scale Calculus

A time scale is an arbitrary nonempty closed subset of real numbers R with the topology
induced by the standard topology on the real numbers R. We denote a time scale by the
symbol T. Since time scales may or may not be connected, we need the concept of jump
operators. For t ∈ T the forward jump operator σ : T → T is defined by the equality

σ(t) = inf{s ∈ T | s > t}

while the backward jump operator ρ : T → T is defined by the equality

ρ(t) = sup{s ∈ T | s < t}.

In this definition, we put inf ∅ = supT and sup ∅ = infT. The jump operators allow
the classification of points in a time scale T. If σ(t) > t, then the point t ∈ T is called
right-scattered, while if ρ(t) < t, then the point t ∈ T is called left-scattered. If σ(t) = t,
then t ∈ T is called right-dense, while if ρ(t) = t then t ∈ T is called left dense. A function
g : T → R is called rd-continuous provided that it is continuous at right-dense points in
T and its left sided limits exist (finite) at left-dense points in T. We define the graininess
function µ : T → [0,+∞) by the relation

µ(t) = σ(t)− t.

If T has a left-scattered maximum m, then Tκ = T \ {m}. Otherwise, Tκ = T. The
function g : T → R is regressive if

1 + µ(t)g(t) ̸= 0 for all t ∈ Tκ .
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Assume g : T → R is a function and fix t ∈ Tκ . The delta derivative (also called
the Hilger derivative) g∆(t) exists if, for every ε > 0, there exists a neighbourhood
U = (t − δ, t + δ)

⋂
T for some δ > 0, such that∣∣∣(g(σ(t))− g(s))− g∆(t)(σ(t)− s)

∣∣∣ ≤ ε|σ(t)− s|, for all s ∈ U.

Moreover, we say that g is delta differentiable on Tκ , provided that g∆(t) exists for all
t ∈ Tκ . The higher-order derivatives are denoted by g∆i

, where i = 2, 3, . . . and g∆0
= g,

g∆1
= g∆.
If g is rd-continuous, than there is function G such that G∆(t) = g(t). In this case, we

define the (Cauchy) delta integral by∫ s

r
g(t)∆t = G(s)− G(r), for all r, s ∈ T.

Whether map g : T → Rn is rd-continuous or regressive is defined analogically. The
same can be said about delta derivatives and delta integrals.

Let β : T → R be a nonnegative (and therefore regressive) and rd-continuous scalar
function. The Cauchy initial value problem for scalar linear equation

x∆ = β(t)x, x(t0) = 1, t0 ∈ T

has the unique solution eβ(·, t0) : T → R [14,15]. More explicitly, using the cylinder trans-
formation, the exponential function eβ(·, t0) is given by

eβ(t, t0) = exp
(∫ t

t0

ξµ(s)(β(s))∆s
)

,

where

ξh(z) =
{

z, h = 0;
1
h log(1 + hz), h > 0.

Observe that we also have Bernoulli’s type estimate [38]

1 +
∫ t

t0

β(s)∆s ≤ eβ(t, t0) ≤ exp
(∫ t

t0

β(s)∆s
)

for all t ∈ IT = [t0,+∞) ∩T.

3. Volterra-Type Integral Equations

Let | · | denote the Euclidean norm on Rn. If z ∈ Rn(k+1), then |z| = max0≤i≤k |zi|. We
will consider the linear space of k times delta differentiable functions Ck(IT;Rn), such that

sup
t∈IT

max0≤i≤k{|x∆i
(t)|}

eβ(t, t0)
< ∞.

and denote this special space by Ck
β(IT;Rn(k+1)). The space Ck

β(IT;Rn(k+1)) endowed with
Bielecki type norm

∥z∥k
β = sup

t∈IT

|z(t)|
eβ(t, t0)

= sup
t∈IT

max0≤i≤k{|zi(t)|}
eβ(t, t0)

= sup
t∈IT

max0≤i≤k{|x∆i
(t)|}

eβ(t, t0)

is a Banach space [19,22,23].
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Theorem 1. Consider the integral Equation (3) with IT = [t0,+∞) ∩ T. Let K : IT × IT ×
Rn(k+1) → Rn(k+1) be rd-continuous in its first and second variable, F(·, z, w) : IT → Rn(k+1)

and L : IT → R be rd-continuous, γ > 1, β(s) = L(s)γ,

|F(t, z, w)− F(t, z̄, w̄)| ≤ M(|z − z̄|+ |w − w̄|), z, z̄, w, w̄ ∈ Rn(k+1),

|K(t, s, z)− K(t, s, z̄)| ≤ L(s)|z − z̄|, s < t, (4)

m = sup
t∈IT

1
eβ(t, t0)

∣∣∣∣F(t, 0,
∫ t

t0

K(t, s, 0)∆s
)∣∣∣∣ < ∞. (5)

If M(1 + 1/γ) < 1, then integral Equation (3) has a unique solution z∗ ∈ Ck
β(IT;Rn(k+1)).

Proof. Let operator H : Ck
β(IT;Rn(k+1)) → Ck

β(IT;Rn(k+1)) be defined by

H(z(t)) = F
(

t, z(t),
∫ t

t0

K(t, s, z(t))∆s
)

. (6)

The fixed point of operator H will be the solution of integral Equation (3). Thus, we
want to prove that there exists a unique z∗ ∈ Ck

β(IT;Rn(k+1)), such that Hz∗ = z∗. To do
this, we show that the conditions of Banach’s fixed point theorem are satisfied. Taking
norms in (6), we obtain

∥Hz∥k
β ≤ sup

t∈IT

1
eβ(t, t0)

∣∣∣∣F(t, 0,
∫ t

t0

K(t, s, 0)∆s
)∣∣∣∣

+ sup
t∈IT

1
eβ(t, t0)

∣∣∣∣F(t, z(t),
∫ t

t0

K(t, s, z(t))∆s
)
− F

(
t, 0,

∫ t

t0

K(t, s, 0)∆s
)∣∣∣∣

≤ m + sup
t∈IT

M
eβ(t, t0)

(
|z(t)|+

∫ t

t0

L(s)|z(s)|∆s)
)

≤ m + M∥z∥k
β

(
1 + sup

t∈IT

1
eβ(t, t0)

∫ t

t0

L(s)eβ(s, t0)∆s

)

= m + M∥z∥k
β

(
1 +

1
γ

sup
t∈IT

1
eβ(t, t0)

∫ t

t0

β(s)eβ(s, t0)∆s

)

= m + M∥z∥k
β

(
1 +

1
γ

sup
t∈IT

1
eβ(t, t0)

∫ t

t0

e∆
β (s, t0)∆s

)

= m + M∥z∥k
β

(
1 +

1
γ

sup
t∈IT

1
eβ(t, t0)

[eβ(s, t0)]
t
t0

)

= m + M∥z∥k
β

(
1 +

1
γ

sup
t∈IT

(
1 − 1

eβ(t, t0)

))

≤ m + M∥z∥k
β

(
1 +

1
γ

)
< ∞.

This proves that the operator H maps Ck
β(IT;Rn(k+1)) into itself.

Next, we verify that H is a contraction map. For any z, z̄ ∈ Ck
β(IT;Rn(k+1)), we have

the estimate
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∥Hz − Hz̄∥k
β = sup

t∈IT

|[H(z(t))− H(z̄(t))|
eβ(t, t0)

= sup
t∈IT

1
eβ(t, t0)

∣∣∣∣F(t, z(t),
∫ t

t0

K(t, s, z(s))∆s
)

− F
(

t, z̄(t),
∫ t

t0

K(t, s, z̄(s))∆s
)∣∣∣∣

≤ M sup
t∈IT

1
eβ(t, t0)

(
(|z(t)− z̄(t)|) +

∣∣∣∣∫ t

t0

K(t, s, z(s))∆s −
∫ t

t0

K(t, s, z̄(s))∆s
∣∣∣∣)

≤ M

(
∥z − z̄∥k

β + sup
t∈IT

1
eβ(t, t0)

∫ t

t0

L(s)|z(s)− z̄(s)|∆s

)

≤ M∥z − z̄∥k
β

(
1 + sup

t∈IT

1
eβ(t, t0)

∫ t

t0

L(s)eβ(s, t0)∆s

)

= M∥z − z̄∥k
β

(
1 +

1
γ

sup
t∈IT

1
eβ(t, t0)

∫ t

t0

β(s)eβ(s, t0)∆s

)

= M∥z − z̄∥k
β

(
1 +

1
γ

sup
t∈IT

1
eβ(t, t0)

∫ t

t0

e∆
β (s, t0)∆s

)

= M∥z − z̄∥k
β

(
1 +

1
γ

sup
t∈IT

1
eβ(t, t0)

[eβ(s, t0)]
t
t0

)

= M∥z − z̄∥k
β

(
1 +

1
γ

sup
t∈IT

(
1 − 1

eβ(t, t0)

))

≤ M
(

1 +
1
γ

)
∥z − z̄∥k

β.

As M
(

1 + 1
γ

)
< 1, we obtain that H has a unique fixed point z∗ ∈ Ck

β(IT;Rn(k+1)).
The fixed point of H is, however, a solution of (3). The proof is complete.

4. Hyers–Ulam–Rassias Stability

Definition 1. We say that integral Equation (3) is Hyers–Ulam–Rassias stable if there exists a
constant C > 0 such that, for each real number ε > 0, and for each solution z ∈ Ck

β(IT;Rn(k+1)) of
the inequality ∥∥∥∥z(t)− F

(
t, z(t),

∫ t

t0

K(t, s, z(s))∆s
)∥∥∥∥k

β

≤ ε,

there exists the exact solution z∗ ∈ Ck
β(IT;Rn(k+1)) of the integral Equation (3) with the property

∥z(t)− z∗(t)∥k
β ≤ Cε.

Let us find sufficient conditions for the Hyers–Ulam–Rassias stability of nonlinear
Volterra-type integral equation on arbitrary time scales.

Theorem 2. Consider the integral Equation (3) satisfying conditions of Theorem 1. Suppose
z ∈ Ck

β(IT;Rn(k+1)) is such a map that satisfies the inequality

∥∥∥∥z(t)− F
(

t, z(t),
∫ t

t0

K(t, s, z(s))∆s
)∥∥∥∥k

β

≤ ε.

Then, integral Equation (3) is Hyers–Ulam–Rassias stable.
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Proof. According to Theorem 1, there is unique solution z∗ ∈ Ck
β(IT;Rn(k+1)) of the integral

Equation (3). Let z ∈ Ck
β(IT;Rn(k+1)). From the proof of Theorem 1, we obtain the estimate∣∣∣∣∫ t

t0

K(t, s, z(s))∆s −
∫ t

t0

K(t, s, z∗(s))∆s
∣∣∣∣

≤
∫ t

t0

L(s)|z(s)− z∗(s)|∆s

=
1
γ

∫ t

t0

β(s)eβ(s, t0)
|z(s)− z∗(s)|

eβ(s, t0)
∆s

≤ 1
γ

∫ t

t0

β(s)eβ(s, t0)∥z(s)− z∗(s)∥k
β ∆s

=
∥z − z∗∥k

β

γ

∫ t

t0

e∆
β (s, t0)∆s ≤

∥z − z∗∥k
β

γ
eβ(t, t0).

Therefore, from the triangle inequality, we obtain the upper bound

∥z(t)− z∗(t)∥k
β ≤

∥∥∥∥z(t)− F
(

t, z(t),
∫ t

t0

K(t, s, z(s))∆s
)∥∥∥∥k

β

+

∥∥∥∥F
(

t, z(t),
∫ t

t0

K(t, s, z(s))∆s
)
− F

(
t, z∗(t),

∫ t

t0

K(t, s, z∗(s))∆s
)∥∥∥∥k

β

≤ ε + M
(

1 +
1
γ

)
∥z(t)− z∗(t)∥k

β.

Hence,
∥z(t)− z∗(t)∥k

β ≤ Cε, (7)

where C =
(

1 − M
(

1 + 1
γ

))−1
.

Corollary 1. We will prove that nonlinear implicit k-th order Volterra-type integrodifferential
Equations (1) and (2) are Hyers–Ulam–Rassias stable.

Proof. We assume that the k-times delta differentiable map x∗ : IT → Rn with initial
conditions (2) is a solution of Equation (1). In addition, we assume that k-times delta
differentiable map x : IT → Rn satisfies the initial conditions (2) and inequality∣∣∣∣x∆k

(t)− f
(

t, x(t), x∆(t), . . . , ∆k(t),
∫ t

t0

k(t, s, x(s), x∆(s), . . . , x∆k
(s))∆s

)∣∣∣∣ ≤ ε expβ(t, t0).

Then, according to Theorem 2, we obtain the estimate

|x(t)− x∗(t)| ≤ Cε expβ(t, t0)

for all t ∈ IT or, in other words, Equation (1) together with the initial conditions (2) is
Hyers–Ulam–Rassias stable.

If, in addition to the time scale, IT is bounded, then

sup
t∈IT

| expβ(t, t0)| ≤ N ≤ +∞.

Then, for all t ∈ IT, we obtain a more accurate inequality

|x(t)− x∗(t)| ≤ CNε.



Mathematics 2024, 12, 1379 8 of 10

Example 1. Consider the scalar nonlinear Volterra integrodifferential equation on arbitrary time
scale IT = [t0,+∞) ∩T

x∆(t) =
1
2

(
t2 + x(t) +

∫ t

t0

(2 + s + σ(s))[x(s)2 + x∆(s)2 + 1]
1
2 ∆s

)
,

where x(t0) = x0, t0, t ∈ IT and t0 ≥ 0.
We will prove that this integrodifferential equation has a unique solution, and evaluate the

Hyers–Ulam–Rassias constant of stability.

Proof. We will first apply Theorem 1 and check the fact that

K(t, s, q, r) = (2 + s + σ(s))(q2 + r2 + 1)
1
2

has the bounded partial derivatives with respect to q and r everywhere. So, we have

|K(t, s, q, r)− K(t, s, q̄, r̄])| ≤
√

2(2 + s + σ(s))max(|q − q̄|, |r − r̄|),

where we used Hadamard’s Lemma. Therefore, (4) can be defined with L(s) =
√

2(2 + s +
σ(s)). We choose γ =

√
2, then we have β(s) = 2(2 + s + σ(s)). Considering that∫ t

t0

(2 + s + σ(s))∆s = 2t + t2 − 2t0 − t2
0

and, according to Bernoulli’s type estimate eβ(t, t0) ≥ 1 + 2
(
2t + t2 − 2t0 − t2

0
)
, we verified

that (5) holds. The existence and uniqueness of solution now follows from Theorem 1.
Additionally, in our example, M = 1/2. Therefore, the constant in the evaluation of

Hyers–Ulam–Rassias stability is C = 2
√

2√
2−1

.

5. Conclusions

In this article, we studied the Hyers–Ulam–Rassias stability of nonlinear implicit
higher-order Volterra-type integrodifferential equations on time scales, using the Banach
fixed point theorem and a generalization of the Bielecki-type norm. We presented sufficient
conditions for Hyers–Ulam–Rassias stability of nonlinear implicit higher-order Volterra-
type integrodifferential equations from above on unbounded time scales. We reduced the
higher-order integrodifferential equation to the system of integral equations. It allows the
theory of Volterra integral equations to be used. We used the Lipschitz type rd-continuous
function L : IT → R instead of the Lipschitz coefficient, which can be an unbounded
function in our result. Such an approach allows for the use of the Banach contraction
principle. The aim of this article was achieved by proving the Hyers–Ulam–Rassias stability
in the more general case. An example was presented to illustrate the theoretical results.
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