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Nextronmicroprobe station (Peltier-type sample stage, Seoul, Republic of Korea) 
The Nextronmicroprobe station (Figure S1(A,B)) with a Peltier-type sample stage, 

developed in Korea [1], provides a versatile platform for the electrical characterization of 
samples under controlled temperature, gas, and humidity conditions. 

The probe station can accommodate up to six probes made of a rhodium material 
that can be connected to the sample. The probe station allows for monitoring the sensors' 
electrical resistance measurements during experiments with a programmed multimeter 
connected to a PC via an Arduino card. The stage size is typically around 19 mm × 19 mm 
and made of rhodium-coated copper, which controls heat between −40 °C and + 170 °C 
with an average ramp speed of up to 60°C min−1. The probe station also offers optional 
gas dosing and humidity control capabilities during experiments. The humidity control 
system can be in the normal range between relative humidity (RH) of 4% and 95% and 
has an average ramp speed of 10% RHmin−1. A humidity sensor is installed inside the 
chambers to monitor RH during experiments. The chamber has gas flow control for pre-
cise and stable flow control. The gas flow station, built with the mass flow control unit, 
gas flow pipeline, and electrical components, is the ideal solution for various applications 
demanding precise and stable flow control. 

The Nextron probe station can generate and control humidity as it is equipped with 
a humidity control system (HCS). This system consists of a two-channel Mass Flow Con-
troller (MFC) that can precisely control the flow of dry and humid gas into the probe sta-
tion chamber. The probe station has a humidity sensor installed inside the chamber, al-
lowing the system to monitor and precisely control the humidity levels within the cham-
ber. 

The HCS generates humid gas by passing a dry gas, such as nitrogen or air, through 
a water bubbler or other humidification device (Figure S1(C)). This saturates the gas with 
water vapor, which can then be precisely mixed with the dry gas using the MFC to achieve 
the desired humidity level. The HCS uses feedback from the humidity sensor to automat-
ically adjust the mixing ratio of dry and humid gas to maintain the target humidity level 
within the chamber. This allows for the tight control and stabilization of the humidity 
environment. 
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Figure S1. (A,B) The Nextronmicroprobe station with a Peltier-type sample stage. (C) Schematic 
illustration of humidity generation in the Nextron station with the humidity control system (HCS). 

Lab-made organic solvent gas generator 
We used a lab-made organic solvent gas generator. Imagine a device comprising a 

heated flask and a coil submerged in a cooling bath. Inside the flask, a chosen organic 
solvent awaits its transformation. As the temperature within the flask rises, controlled by 
a precise heat source, the solvent evaporates. We used mass flow meters to measure the 
amount of solvent vaporized, ensuring consistent and repeatable experiments. By moni-
toring the mass flow rate of the vapor leaving the heated flask, we could adjust the heating 
or cooling parameters to achieve the target concentration. This heated vapor then ascends 
into a serpentining coil bathed in a coolant. The vapor encounters a resistance by main-
taining a precise coolness within the coil. This thermal opposition condenses some vapor 
into liquid form, effectively concentrating the organic solvent gas stream. The remaining 
uncondensed vapor, now boasting a heightened purity and a specific concentration 
thanks to the thermal control, continues its journey to the Nextron chamber.



Chemosensors 2024, 12, 83 3 of 9 
 

 
Chemosensors 2024, 12, 83. https://doi.org/10.3390/chemosensors12050083 www.mdpi.com/journal/chemosensors 

Table S1. Literature overview of recent ZnO NMs employed in the development of gas sensors. 

ZnO 
morphologies 

Synthesis 
technique Substrate Gas 

Concentration 
(ppm) 

Operating 
temperature 

 (°C) 
Response 

Response 
time 
(s) 

Recovery 
time 
(s) 

Ref 

ZnO 
Nanoparticles 

Co-precipitation Glass NH3 50 RT 7.29 46 29 [2] 

ZnO:Eu 
Nanowire 

Electrochemical FTO/ glass H2 100 RT 2.1 7 42 [3] 

Ni-ZnO 
Nanorods 

Hydrothermal FTO H2S 5 250 68.9% 75 54 [4] 

ZnO/Mn-PY 
Nanofiber 

Hydrothermal Core yarn 
(PY) 

NH3 100 RT 13.13 64 24 [5] 

ZnO 
Nanoparticles 

Sonication Si/SiO2 CO 40 RT 23.7% - - [6] 

ZnO/LIG 
Nanorods 

Hydrothermal 
polyimide 

(PI) 
NO2 1 RT 251.71% 9.5 8.3 [7] 

Ag–ZnO/GO 
Nanorods 

Hydrothermal FTO C2H2 100 250 187.34% 13 780 [8] 

ZnO 
Nanorods CBD SiO2/p-Si NH3 50 RT 226% 14  4  [9] 

Au-ZnO/Mi 
Crospheres Hydrothermal 

polyimide 
(PI) Ethanol 100 320 75.185 - - [10] 

Pd-ZnO 
Hexagonal Mi-

crodisks 
Hydrothermal 

Al2O3 
ceramic 

NH3 50 230 3.9 23.2 271.8 [11] 
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GO/ZnO 
Thin film 

DC reactive 
sputtering 

Glass NH3 25 RT 14.783 114 21 
[12] 

 

ZnO 
Thin Film 

Electron beam 
deposition 

Si and Al2O3 O3 55–1150 ppb RT - <2 <15 
[13] 

 

Pt/Pd-decorated 
WS2-ZnO 

Nanosheets 
 

Atomic layer 
deposition 

- Acetone 10 RT 13.77 - - 
[14] 
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Table S2. Literature overview of recent procedures to synthesize ZnONMs. 

ZnO 

Nanostructure 
Method 

Precursor-
Salt 

Reacting 
Agent pH 

Synthesis 
Tempera-
ture (°C) 

Calcination 
Temperature 

(°C/hour) 

Particle 
Size 
(nm) 

Band gap 
Eg(eV) Applications Ref 

Nanoparticles 
Ultrasound / 

Sol-gel 
Zinc  

acetate 
Oxalic acid - 60 400–700/2 22–30 

3.269–
3.359 

Photocatalytic and 
antibacterial [15] 

Nanorods 
Sol-gel / 

Hydrothermal 

Zinc 
 acetate 

Ethanolamine 

HMTA 
- 

60 

90 
- 27.41 - 

Power generators 
and sensors [16] 

Nanoparticles 
Sol-gel / 

Biosynthesis 

Zinc  
acetate 

NaOH - 80–60 250/4 - 
3.23– 

3.25 
Photocatalytic and 

antibacterial [17] 

Nanoparticles Biosynthesis 
Zinc  

acetate 
NaOH 10–14 90 - 66.47 3.33–3.39 Breast cancer [18] 

Nanoparticles 
Biosynthesis / 

Hydrothermal 

Zinc 
 nitrate 

Lemon extract 8 180 500/4 - 3.20 

Photocatalysis 
and 

antibiotics 

[19] 
 

Nanosheets 

Hydrothermal / 

Microwave irra-
diation 

Zinc 
 nitrate 

Urea - 180 500/5 2.32  ±  
0.40 

3.22 Ethyl sulfide gas 
sensor [20] 

Nanorods 
Magnetron 
sputtering 

Zinc 
 nitrate 

Methenamine - 95 600/1 ∼50 - 
Ethanol  

gas sensor 
[21] 

Nanowire 
Drop coating / 
Hydrothermal 

Zinc  
nitrate 

HMTA - 95 400/1 - - 
Hydrogen sulfide 

gas sensor 
[4] 

 

Nanoflowers Sonochemical 
Zinc  

acetate 
KOH - RT - - - DNA biosensors 

[22] 
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Nanoplatelets Electrodeposi-
tion 

Zinc  
chloride 

KOH - RT - 3–6 3.11 Solar cells [23] 

Nanoflakes Hydrothermal 
Zinc  

nitrate 
HMTA - 110 400/2 46 - 

Hydrogen sulfide 
Gas sensor 

[24] 

Nanowire 
Electrochemical 

deposition 
Zinc  

nitrate 
DMAB 9–11 50–80 400/1 - 3.27 Photocatalytic wa-

tertreatment 
[25] 

Nanowire Solvothermal 
Zinc  

acetate 
NaOH - 150 - 12.96 3.18 Photocatalysis [26] 
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Figure S2. The response to an 80 ppm C8H8 gas concentration provides insights into the response 
and recovery times. 

 
Figure S3. TGA thermograms of raw PS, and PS films cured at 60℃ and 180℃. 
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