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Abstract: This paper provides a computationally efficient and novel four-step methodological ap-
proach for predicting volatility estimators derived from bitcoin prices. In the first step, open, high,
low, and close bitcoin prices are transformed into volatility estimators using Brownian motion as-
sumptions and logarithmic transformations. The second step determines the optimal number of
time-series lags required for converting the series into an autoregressive model. This selection process
utilizes random forest regression, evaluating the importance of each lag using the Mean Decrease
in Impurity (MDI) criterion and optimizing the number of lags considering an 85% cumulative
importance threshold. The third step of the developed methodological approach fits the Elastic
Net Regression (ENR) to the volatility estimator’s dataset, while the final fourth step assesses the
predictive accuracy of ENR, compared to decision tree (DTR), random forest (RFR), and support
vector regression (SVR). The results reveal that the ENR prevails in its predictive accuracy for open
and close prices, as these prices may be linear and less susceptible to sudden, non-linear shifts
typically seen during trading hours. On the other hand, SVR prevails for high and low prices as these
prices often experience spikes and drops driven by transient news and intra-day market sentiments,
forming complex patterns that do not align well with linear modelling.

Keywords: elastic net regression; volatility estimators; time-series analysis

MSC: 37M10

1. Introduction

In the rapidly evolving landscape of financial markets, the accurate prediction of
cryptocurrency prices is critical for a wide range of financial stakeholders, due to their
highly volatile behaviour.

Volatility estimators, which are critical tools necessary for analysing cryptocurrency
price movements, constitute a key component used to quantify the intrinsic uncertainty
and risk present in the market [1]. However, their prediction encompasses inherent chal-
lenges associated with the stochastic behaviour of financial time series, the high frequency
of outlier occurrences, the impact of unforeseen global events which can disrupt estab-
lished patterns, and their nonstationary behaviour that exhibits periods of high volatility
clustering [2].

ENR stands out as a highly effective tool for addressing the challenges emerging
from financial time series analysis. With respect to the stochastic behaviour of financial
data and through its L2 penalty, ENR stabilizes the model’s predictions by reducing the
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magnitude of the impacts of correlated predictors, which is particularly useful when data
encompass extreme variations [3]. Additionally, by penalizing the size of the coefficients,
ENR minimizes the impact of outliers that could affect predictions in more simplified
regression models. This adjustment reduces the probability of overfitting to noise and
outliers, which is in turn critical for maintaining predictive accuracy [4]. In the context of
global unforeseen events, ENR’s focus on core and influential variables allows the model
to adapt more effectively. By avoiding overfitting and focusing on significant predictors,
the model pertains higher degrees of freedom to adapt to major changes [5]. Finally, for
non-stationarity and volatility clustering issues, ENR addresses relevant predictors and
reduces the influence of less pertinent volatilities, ensuring continued effectiveness during
high-volatility periods, which is a common feature in financial markets [6].

ENR is however, also characterized by significant limitations: (a) ENR’s parameters
(alpha and lambda) are not optimized during the model’s training process and must be
specified in advance, often requiring extensive cross-validation to determine their optimal
values [4]; (b) while ENR handles multicollinearity and feature selection well, it struggles
in high-dimensional spaces. This situation can lead to computational difficulties and the
need for dimensionality reduction techniques [7]; and (c) although ENR generally offers
improved interpretability due to its feature-selection and noise-elimination capabilities,
it may lag in predictive accuracy, especially when the underlying model is complex or
when balancing bias and variance is challenging. This trade-off between interpretability
and accuracy is particularly crucial in applications where accurate predictions are more
important than model simplicity and interpretability [8].

To address the first limitation, we employ Python’s RandomizedSearchCV method to
optimize hyperparameters (alpha and lambda). This method involves a non-deterministic
search that randomly samples parameter values from a defined distribution over a specified
number of iterations, avoiding the exhaustive characteristic of traditional grid searches and
potentially enhancing the model’s performance significantly [9]. For addressing the second
limitation, and as autoregressive lags are key variables in financial time series, we employ
the Random Forest Regression (RFR) methodological approach developed by Polyzos and
Siriopoulos [10] to optimize the selection of time lags in autoregressive models using an
ensemble of decision trees. To this end, and for addressing the third limitation, we provide
a comparative analysis of ENR’s accuracy against traditional machine learning regression
models such as DTR, RFR, and SVR. DTR offers a straightforward and interpretable model
structure, making it a useful baseline for comparison [11], while RFR is known for its
robustness and consistently high accuracy across various datasets, serving as an excellent
benchmark for evaluating the accuracy of ENR [12]. Finally, SVR excels at handling
complex, non-linear relationships, allowing us to assess how well ENR performs compared
to these sophisticated techniques in capturing predictive accuracy [13].

The remainder of this paper is organized as follows: A literature review of the pre-
dictive models utilized for forecasting high-frequency data is presented in Section 2. Sub-
sequently, the employed methodology is outlined in Section 3. The model’s numerical
implementation and derived results are presented in Section 4. Section 5 provides a dis-
cussion of the paper’s objectives and insights, while Section 6 concludes with the project’s
results and future research perspectives.

2. Literature Review

Predictive models play a critical role guiding trading decisions in financial markets
with intraday data. Numerous forecasting methods have been developed to handle the
specificities of these markets. Studies focusing on cryptocurrency market trends have led
to the utilization of predictive models that mainly leverage machine learning and deep
learning techniques focusing on cryptocurrency prices solely [14].

On this basis Long Short-Term Memory (LSTM) networks have proven effective for
capturing the complexities of cryptocurrency price fluctuations with Kumar et al. [15]
assessing Long Short-Term Memory (LSTM) networks for predicting prices, while empha-
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sizing the model’s ability to adjust to the cryptocurrency price fluctuations. The authors
employed numerous market data features such as high, low, open, close, and market cap
values. These values were then transformed into a multi-dimensional array to effectively
utilize the LSTM’s capability to process sequential data. The dataset included approxi-
mately 78,922 rows of cryptocurrency data, with a specific focus on Bitcoin and Ethereum.
The LSTM model’s performance was then compared with other models like the autoregres-
sive (AR), the moving average (MA), and the Autoregressive Integrated Moving Average
Model (ARIMA), with the LSTM achieving the highest accuracy of about 71%.

Similarly, Jethani et al. [16] employed the LSTM network for the prediction of stock
market trends. The authors evaluated the model’s performance compared to traditional
models and advanced deep learning techniques. The results obtained from their study
indicated that the proposed LSTM model can predict more accurately compared to alterna-
tive models, in cases of highly volatile financial time series. The authors employed feature
engineering techniques with features like opening, close, high, low prices, and volumes
of traded stocks. The dataset employed, involved data from January 2018 to April 2021,
covering diversified Indian companies and capturing the impacts of major economic events,
including the occurrence of the COVID-19 pandemic.

Lumoring et al. [17] highlighted the significance of machine learning model imple-
mentation to predict trends in the cryptocurrency sector and stock market, focusing on the
effectiveness of Support Vector Machines (SVM) and Long Short-Term Memory (LSTM)
network models. The features considered typically included historical price data and
trading volumes. Evaluation metrics such as accuracy and Mean Absolute Percentage Error
(MAPE) were used, with LSTM models achieving the highest predictive accuracy.

Finally, Liu [18] compared deep learning techniques with traditional time series analy-
sis in stock market prediction. The results have shown that the LSTM model attains higher
predictive accuracy in AAPL stock compared to the classical ARIMA model. The employed
dataset spans from September 2013 through to September 2023 and the prediction accuracy
was measured using evaluation metrics such as the Mean Squared Error (MSE) and Mean
Absolute Error (MAE).

Researchers have also delved into different frameworks of neural networks with the
purpose of further improving the forecasting accuracy. The authors focused on stochastic
neural networks (SNNs), which encompass stochastic processes that manage to accurately
emulate the stochastic nature of the financial markets. As reported by Jay et al. [19], these
models are an attempt to predict cryptocurrency price volatility with the use of processed
market indicators and systematically outperform the more deterministic and simplistic
models. The authors focus on key cryptocurrencies, including Bitcoin, Ethereum, and
Litecoin, with the multitude of market indicators namely, price, volume, and even mining
difficulty, as features. The dataset being considered ranged from mid-2017 to the end of
2019, while MAPE, MAE, and RMSE have been employed for assessing predictive accuracy.
The findings from this study indicated that stochastic models adapted well to market
dynamics and outperformed the deterministic models in a consistent manner.

Hemant et al. [20] proposed a method in which the kernel extreme learning machine
(KELM) is coupled with a variational autoencoder (VAE) for predicting stock market
trends. The approach of this paper is a combination of the CNN technique for extracting
features and the VAE model for predictions towards improving the overall accuracy in
stock price prediction. This single approach shows great potential in applying advanced
machine learning algorithms for improving predictive accuracy. The model employs an
exhaustive set of features, including the use of technical indicators and the history of the
data transformed through CNN for deep feature extraction, further processed by VAE to
add on to its prediction capabilities. The dataset involved daily price movements of stocks
over a 2-year time horizon. The model’s accuracy was assessed through MAPE, MAE, and
RMSE, with the findings revealing that the combined developed VAE-KELM approach
greatly improves the performance of the standard prediction models.
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Finally, Charandabi and Kamyar [21] provided a comparative analysis of multiple
artificial neural network-based (ANN) approaches to predict cryptocurrency prices, while
highlighting the pros and cons of each of the methods presented in terms of the time
elapsed and their prediction accuracy. The datasets encompassed a range of historical
cryptocurrency price data, with a particular focus on Bitcoin. Overall, their findings
suggested that hybrid neural network models could predict cryptocurrency prices and time
effectively and accurately, thus providing a foundational approach that supports the use of
advanced machine learning techniques in financial market prediction.

The integration of sentiment analysis from social media with historical price data has
opened new avenues for predictive accuracy. On this basis, Pathak and Kakkar [22] com-
bine data and sentiment analysis from media using a new sentiment-based neural network
model (SBNNM) to improve predictive modelling. Their approach involved extensive
feature engineering, integrating sentiment analysis from social media with historical cryp-
tocurrency price data to create a comprehensive feature set. The dataset used comprised
real-time and historical data including pricing, volume, and market sentiment extracted
from Twitter using advanced natural language processing techniques. The evaluation crite-
ria focused on prediction accuracy and error metrics, with the neural network achieving a
prediction accuracy of 77.89%.

Further emphasizing the breadth of methodologies, hybrid approaches involving both
numerical and textual data have been employed to predict trends influenced by dynamic
market news. Usmani and Shamsi [23] investigated the effectiveness of combining nu-
merical and textual data to predict stock market trends influenced by news, introducing
a framework that could also be applied for analysing cryptocurrency markets and em-
phasizing the increasing role of artificial neural networks (ANN) in improving prediction
accuracy through diverse data integration. They employ sophisticated feature engineering,
utilizing both structured and unstructured textual features, such as Bag-of-Words and event
extraction techniques, alongside numerical data. This integration allows for a deep analysis
of the news impact on stock trends. Their findings suggest that neural networks, capable of
processing and learning from the complexity of combined data types, offer significant im-
provements in prediction accuracy, showcasing the potential for these methods in broader
financial applications.

Finally, a comprehensive literature review was undertaken by Dopi et al. [24], which
focused on the application of machine learning and deep learning techniques in the pre-
diction of cryptocurrency market stock prices. Their study investigated the correlation
between the stock and cryptocurrency markets, with a particular focus on the potential and
extensive utility of predictive modelling tools in comprehending complex market dynamics.
The review highlighted that the researchers predominantly utilize LSTM, MLP, RF, and
SVM methods, with MLP showing the best performance at a 71.63% accuracy rate. Feature
engineering was extensively used, incorporating both technical and fundamental analysis
data, including sentiment analysis from social media. The datasets featured varied widely
but commonly included historical price data, volume, and sentiment indicators from news
and social media. The evaluation of the models was typically based on accuracy, precision,
and loss metrics such as MAE and RMSE, reflecting a rigorous approach to assessing
prediction performance. The findings from the review suggest that combining multiple
forms of analysis and using advanced machine learning and deep learning techniques can
significantly enhance the accuracy of stock price predictions in highly volatile markets like
those of cryptocurrencies.

Table 1 provides a critical synthesis of academic research efforts based on the model
type that these employs.

The findings from our critical synthesis of the literature highlight several key trends
and gaps in the field of cryptocurrency price prediction using machine learning and deep
learning techniques. Firstly, the review emphasizes a growing trend in the application
of sophisticated machine learning and deep learning models, particularly LSTM, which
are renowned for their precision in predicting cryptocurrency prices. Despite their accu-
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racy, these models often lack interpretability and require extensive and complex training
procedures. Secondly, it is evident that LSTM models dominate the research landscape,
reflecting their effectiveness in capturing the dynamics of cryptocurrency prices. Thirdly,
our review revealed a general absence of methods that quantitatively assess the impact
of delays associated with the transposed volatility estimator of time series. This indicates
a need for improved methodologies that can effectively incorporate temporal delays to
enhance prediction accuracy. Fourthly, there appears to be a scarcity of research focused
specifically on predicting cryptocurrency volatility estimators.

Table 1. Critical synthesis of academic research effort.

References ML Model(s) Feature Engineering Lag Selection Bitcoin Features

[15] LSTM, ARIMA, AR, MR Yes No price, market cap
[16] LSTM Yes No prices
[17] LSTM, SVM Yes No prices, volumes
[18] ARIMA, LSTM Yes No prices
[19] SNN Yes No prices, volumes, and mining difficulty
[20] VAE, SNN Yes No prices, technical indicators
[21] ANN Yes No prices
[22] SBNNM Yes No prices, volume, and market sentiment
[23] ANN Yes No prices, volumes, and market sentiments
[24] LSTM, MLP, RF, SVM Yes No prices, volumes, and market sentiments

To address these identified gaps, our paper proposes several approaches:

o ElasticNet Regression Approach: We propose the development and implementation
of an ENR model, with optimized hyperparameter values, that balances computa-
tional efficiency with high prediction accuracy, providing a more interpretable model
compared to deep learning methods.

o Two-Step Methodological Framework for Lag Optimization: To tackle the challenge
of quantifying the impacts of lags, our study employs a two-step methodology. The
first step involves identifying the optimal number of autoregressive delays, which
are then incorporated as additional independent variables in the dataset. This inte-
gration allows for a more comprehensive examination and enhances the precision
of predictions.

o Volatility Estimators from Bitcoin Prices: We focus on designing effective machine
learning models, particularly utilizing volatility estimators derived from Bitcoin
prices. This initiative aims to fill the gap in research concerning the prediction of
cryptocurrency volatility estimators.

o Comparative Analysis of Model Accuracy: We provide a comparative analysis of
the predictive accuracy of the ENR model against other traditional models such as
Decision Trees, Random Forests, and Support Vector Machines.

3. Methodology

This section provides the mathematical analysis employed for deriving the functions
quantifying the volatility estimators of open, high, low, and close cryptocurrency prices.

The first volatility estimator employed is the Parkinson Volatility Estimator [25] of
Equation (1).

σ̂2
p =

(pmax − pmin)
2

4ln2
, (1)

where pmax = ln(High)− ln(Open), pmin = ln(Low)− ln(Open) and High, Open, and Low
correspond to the High, Open, and Low cryptocurrency price data. In our analysis, we
employ this function for exclusively quantifying the volatility estimators of open prices
solely. The intuition behind the selection of the Parkinson Volatility Estimator solely for
open prices hinges upon the fact that this estimator exhibits a unique ability to capture the
market’s immediate reaction to overnight news and events at the opening bell [26].
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Regarding high cryptocurrency prices, the second volatility estimator employed in-
volves the Garman–Klass Estimator [27] of Equation (2)

σ̂2
GK = 0.5·(pmax − pmin)

2 − (2ln2 − 1)·p2
close, (2)

where pclose = ln(Close)− ln(Open), with Close corresponding to the close cryptocurrency
prices. This volatility estimator is specifically tailored for high volatility assets like cryp-
tocurrencies due to its inclusion of the full range of price movements (high, low, and close)
within the trading day [27].

The third volatility estimator function employed for low cryptocurrency prices is
mathematically expressed through Equation (3) [28]

σ̂2
M = 0.274·σ2

1 + 0.16·σ2
s + 0.365·σ2

3 + 0.2·σ2
4 , (3)

where σ2
1 = 2

[(
p′max − p′close

)2
+ p′low

]
, σ̂2

s = p2
close , σ2

3 = 2
(

p′max − p′close p′min
)

p′close ,

σ2
4 = − (p′max−p′close)p′min

2ln2− 5
4

and p′close = pclose , p′max = pmax , p′min = pmin if pclose >

0 and p′close = −pclose , p′max = −pmin , p′min = −pmax if pclose < 0.
We selected the above volatility estimator for low cryptocurrency prices since this

estimator has the capability to integrate σ2
1 , σ2

s , σ2
3 and σ2

4 , in a single comprehensive mea-
sure. This approach is particularly effective in low-volatility scenarios, where traditional
estimators might not capture the full extent of market dynamics or might overemphasize
the impact of minor price changes [28].

The final fourth volatility estimator employed for close prices is the Rogers–Satchell
(RS) estimator [29] of Equation (4).

σ̂2
RS = pmax·(pmax − pclose) + pmin·(pmin − pclose), (4)

The reason for selecting this volatility estimator for close prices is mainly attributed
to the fact that the estimator captures the entire range of intraday price movements in
relation to both the opening and closing prices. Its formulation incorporates the high, low,
open, and close prices, enabling it to reflect the volatility surrounding the closing price
effectively [29].

Given the selection of the appropriate mathematical functions for quantifying the
volatility estimators of cryptocurrency prices, the second step of our approach involves the
determination of the optimal number of lags for capturing both the behaviour of the recent
volatility coefficient values along with the inherent autocorrelation in the data [30].

We then employ the RFR model to optimize the selection of time-series lags in our
predictive model. The approach begins by constructing a forest of decision trees, where
each tree is built from a bootstrap sample of the data. The RFR model utilizes the Mean
Decrease in Impurity (MDI) criterion to evaluate the importance of each lag in predicting
the volatility estimator [10]. The optimal number of lags are the lags resulting to an 85%
cumulative importance. This criterion has been empirically selected as it achieves a balance
between model complexity and explanatory power, ensuring that the model retains the
most significant predictors while avoiding overfitting by excluding less impactful variables.

Having selected the optimal number of lags, we finalized the dataset structure and
split the dataset to an 80% train and 20% test set. We then formulated the ENR model
and fit the model on the train set. The ENR model constitutes a combined statistical tool
of Ridge and Lasso (Least Absolute Shrinkage and Selection Operator) regression, based
on the OLS method. Ridge regression, Lasso regression, and Elastic Net regression are
techniques used in the field of machine learning and statistics for regularization, which
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helps in reducing model complexity and preventing overfitting. The linear problem of the
form [31] is presented in Equation (5).

ŷt = β0 +

(
J

∑
j=1

β jxtj

)
+ εi, ∀t ∈ T (5)

Here, the vector xtj represents the value of the independent variable j ∈ J at time
instance t ∈ T and β j is the regression coefficient vector of the independent variables. Then,
the sum of squared residuals is defined through Equation (6) as follows:

SSR =
T

∑
t=1

(yt − ŷt)
2, (6)

We then estimated the values of the coefficients by using the ordinary least square (OLS)
model, and through the minimization of the sum of the squared residuals of Equation (7).

(
β̂0, β̂ j

)
OLS

= argmin(β̂0,β̂ j)∈RJ+1

[
T

∑
t=1

(yt − ŷt)
2

]
= argmin(β̂0,β̂ j)∈RJ+1(SSR), (7)

By incorporating penalization techniques into the OLS framework, we gain an under-
standing of the Ridge and Lasso regression. Ridge regression employs ridge constraints
to restrict the size of certain coefficients, thereby regulating the selection of variables [32].
Ridge regression augments the loss function with a penalty equal to the square of the
magnitude of the coefficients. By penalizing the inclusion of large coefficients, this method
effectively mitigates the complexity of the model and aids in addressing multicollinearity,
which occurs when independent variables are significantly correlated. It is particularly
useful when dealing with data where the number of predictors (variables) is close to or
exceeds the number of observations. The penalty term is controlled by a hyperparameter,
often denoted by λ ≥ 0, which determines the extent of regularization. The higher the
value of λ, the greater the amount of shrinkage of the coefficients towards zero. The model
is developed through Equation (8) as follows:

(
β̂0, β̂ j

)
Ridge

= argmin(β̂0,β̂ j)∈RJ+1

[
T

∑
t=1

(yt − ŷt)
2 + λ

K

∑
j=1

β2
j

]
, (8)

We can notice that the difference between the estimations
(

β̂0, β̂ j

)
OLS

and
(

β̂0, β̂ j

)
Ridge

is the l2 penalty of the form: ∥∥β j
∥∥2

2 =
J

∑
j=1

β2
j ≤ M, (9)

for M to be the upper bound for the sum of the coefficients. Lasso Regression also adds
one more penalty (compared to the ridge regression) to the loss function, but unlike Ridge,
the penalty is the absolute value of the magnitude of coefficients. This can lead to some
coefficients being exactly zero when the penalty is large enough, effectively performing
variable selection and producing models that are sparse [33]. This is particularly useful for
models that benefit from variable reduction/selection. Similar to Ridge, the strength of
the regularization is controlled by a hyperparameter, λ. Lasso regression satisfies the next
optimization problem [34].

(
β̂0, β̂ j

)
Lasso

= argmin(β̂0,β̂ j)∈RJ+1

[
T

∑
t=1

(yt − ŷt)
2 + λ

J

∑
j=1

∣∣β j
∣∣], (10)
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with l1 penalty of the form ∥∥β j
∥∥

1 =
J

∑
j=1

∣∣β j
∣∣, (11)

Then, the combination of the two previous regression methods, Ridge and Lasso,
yields the elastic net regression [4]. It adds both penalties (the square of the magnitude and
the absolute value of the coefficients) to the loss function. This approach aims to leverage
the benefits of both Ridge and Lasso regression. It is useful when there are multiple features
correlated with each other. Elastic Net has two parameters to control the mix of Ridge and
Lasso penalties, which controls the overall strength of the penalties [35]. The model for
elastic net regression is then expressed through the following Equation (12) as follows:

(
β̂0, β̂ j

)
EN

= argmin(β̂0, β̂ j)∈RJ+1

[
T

∑
t=1

(yt − ŷt)
2 +

λ(1 − α)

2

J

∑
j=1

β2
j + λα

J

∑
j=1

∣∣β j
∣∣], (12)

In order to optimize the selection of the Elastic Net Regression’s (ENR) hyperparame-
ters, α and λ, which dictate the balance between the L1 and L2 penalties, we employ the
RandomizedSearchCV method using the Python programming language on the train set.
This methodological approach is implemented using libraries such as scikit-learn for the
RandomizedSearchCV functionality and NumPy for numerical operations. We randomly
select combinations from a predefined grid of α and λ values and evaluate the performance
of each combination using k-fold cross-validation. This stochastic sampling method is not
only computationally less intensive than an exhaustive grid search, but also provides a
practical compromise between thoroughness and efficiency.

Table 2 provides the nomenclature Table of the examined elastic net model parameters.

Table 2. Nomenclature of Elastic net Regression.

Model Parameters Nomenclature

β0 y intercept

β j Vector of the independent variable coefficients

yt Actual values of the prices at time t

ŷt Predicted values of the prices at time t

T Dataset time periods (either train or test)

λ Regularization parameter. Higher λ means higher regularization

α
Takes values of 0–1. Values of α higher than 0.5, means a higher impact of
the Lasso regression regularization on the prediction, else a higher impact
of Ridge regression∥∥∥β j

∥∥∥
1

Sum of absolute values of the coefficients∥∥∥β j

∥∥∥2

2
Sum of squares of the coefficients

To this end and for providing a comparative assessment of the ENR’s predictive
accuracy, we compare ENR with traditional machine learning regression models such as
the DTR, the RFR, and the SVR. Considering the optimally selected number of lags for
each volatility estimator, these models are fitted on the 80% train dataset for determining
their optimal parameter values and employed on predicting the 20% test set dependent
variable value. The criterion for assessing the examined machine learning regression
models is the Mean Absolute Error (MAE). The model parameters optimized under the
decision tree regression model involve the depth and the leaves of each tree, while for the
random forest, the average depth, and leaves of the forest trees [6]. Finally, for the SVR, the
parameters optimized involve the regularization parameter C, the error margin epsilon,
and the number of support vector regressors [36].
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The following Figure 1 summarizes the process map and pseudocode of the em-
ployed methodology.
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4. Numerical Analysis and Results

Table 3 summarizes the descriptive statistics of the volatility estimators associated
with the open, high, low, and close data from September 2014 to January 2024.

Table 3. Descriptive Statistics of Bitcoin Volatility Estimators.

σ2
p σ2

GK σ2
M σ2

RS

count 3420.0 3420.0 3420.0 3420.0
mean 0.001375 0.999884 0.999983 0.268848
std 0.004913 3.874017 3.041994 0.963543
min 4.34 × 10−15 7.87 × 10−10 5.19 × 10−8 8.95 × 10−13

25% 0.000033 0.028411 0.025095 0.006589
50% 0.000220 0.153595 0.156463 0.043649
75% 0.001053 0.661257 0.765213 0.209370
max 0.207560 125.595023 100.630430 42.454934

All estimators have a data count of 3421 daily observations, illustrating a robust
dataset. The mean values indicate the average level of volatility, showing a progression
from minimal at open to more substantial at close, suggesting varying volatility levels at
different trading times. The standard deviations are quite broad, especially for the close
prices, pointing to significant variability and thus potential unpredictability in Bitcoin’s
price movements. Minimum values near zero depict days of exceptionally low volatility,
whereas the maximum values, which are drastically higher than the means, highlight
days of extreme volatility, underscoring the erratic nature of cryptocurrency markets.
The percentiles (25%, 50%, and 75%) suggest a right-skewed distribution, indicating that
while most days witness lower volatility, a few experiences exceptionally high volatility.
These comprehensive data underscore the substantial risk and the necessity for careful risk
management in trading and investment strategies concerning Bitcoin.
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With respect to the optimal lag selection decisions, the following Figure 2 depicts the
lags that lead to a cumulative significance of 85% for each VE_1-4, using the random forest
regression methodological approach, while Table 4 summarizes the optimal lags for each
VE. As the volatility estimators are daily, we examined 30 lags as our initial lags number.
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Table 4. Lags Selected per Volatility Estimator.

Estimator Optimal No of Lags Top Significant Lags (Up to 85% CI)

VE_1 18 5, 1, 21, 3, 10, 11, 24, 17, 15, 28, 8, 6, 7, 22, 20, 18, 9, 14
VE_2 19 27, 28, 1, 11, 14, 22, 9, 10, 7, 12, 6, 26, 15, 23, 17, 8, 29, 18, 20
VE_3 18 4, 15, 6, 9, 28, 22, 26, 7, 29, 24, 12, 16, 23, 13, 2, 10, 27, 3
VE_4 18 5, 3, 1, 21, 10, 14, 24, 28, 22, 25, 18, 8, 13, 15, 7, 11, 20, 19

Having determined the optimal number of lags using the Random Forest Regression
model, we proceed with modelling each Bitcoin price volatility estimator using ENR.
Initially, the dataset is divided into training and test sets, with 80% allocated for training and
the remaining 20% for testing. The ENR, which incorporates both L1 and L2 regularization,
is then configured. To optimize the ENR’s hyperparameters efficiently, we employed
RandomizedSearchCV. Once the optimal hyperparameters are identified, the next step
involves the training of ENR on the training dataset. The trained model is then used to
predict the volatility estimators in the test set, considering the identified lags for each
volatility estimator as independent variables.

Table 5 provides the summary statistics of the ENR model.
The model results indicate that the intercepts and coefficients vary considerably across

different estimators, suggesting unique underlying dynamics in each case. For VE1, the
results show minimal coefficient shrinkage (λ = 0.0511) and a nearly pure ridge behavior
(α ≈ 0), leading to a low mean absolute error (MAE), indicative of a robust model fit. In
contrast, VE2 adopts a more LASSO-like approach (α = 0.9053) with a moderate λ (0.0940),
resulting in a higher MAE, which might imply less predictive accuracy. VE 3 exhibits
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the highest regularization (λ = 0.1116) and a balanced α (0.7369), yet it scores the highest
MAE among the models, possibly indicating issues with model suitability or data fit.
Finally, VE4 demonstrates the highest degree of coefficient shrinkage (λ = 0.5613) with a
predominance of ridge regression characteristics (α = 0.0762), which yields a relatively low
MAE. These results highlight the critical importance of tuning the λ and α parameters in
elastic net models to balance the trade-off between bias and variance effectively, particularly
in financial datasets where volatility estimators can behave unpredictably.

Table 5. Elastic net regression statistics.

Coefficients VE1 = σ2
p VE2 = σ2

GK VE3 = σ2
M VE4 = σ2

RS

β0 (Intercept) 0.00107 1.0167 0.2515
Lag1 0.0171 −0.0035 0.0000
Lag2
Lag3 0.0095 −0.006025442 0.0000
Lag4 0.004396279
Lag5 0.0051 0.0063
Lag6 0.0304 0.00000 0.007677287
Lag7 0.0080 −0.003956239 0.000000000 0.0614
Lag8 0.0000 0.000000000 0.0000
Lag9 0.0114 −0.01242403 −0.001456905
Lag10 0.0000 0.004415845 0.0000
Lag11 0.0000 −0.006322465 0.0122
Lag12 −0.003910096 0.000000000
Lag13 0.000000000 0.0000
Lag14 0.0000 −0.009497958 0.0000
Lag15 0.0005 0.010847662 0.0114516667 0.0000
Lag16 −0.003135042
Lag17 0.0001 −0.008438236
Lag18 0.0046 0.000000000 0.0000
Lag19 0.0000
Lag20 0.0000 0.003699343 0.0000
Lag21 0.0000 0.0000
Lag22 0.0000 0.00000000 0.007914059 0.0000
Lag23 −0.011457625 −0.011388763
Lag24 0.0000 0.004633000 0.0000
Lag25 0.0000
Lag26 0.000013700 −0.007468076
Lag27 −0.002826818
Lag28 0.0000 −0.003325371 0.00000000 0.0000
Lag29 0.008371966 0.002658218
Lag30

Parameter Values

λ (Lambda) 0.0511 0.09405 0.1116 0.5613
α (Alpha) 0.00000795 0.9053 0.7369 0.0762

MAE 0.001572 1.2230 1.2833 0.2076



Mathematics 2024, 12, 1392 12 of 15

To further evaluate the predictive power of elastic net regression compared to other
regression models, we employed the same process for predicting the dependent target vari-
able values of each bitcoin price volatility estimator considering DTR, RFR, and SVR. The
derived optimized model parameter values along with their MAE values are summarized
in the following Table 6.

Table 6. Model parameter and MAD values.

Volatility Estimators Model Parameters Values

1

DTR
Depth 38
Leaves 5407
MAE 0.0020

RFR
Average_Depth 40.64
Average_Leaves 3414.1
MAE 0.0018

SVR

C (Regularization parameter) 1
Epsilon (Error margin) 0.1
Number_of_Support_Vectors 17
MAE 0.0839

2

DTR
Depth 49
Leaves 5423
MAE 1.8767

RFR
Average_Depth 43.75
Average_Leaves 3425.3
MAE 1.3853

SVR

C (Regularization parameter) 1
Epsilon (Error margin) 0.1
Number_of_Support_Vectors 2136
MAE 0.8495

3

DTR
Depth 56
Leaves 5423
MAE 2.0269

RFR
Average_Depth 48.19
Average_Leaves 3425.28
MAE 1.5067

SVR

C (Regularization parameter) 1
Epsilon (Error margin) 0.1
Number_of_Support_Vectors 2230
MAE 0.9483

4

DTR
Depth 43
Leaves 5425
MAE 0.4224

RFR
Average_Depth 43.13
Average_Leaves 3426.6
MAE 0.3359

SVR

C (Regularization parameter) 1
Epsilon (Error margin) 0.1
Number_of_Support_Vectors 1351

MAE 0.2492

The following Table 7 summarizes the MAD values of the examined regression method-
ologies on the train sets of each one of the examined volatility estimators

Table 7. MAE values per regression model and volatility estimator.

Model VE1 VE2 VE3 VE4

ENR 0.0016 1.2366 1.2833 0.2076
DTR 0.0020 1.8767 2.0269 0.4224
RFR 0.0018 1.3853 1.5067 0.3359
SVR 0.0839 0.8495 0.9483 0.2492
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The analysis of Table 7 reveals that different regression models exhibit varied effec-
tiveness across the volatility estimators of Bitcoin prices, corresponding to open, high, low,
and close values. ENR performs exceptionally well with open and close prices, where
the predictive relationships may be more linear and less susceptible to sudden, non-linear
shifts typically seen during trading hours. The regularization in ENR helps to prevent
overfitting while effectively capturing the linear trends that might govern the open and
close price movements. On the other hand, SVR shows superior performance in estimating
the volatility of high and low prices as these prices often experience spikes and drops driven
by transient news and intra-day market sentiments [37]. SVR, with its capability to handle
non-linear relationships through kernel transformations, can capture these dynamics more
accurately [38].

5. Discussion

The primary objective of this study is to develop and employ a four-step methodolog-
ical approach for accurately predicting the volatility estimators of open, high, low, and
closed bitcoin prices. The first step of our methodological approach is to transform these
prices into volatility estimators using motion assumptions and log price transformations.
The second step involves the optimal selection of the number of lags required for accurately
capturing the volatile nature of bitcoin prices, while the third step is the formulation of the
ENR model on the dataset. The final fourth step provided a comparative analysis of ENR’s
predictive accuracy with DTR, RFR, and SVR

Our findings reveal the paramount importance of immediate past volatility in pre-
dicting short-term fluctuations, highlighting the unpredictable nature of cryptocurrency
markets that are prone to sudden shifts.

In comparison to other models tested in our study, the ENR model accuracy varied
depending on the specific volatility estimator being analysed. More specifically, ENR
exhibited exceptional performance with Open and Close prices, achieving the lowest Mean
Absolute Error (MAE) values among the models for these price types. This performance
highlights the model’s ability to capture the more linear and predictable trends at the
opening and closing of trading, where the market dynamics are potentially less volatile
and more susceptible to long-term factors.

On the other hand, SVR demonstrated superior performance in estimating the volatil-
ity of High and Low prices. These price points often encompass abrupt changes due to
intra-day news and market sentiments, resulting in complex, non-linear patterns. SVR’s
effectiveness in handling these dynamics, due to its capability to model non-linear relation-
ships through kernel transformations, led to more accurate predictions of volatility under
conditions of high unpredictability and transient market behaviours.

This analysis indicates that while the ENR effectively prevents overfitting and excel-
lently captures linear relationships, its performance is not uniformly superior across all
price volatility estimators. SVR’s superior handling of non-linear dynamics suggests that
a combination of models may be necessary to fully address the diverse characteristics of
Bitcoin’s price volatility. This comparative analysis underscores the necessity of employing
tailored modelling approaches for different aspects of market behaviour, reflecting the
multifaceted nature of cryptocurrency volatility.

6. Conclusions

This research significantly contributes to the field of cryptocurrency analysis by high-
lighting the efficacy of different regression models, including Elastic Net, in forecasting
Bitcoin price volatility. Utilizing a robust dataset spanning from September 2014 to January
2024, this study emphasizes the importance of a methodologically sound approach to lag
selection. Such methodologies enhance the model’s accuracy and relevance, as demon-
strated by the meticulous selection of optimal lags using Random Forest, which is crucial
in financial time series analysis. The ENR model excels in modelling the open and close
price volatilities, showcasing its strength in capturing more linear and predictable market
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behaviours. However, the analysis also reveals that none of the examined regression models
uniformly prevailed in terms of predictive accuracy.

Future research could involve assessing a broader range of cryptocurrencies to assess
the generalizability of the proposed models across different digital currencies. Furthermore,
the inclusion of additional financial and economic indicators could improve the models’
predictive capabilities, offering deeper insights into market behaviours.

Finally, the assessment of advanced machine learning and deep learning approaches
could also provide valuable perspectives on nonlinear patterns in cryptocurrency volatility,
potentially enhancing prediction accuracy.

In conclusion, while this study provides methodological advancements in predicting
Bitcoin volatility, it also paves the way for further research to deepen our understanding of
cryptocurrency markets and develop more sophisticated predictive models.
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