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Abstract: Proteinuria is known to be associated with all-cause and cardiovascular mortality, and
nephrotic syndrome is defined by the level of proteinuria and hypoalbuminemia. With advances
in medicine, new causative genes for genetic kidney diseases are being discovered increasingly fre-
quently. We reviewed articles on proteinuria/nephrotic syndrome, focal segmental glomerulosclero-
sis, membranous nephropathy, diabetic kidney disease/nephropathy, hypertension/nephrosclerosis,
Alport syndrome, and rare diseases, which have been studied in mouse models. Significant progress
has been made in understanding the genetics and pathophysiology of kidney diseases thanks to
advances in science, but research in this area is ongoing. In the future, genetic analyses of pa-
tients with proteinuric kidney disease/nephrotic syndrome may ultimately lead to personalized
treatment options.

Keywords: genetic kidney disease; knockout; nephrotic syndrome; proteinuria; transgenic

1. Introduction

Nephrotic syndrome (NS) is defined by proteinuria and hypoalbuminemia associated
with edema and hyperlipidemia. General edema and pleural effusion are observed in
severe cases, and NS is a cause of end-stage kidney disease (ESKD). Even slight proteinuria
affects all-cause and cardiovascular mortality [1]. NS consists of steroid-sensitive NS (SSNS)
and steroid-resistant NS (SRNS). A previous report suggested that approximately 30% of
SRNS cases were caused by a single gene abnormality [2]. Hereditary types of NS that
appear in both familial and nonfamilial patients and manifest throughout a wide age range
and spectrum of histological abnormalities have been linked to numerous genes. To name
a few of the more famous ones, podocyte-specific genes include NPHS1, NPHS2, WT-1,
PLCE1, LMX1B, SMARCAL1, COQ2, CD2AP, ACTN4, TRPC6, and INF2. As glomerular
basement membrane (GBM) components, COL4A3, COL4A4, COL4A5, and LAMB2 have
been identified as major causes [3]. The GBM is an essential component of the glomerular
filtration barrier and is also related to proteinuria [4]. For example, a loss of GBM heparan
sulfate chains, major components of the GBM, is associated with proteinuria in several
glomerular diseases, including lupus nephritis and diabetic nephropathy [4–6]. Moreover,
mature podocytes produce high levels of VEGF-A, and adult glomerular endothelial cells
(GECs) express high levels of VEGF receptors, which indicates that podocytes and GECs
are related to each other [7]. For example, RRM2B deletion shows the marked endothelial
hypertrophy in addition to progressive podocyte hypertrophy [8]. GEC dysfunction is
characterized by a compromised endothelial glycocalyx, an inflammatory phenotype,
mitochondrial damage and oxidative stress, aberrant cell signaling, and endothelial-to-
mesenchymal transition in the early stages of focal segmental glomerular sclerosis (FSGS)
and diabetic kidney disease (DKD) [9]. The endothelium may play a role in some glomerular
diseases because it involves alterations of the systemic and glomerular endothelium and
glycocalyx, and their sera directly activate GECs [10]. Glomerular endothelial cell failure
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is sufficient to promote podocyte damage, proteinuria, and mesangial cell activation [9].
With advances in medicine, new causative genes for genetic kidney diseases are being
discovered increasingly frequently.

In this review, we summarized the findings of articles with causative genes that have
been demonstrated in mouse models with proteinuria or NS, focusing on articles published
within the last five years.

2. Methods

We conducted a search of PubMed using the following search formula: ((“nephrotic
syndrome”[All Fields] OR (“proteinuria”[MeSH Terms] OR “proteinuria”[All Fields]
OR “proteinurias”[All Fields])) AND (“genes”[MeSH Terms] OR “genes”[All Fields]
OR “gene”[All Fields]) AND (“mice”[MeSH Terms] OR “mice”[All Fields]) NOT “re-
view”[Publication Type]) AND (y_5[Filter])). A total of 366 articles were identified using
this search strategy. We checked all the titles and abstracts of the articles to identify per-
tinent articles. Following the abstracts, the entire content of the remaining papers was
examined to determine their applicability to this investigation. Specifically, previous stud-
ies that were not connected to proteinuria or nephrotic syndrome, or that did not include a
mouse model, were eliminated. Finally, we selected 80 articles.

3. Proteinuria/NS

Many genes that are related to proteinuria and NS have been discovered so far, and an
overview of the genes is shown in Figure 1.
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Figure 1. (a) AIM2 promotes podocyte differentiation and suppresses proliferation by increasing
WT1 and cell cycle genes such as CDKN1A. (b) TWIST1 inhibits CCL2 induction which promotes
monocyte/macrophage infiltration into the injured glomeruli. (c) GSK α/β knockout causes mitotic
catastrophe. (d) If WTIP is retained in the nucleus, WTIP associates with WT1 and inhibits WT1-
dependent transcriptional activation of the amphiregulin promoter. (e) WT1 is both a transcriptional
repressor and activator and regulates genes important in nephron formation including podocalyxin,
amphiregulin, and perhaps nephrin. (f) REST maintains cytoskeleton homeostasis protects against
apoptosis and maintains kidney function during aging. (g) IL1RAP induces suppressive immune cells
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called myeloid-derived suppressor cells (MDSCs). (h) SLK is a regulator of cytoskeletal struc-
ture. (i) PALD1 regulates actin filaments, synaptopodin, and α-actinin-4. (j) GADD45GIP1 plays
an essential role in mitochondrial synthesis and membrane integration of OXPHOS polypeptides.
(k) SHROOM3 is related to Fyn activation and nephrin phosphorylation. (l) NES regulates nephrin.
(m) EXOC5 affects the expression and localization of nephrin. (n) PP2A is involved in the expression
of synaptopodin, podocin, nephrin. (o) LAMA5 encodes Laminin-α5. (p) USP40 is colocalized with
NES in developing and mature podocytes. Its deficiency upregulates NES.

Absent in melanoma-2 (AIM2) is an innate immune sensor for cytosolic dsDNA
and localizes to podocytes in the kidney [11]. Aim2−/− mice showed crescent formation
after intravenous administration of nephrotoxic serum compared to wild-type (WT) mice,
which was associated with podocyte dedifferentiation and parietal epithelial cell activation
(Table 1) [11].

Table 1. Proteinuria-associated genes reviewed in the present article.

Gene Name Chromosome Protein Function Renal Findings in the Gene Deletion

AIM2 1 An innate sensor for cytosolic dsDNA Podocyte dedifferentiation (deletion
in podocytes)

BMAL1 11 The core of the circadian clock and regulate the
transcription of various clock-controlled genes

Suppressing cystathionine β-synthase
transcription and expression (deletion in

proximal tubule)

CRIF1 19
Mediates the integration of nascent oxidative
phosphorylation polypeptides into the inner

mitochondrial membrane

Mitochondrial structural abnormalities such as
swelling, abnormal arrangement, and loss of

cristae (deletion in podocytes)

EXOC5 14 Exocyst complexes are related to exocytosis
and vesicle traffic Foot process effacement, loss of slit diaphragm

GALNT11 7 Protease processing, secretion, cell signaling,
cell adhesion, and organ growth Glycosylates megalin and affects ligand binding

GSK3A 19 Contributing to deposition of glycogen Fewer podocytes and reduced nephrin
expression (deletion in podocytes)GSK3B 3

IL1RAP 3 Encodes a subunit of the functional IL-1
receptor, IL-33 receptor, and IL-36 receptor

Lower myeloid-derived suppressor cells which
inhibit immune cells and
ameliorate inflammation

ITSN2 2 Guanine exchange factors for Cdc42 Delayed recovery from podocyte injury

LAMA5 20 Encodes Laminin-α5 (an essential component
of the GBM)

Severely disrupted glomerulogenesis, defects in
the branching of the ureteric bud, and sporadic

renal agenesis

PALLD 4 A pivotal role in the stability and dynamics of
the actin cytoskeleton

Disrupt the morphology of podocytes (deletion
in podocytes)

PPP2CA 5 Signal transmission, cytoskeleton dynamics,
cell transformation, angiogenesis, etc.

Cytoskeleton rearrangement and
downregulation of synaptopodin, podocin, and

nephrin but not podocyte loss (deletion
in podocytes)

PPP2CB 8

REST 4 Regulates cell death and stress resistance Maintains cytoskeleton homeostasis and protects
against apoptosis during aging

SHROOM3 4
An F-actin binding protein, important for

epithelial morphogenesis via
Rho-kinase binding

Foot process effacement without podocyte loss
(deletion in podocytes), inhibition of renal

fibrosis (deletion in tubular)

SLK 10 A regulator of cytoskeletal structure Reduce F-actin and alter the shape of glomerular
epithelial cells (deletion in podocytes)

TWIST1 7 A repressor of cell-mediated and humoral
adaptive immunity

Increase levels of CCL2 and TNF-α after
podocytes injury (deletion in podocytes)

USP40 2
Restrain the ubiquitination process or inhibit

the catalytic function of
ubiquitin-related enzymes

Upregulate nestin

WTIP 19 Represses the activity of
Wilms’ tumor-1 activity

Early and prolonged proteinuria in response
to lipopolysaccharide

CCL2, C-C motif chemokine ligand 2; GBM, glomerular basement membrane; IL, interleukin; TNF-α, tumor
necrosis factor-α.
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BMAL1 is the protein at the core of the circadian clock and regulates the transcription
of various clock-controlled genes [12]. Loss of Bmal1 in the kidney can result in various
alterations in the renal physiological function, such as lowering blood pressure, disrupting
fluid–electrolyte balance, and changing the glomerular filtration rate [13]. The urinary
albumin/creatinine ratio, serum creatinine, and blood urea nitrogen values were elevated
in proximal tubular cell-specific Bmal1 knockout mice fed an adenine diet compared to WT
mice (Table 1) [14].

CRIF1 plays an essential role in mitochondrial synthesis and membrane integration
of oxidative phosphorylation polypeptides, interacting with proteins surrounding the
polypeptide exit tunnel of the large subunit of mitochondrial ribosomes [15]. Podocyte-
specific Crif1 knockout mice exhibited progressive albuminuria and kidney dysfunction
(Table 1) [16]. Electron microscopic analyses demonstrated mitochondrial structural abnor-
malities, such as abnormal arrangement and loss of cristae as well as podocyte foot process
effacement [16].

The exocyst complex comprises eight proteins that have been shown to play vital
roles in exocytosis and vesicle trafficking [17]. Two patients with deletions in EXOC4
were identified among 256 patients with NS [15]. Podocyte-specific Exoc5 knockout mice
showed massive proteinuria, foot process effacement, and loss of slit diaphragm as well as
mislocalization of nephrin and Neph1 (Table 1) [18].

GALNT11 encodes a member of the large glycosyltransferase family responsible for
initiating mucin-type O-glycosylation of secreted and membrane-bound proteins [19].
Galnt11 was specifically expressed in the mouse proximal tubules similar to expression
patterns seen in human kidneys, and Galnt11 knockout mice displayed increased albumin-
to-creatinine ratios relative to controls, suggesting that Galnt11 had an effect on reabsorbing
albumin in the proximal tubules (Table 1) [20].

Glycogen synthase kinase-3 (GSK3) has two isoforms, GSK3α and GSK3β, and plays
a role in phosphorylation, protein complex formation, and subcellular distribution [21].
Podocyte-specific GSK3 α/β knockout mice (podCreGSK3αfl/flβfl/fl) had enlarged pale
kidneys, kidney failure, and high levels of albuminuria (Table 1) [22]. Podocin RtTA-tet-o-
Cre GSK3αfl/flβfl/fl mice given doxycycline from four weeks old developed a spectrum of
kidney disease, ranging from mild albuminuria or mesangial hypercellularity to glomeru-
losclerosis and interstitial fibrosis [22]. These data showed essential roles of GSK3 α/β in
the developmental and maturity periods [22].

Although many causative genes with SRNS have recently been discovered, not much
is known about the genes associated with SSNS, which accounts for approximately 80%
of childhood-onset NS [23]. Analyzing a case of familial SSNS indicated the potential
causative gene to be IL1RAP, which encoded an essential common subunit of the functional
IL-1, IL-33, and IL-36 receptors [24]. Peripheral blood mononuclear cells in SSNS patients
showed a decreased response to IL-1β. Furthermore, Il1rap knockout mice exhibited
exacerbated lipopolysaccharide (LPS)-induced nephrotic albuminuria (Table 1) [24].

Mutations in six genes—MAGI2, TNS2, DLC1, CDK20, ITSN1, and ITSN2—were found
in seventeen families with NS [25]. Although there were no marked differences between
Itsn2L−/L− and WT mice in the histologic findings of the kidneys or level of urinary protein,
LPS injection increased urine albumin levels in Itsn2L−/L− mice compared to WT mice
(Table 1) [25]. There was also a delayed recovery from podocyte injury in Itsn2L−/L− mice
compared to WT mice [25].

The LAMA5 gene encodes Laminin-α5, and Lama5−/− mice exhibited embryonic
lethality and severe defects in glomerular development (Table 1) [26]. Three hundred fami-
lies with pediatric NS underwent whole-exome sequencing, which revealed homozygous
variants in LAMA5 in three families [27]. These genetic variants might contribute to the
development of NS in pediatric patients.

PALLD plays a critical role in the stability and dynamics of the actin cytoskeleton [28].
Podocyte-specific Palld knockout showed disrupted morphology of the glomeruli with
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mild podocyte foot process effacement and increased susceptibility to nephrotoxic serum
(Table 1) [28].

Podocyte-specific PP2A knockout mice exhibited weight loss, growth retardation, and
proteinuria associated with progressive glomerulosclerosis, interstitial fibrosis, and foot
process effacement (Table 1) [29]. Upregulation of phosphorylated YB-1 was observed in
podocyte-specific PP2A knockout mice and might be related to the functional integrity of
glomerular filtration [29].

Repressor element 1-silencing transcription factor (REST) is a repressor of neuronal
genes during embryonic development [30]. Although REST is downregulated after terminal
neuronal differentiation, it is induced in the aging human brain and regulates a network of
genes that mediate cell death and stress resistance [30]. Podocyte-specific Rest knockout
mice developed albuminuria, glomerulosclerosis, and interstitial fibrosis (Table 1) [31].
Furthermore, REST was found to be induced by oxidative stress and protected against
apoptosis in podocytes [31].

Shroom3 is an F-actin binding protein that is important for epithelial morphogene-
sis [32]. Although tubular-specific Shroom3 knockdown in mice inhibited kidney fibrosis in
a ureteric obstruction model [32], glomerular and podocyte-specific Shroom3 knockdown
induced reversible albuminuria with podocyte foot process effacement without podocyte
loss (Table 1) [32,33].

Ste20-like kinase (SLK) is a serine/threonine kinase expressed ubiquitously and ap-
pears to be a regulator of cytoskeletal structure [34]. Podocyte-specific Slk knockout mice
injected with adriamycin showed a decreased number of podocytes and greater albumin-
uria than control mice (Table 1) [34]. Ezrin levels and ezrin phosphorylation were reduced
in podocyte-specific Slk knockout mice injected with adriamycin, which was associated
with the decreased expression of F-actin and alteration of the shape of podocytes [34].

Twist1 is a transcriptional repressor and inhibits cytokine production by diminishing
NF-κB or Runx3 expression in Th1 cells [35]. Twist1 in podocytes limited CCL2 production
and macrophage infiltration in injured glomeruli [36]. Although podocyte-specific Twist1
knockout mice did not exhibit proteinuria, they had more proteinuria than WT mice after
inducing nephrotoxic serum or adriamycin (Table 1) [36].

The degradation systems for cellular proteins consist of the ubiquitin proteasome
system and the autophagosome–lysosomal pathway, central to which is the conjugation of
ubiquitin to substrate proteins [37]. Deubiquitinating enzymes (DUBs) make ubiquitination
reversible, slowing the ubiquitination process by removing ubiquitin chains or inhibiting
the catalytic function of ubiquitin-related enzymes [38]. Ubiquitin-specific protease (USP)
is the largest family of DUBs, and USP40 is specifically localized in the podocytes of the
mature glomerulus [38]. Cultured podocytes with USP40 knockdown decreased HINT1 and
p53 [39]. Although Usp40 knockout mice did not exhibit any alterations in the glomerular
phenotype, USP40 and its interacting partners formed a regulatory network that protected
the cellular processes leading to glomerular sclerosis (Table 1) [39].

WTIP is part of a multiprotein complex in the podocyte foot process and shuttles
between the nucleus and cytosol [40]. Wtip−/− mice exhibited embryonic lethality, and
Wtip heterozygous mice developed significant proteinuria in response to LPS or adriamycin
injection compared to WT mice (Table 1) [41]. Further studies involving podocyte-specific
Wtip knockout mice are desirable.

4. Focal Segmental Glomerular Sclerosis (FSGS)

FSGS is the most common glomerular histologic lesion associated with high-grade
proteinuria and ESKD, which can be caused by a variety of underlying mechanisms [42].
In individuals who either do not receive treatment or are refractory to it, primary FSGS is
often a progressive condition, with a 5% rate of spontaneous remission and a 50% rate of
ESKD during a period of 5–8 years following a biopsy [42]. Up to two-thirds of patients
with FSGS who present in the first year of life have genetic abnormalities that account
for the later clinical presentation in this age range [42]. However, in older children and
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adults with FSGS and a related genetic mutation, the direct causal relationship with the
disease process, such as proteinuria and kidney failure, is not as clear. In this situation, it
has been proposed that a second hit might be necessary [42]. There are many theories as to
where these triggers come from, including additional genetic and/or outside environmental
elements [42]. Further investigations into causal genes might provide more information on
treatment efficacy and the kidney prognosis.

Polymorphisms in APOL1 are a risk factor for chronic kidney disease (CKD), includ-
ing human immunodeficiency virus (HIV)-associated nephropathy and FSGS [43]. The
common allele (known as G0) reduced glomerulosclerosis in a murine model of HIV-
associated nephropathy compared to the CKD-associated risk alleles, known as variants
G1 and G2 [43]. The APOL1 G1 risk allele made mice more susceptible to kidney disease
in a lipotoxicity-driven FSGS model (Table 2) [44]. Intravenous injection of interferon γ

led to heavy proteinuria and glomerulosclerosis in G1/G1 and G2/G2 but not G0/G0
bacterial artificial chromosome (BAC) transgenic mice [45]. Transmission electron micro-
scopic analyses of human urinary podocytes showed a reduced mitochondrial matrix
density and increased mitochondrial area in G1/G2 podocytes compared with G0/G0
podocytes [44]. Antisense oligonucleotides against APOL1 mRNA reduced protection
against IFN-γ–induced proteinuria in APOL1 G1 mice [46]. In humans with two APOL1
variants (G1/G1, G2/G2 or G1/G2), inaxaplin selectively inhibited the APOL1 channel
function and reduced proteinuria in a phase 2a study [47]. Further studies will be expected
in the future.

Table 2. FSGS- and MN-associated genes reviewed in the present article.

FSGS

Gene Name Chromosome Protein Function Renal Findings in the Gene Deletion

APOL1 22 Roles in the transport and metabolism of lipids
Increase triglyceride content and alter

mitochondrial structure in the podocytes
(deletion in podocytes)

ARHGEF7 13 Guanine exchange factors for Cdc42 Reduces Cdc42 activity, causing podocyte
apoptosis and loss

COQ6 14 Needed for the biosynthesis of coenzyme Q10

Abnormal mitochondria characterized by
hyperproliferation and increased size and the

defect in podocyte migration rate (deletion
in podocytes)

CRB2 9 Control cell polarization and establish
cell–cell contacts

A binding partner for the nephrin extracellular
domain (deletion in podocytes)

MYO9A 15 Encode a nonmuscle myosin Decreased Myo9A-actin-calmodulin
interaction and increased active RhoA

PARVA 11 An adhesion checkpoint that controls
RhoA/ROCK-mediated contractility

Abnormal podocyte architecture (deletion
in podocytes)

PLAUR 19
This metabolic product works as an

inflammatory biomarker and a
signaling molecule

Activate glomerular Src kinase

TMEM30A 6 Fold and localize properly P4-ATPases
into subcellular Cause ER stress (deletion in podocytes)

ZHX2 8 Transcriptional repressors of WT1 Worse FSGS in both Zhx2 deficient
and overexpressing

MN

Gene name Chromosome Protein function Renal findings in the gene deletion

MPZ 1 Related to membrane adhesion and
compaction of the myelin membranes Thickening of the GBM

NPNT 4 An extracellular matrix protein Widening of the lamina rara interna
of the GBM

ER, endoplasmic reticulum; FSGS, focal segmental glomerular sclerosis; GBM, glomerular basement membrane;
MN, membranous nephropathy; ROCK, Rho-associated kinase.
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Rho GTPases, such as RhoA, Rac1, and Cdc42, are regulators of the actin cytoskele-
ton and play important roles in podocyte morphology and ensuring an efficient barrier
function [48]. Arhgef7 is an important activator of Cdc42, and podocyte-specific Arhgef7
knockout mice exhibited progressive proteinuria and FSGS with reduced Cdc42 activity
(Table 2) [49].

COQ6 is needed for the biosynthesis of coenzyme Q10, and its mutations in human
patients produce NS with sensorineural deafness [50]. Recently, a new mutation of COQ6
c.41G>A was detected in a patient with FSGS [51]. Podocyte-specific Coq6 knockout
mice developed proteinuria and FSGS (Table 2) [52]. However, podocyte-specific Coq6
knockout mice treated with 2,4-dihydroxybenzoic acid, which functioned to bypass certain
deficiencies of the CoQ10 biosynthesis pathway, were protected from kidney disease
progression, showing an improved survival compared to untreated mice [52].

Crb2 is a type I transmembrane protein that is expressed in the apical membrane
of podocytes [53]. Podocyte-specific Crb2 knockout mice had severe albuminuria, FSGS,
and tubulointerstitial fibrosis associated with a decreased expression of Nphs2, Podxl,
and Nphs1 (Table 2) [53]. CRB2 protein variants with SRNS accumulated in the endoplas-
mic reticulum (ER), exhibited altered glycosylation patterns, and induced an ER stress
response [54].

MYO9A has a Rho-guanosine triphosphatase activating protein (Rho-GAP) tail do-
main that deactivates RhoA [55]. Myo9aR701X/+ mice showed proteinuria and FSGS with
increased RhoA activity, which recapitulated autosomal dominant inheritance of the het-
erozygous MYO9A p. R701X variant identified in the proband (Table 2) [55].

PARVA controls RhoA/ROCK-mediated contractility [56]. Podocyte-specific Parva
knockout mice exhibited proteinuria and FSGS, which resulted in kidney dysfunction
(Table 2) [57,58]. PARVA associated with TJP1 (also known as ZO-1) and prevented
lysosome-dependent degradation of TJP1, which contributed to maintaining the podocyte
structure and function [57]. Podocyte-specific Tjp1 knockout mice showed proteinuria
and GS with impaired slit diaphragm formation; in addition, podocyte-specific Tjp1 and
Tjp2 double-knockout mice showed the accelerated appearance of the defects observed in
podocyte-specific Tjp1 knockout mice [59].

Urokinase-type plasminogen activator receptor (uPAR) is aglycosyl-
phosphatidylinositol (GPI)-anchored protein, and soluble uPAR (suPAR) is generated
by removal of the GPI anchor from uPAR [48]. suPAR can be detected in blood and urine
and serves as both an inflammatory biomarker and a signaling molecule [60]. suPAR
isoform-2 transgenic mice developed albuminuria and FSGS with podocyte foot process
effacement (Table 2) [61].

Phosphatidylserine is asymmetrically and dynamically distributed across the lipid
bilayer in eukaryotic cell membranes, which is maintained by flippases, one of the most
important P4-ATPases [62]. The TMEM30 (also known as CDC50) family proteins interact
with multiple P4-ATPases [63], and the TMEM30A expression was shown to be decreased in
patients with minimal change disease and membranous nephropathy (MN) [64]. Podocyte-
specific Tmem30a knockout mice showed albuminuria and FSGS, which was associated
with ER stress (Table 2) [64].

Zinc finger and homeobox (ZHX) family transcription factors, such as ZHX1, ZHX2
and ZHX3, regulate the majority of structurally and functionally important podocyte
genes, and ZHX2 is one of the most potent transcriptional repressors of WT1 [65]. While
podocyte-specific Zhx2 knockout mice did not show albuminuria compared to control
mice, podocyte-specific Zhx2 transgenic rats showed more proteinuria than WT rats after
adriamycin injection (Table 2) [65].

5. MN (Membranous Nephropathy)

MN is a kidney glomerular condition that is diagnosed pathologically and is char-
acterized by thickening of the glomerular capillary walls caused by the development of
immune complexes on the outer portion of the basement membrane [66]. MN accounts for
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30% of adult cases of nephrotic syndrome. In 80% of MN patients, there is no underlying
etiology of MN, while 20% of cases are associated with drugs, such as nonsteroidal anti-
inflammatory drugs, or other disorders, such as systemic lupus erythematosus, hepatitis B
or C, and malignancies [66]. Although MN is not a typical Mendelian hereditary disease,
emerging evidence suggests a significant genetic component [66].

A 40-year-old woman with Charcot–Marie–Tooth disease developed nephrotic range
proteinuria due to MN, and a genetic analysis identified a heterozygous nonsense variation
in exon 2 of the MPZ gene [67]. MPZ is an integral membrane glycoprotein and is essential
for membrane adhesion [68]. Mutations in MPZ were associated with Charcot–Marie–Tooth
disease, and Mpz−/− mice exhibited higher rates of albuminuria and GBM thickening than
WT mice (Table 2) [68].

NPNT is an extracellular protein localized in the GBM, and injection of miR-378a-3p,
which targets NPNT, led to albuminuria and podocyte foot process effacement in mice [69].
Podocyte-specific Npnt knockout mice showed proteinuria and widening of the lamina
rara interna of the GBM (Table 2) [70].

6. Diabetic Kidney Disease (DKD)/Diabetic Nephropathy (DN)

Glomerular hypertension, altered renal hemodynamics, ischemia and hypoxia, oxida-
tive stress, and activation of the renin–aldosterone pathway are all factors contributing
to the etiology of DKD [71]. The “metabolic memory” phenomenon is a key factor in the
development of DKD [71]. Even after receiving therapy, patients who have previously
experienced hyperglycemia have been shown to continue to experience problems, such as
DKD [71]. Further genetic research is, thus, necessary, as these processes have the potential
to lead to innovative therapies for DKD.

G protein-coupled receptors (GPCRs) constitute a protein family of receptors that
sense molecules outside the cell and activate a number of different intracellular signal
transduction pathways [72]. The expression of Gprc5a was highly specific to podocytes and
was shown to be downregulated in DN [73]. Indeed, Gprc5a−/− mice exhibited thickening
of the GBM, activation of profibrotic signaling pathways, and promotion of glomerular
injury in a diabetic model (Table 3) [73].

Table 3. DKD/DN- and hypertension/nephrosclerosis-associated genes reviewed in the present article.

DKD

Gene Name Chromosome Protein Function Renal Findings in the Gene Deletion

GPRC5A 12 Sense molecules outside the cell and activate
intracellular signal transduction pathways

Thickening of the GBM and activation of
profibrotic signaling pathways

IRE1 17 A sensor of misfolded protein accumulation in
the ER, which leads to ER stress

Relative podocyte depletion (deletion
in podocytes)

KAT5 11 DNA damage repair
Increase DNA double-strand breaks and

decrease nephrin expression (deletion
in podocytes)

PTEN 10
Regulates a wide array of cellular processes

including cell growth, migration,
and metabolism

Podocyte effacement, glomerular obliteration
of capillaries, and glomerular sclerosis

(deletion in podocytes)

RHOA 3 Maintaining the function of
cytoskeletal architecture

Podocyte apoptosis through
Yes-associated protein

Hypertension

Gene name Chromosome Protein function Renal findings in the gene deletion

ATG5 6
ATG5-mediated autophagy suppresses
inflammatory response via inhibition of

NF-κB signaling

Interstitial inflammation, kidney fibrosis
(deletion in proximal tubule)

ER, endoplasmic reticulum; GBM, glomerular basement membrane; NF-κB, nuclear factor-kappa B.
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IRE1α is an ER-transmembrane protein that is activated during ER stress [74]. Podocyte-
specific Ire1 knockout mice showed age-dependent albuminuria and podocyte foot process
effacement (Table 3) [75]. Furthermore, podocyte-specific Ire1 knockout mice with strep-
tozotocin injection showed higher rates of albuminuria and accelerated DN than control
mice [76].

KAT5 is a histone acetyltransferase involved in DNA damage repair, and podocyte-
specific Kat5 knockout mice developed massive albuminuria and FSGS associated with
increased DNA methylation of the promoter region of Nphs1 (Table 3) [77].

PTEN is a dual-function lipid and protein phosphatase that regulates cell growth,
cytoskeletal rearrangement, and motility [74]. Inducible podocyte-specific Pten knockout
mice had much higher proteinuria than controls (Table 3) [74]. Furthermore, inducible
podocyte-specific Pten knock-in diabetic mice exhibited ameliorated albuminuria compared
to diabetic control mice, although the blood glucose levels of these two mouse groups were
comparable [78]. Targeting PTEN might be a new therapeutic strategy against DKD.

RhoA expression was found to be lower in the podocytes of db/db mice, a well-known
proteinuric mouse model that resembles DN, than in control mice [79]. Furthermore,
albuminuria was obviously increased in murine models of RhoA knockdown compared to
control mice (Table 3) [79].

7. Hypertension/Nephrosclerosis

As human life expectancy continues to increase, aging populations present a growing
challenge for clinical practice [80]. Every year after the age of 30, approximately 6000 to
6500 nephrons are lost due to nephrosclerosis or glomerulosclerosis. While aging itself does
not cause kidney injury, the physiological changes associated with normal aging processes
are likely to compromise the kidney’s ability to repair itself, making older individuals more
susceptible to acute kidney disease, chronic kidney disease, and other kidney illnesses than
younger ones [80]. We discuss, therefore, a variety of signaling molecules that have been
found to aggravate kidney cell senescence and kidney aging.

Autophagy was shown to be crucial for the maintenance of cellular homeostasis,
particularly in podocytes, and podocyte-specific Atg5 knockout mice showed proteinuria
and glomerulopathy (Table 3) [81]. Angiotensin II-induced hypertension in podocyte-
specific Atg5 knockout mice worsened albuminuria and glomerulosclerosis, which were
prevented by calpastatin overexpression [82]. Proximal tubular cell-specific Atg5 knockout
mice with a unilateral ureteric obstruction model showed impaired autophagy and cytokine
production [83].

8. Alport Syndrome (AS)

AS was initially identified in the 1970s when distinct ultrastructural anomalies were
discovered in the GBM of patients. Subsequent studies led to the identification of col-
lagen IV as the protein responsible for AS as well as the cloning and sequencing of the
COL4A3, COL4A4, and COL4A5 genes [84]. The Alport phenotype can range from a non-
progressive kidney-limited condition to a progressive multisystem disease, with X-linked,
autosomal recessive, autosomal dominant, and digenic inheritance patterns [84]. Pheno-
typic heterogeneity is a significant feature of disorders involving the collagen type IV α3,
α4, and α5 chains, resulting in a wide range of kidney outcomes and extrarenal symp-
toms [84]. Genetic research may help identify the most severe cases and determine their
phenotypic features.

As AS patients with the same genetic mutations exhibited a wide range of disease sever-
ities, this variability was thought to be caused partly by the existence of underlying modifier
genes [85]. Col4a5 mutant mice with Fmn1+/− had a lower urinary albumin-creatinine ratio
in both males and females than Col4a5 mutant mice with Fmn1+/+ (Table 4) [86]. Fmn1 is a
modifier gene that mediates the severity of X-linked AS in mice by reducing the urinary
albumin–creatinine ratio and reducing podocyte foot process evasion into the GBM [86].
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Table 4. AS- and rare disease-associated genes reviewed in the present article.

AS

Gene Name Chromosome Protein Function Renal Findings in the Gene Deletion

FMN1 15 Involved in actin filament and microtubule
cytoskeleton formation Foot process effacement

Rare diseases

Gene name Chromosome Protein function Disease

ASAH1 8
Metabolize ceramide within cells, protect

podocytes from oxidative stress and apoptosis
under pathologic conditions

Farber disease

DROSHA 5
An essential part of the microprocessor

complex that initiates microRNA biogenesis
from primary microRNAs

May cause Wilms tumor

EHD1 11 Endosomal scission Low-molecular-weight proteinuria and
sensorineural hearing loss

LAMB2 3 Mediate cell attachment, chemotaxis, and
receptor binding Pierson syndrome

MAFB 20 A leucine zipper transcription factor Focal segmental glomerulosclerosis
with Duane Retraction Syndrome

MGME1 20
Process newly replicated 5′ DNA ends to

facilitate ligation when mitochondria DNA
synthesis is completed

Mitochondrial disease

WDR73 15 Cell adhesion, spreading, and establishing
polarity axis in cell division Galloway–Mowat syndrome

AS, Alport syndrome.

9. Rare Diseases

Farber disease manifests with hoarseness and painful swollen joints accompanied by
nephropathy with elevated urine ceramide levels [87]. Podocyte-specific Asah1 knockout
mice showed severe proteinuria and podocyte foot process effacement associated with
ceramide accumulation in the glomeruli compared to control mice (Table 4) [88]. Increased
urinary exosome excretion and impaired autophagic flux were observed due to altered
TRPML1 channel activity in podocyte-specific Asah1 knockout mice compared to control
mice [89,90].

DROSHA was identified as a putative oncogenic driver of Wilms tumor [91]. Podocyte-
specific Drosha knockout mice developed proteinuria and kidney failure without tumor
formation (Table 4) [92].

Endocytosis refers to the mechanism by which cells internalize macromolecules and
particles into transport vesicles derived from the plasma membrane, which is critical for
the reabsorption of filtered macromolecules, such as low-molecular-weight proteins in
the kidney [93]. The EHD proteins were previously implicated in endosomal scission,
allowing the receptor and cargo to be separated in order to be processed at their respective
proper destinations [93]. Six individuals with an unexplained unique phenotype of low-
molecular-weight proteinuria and sensorineural hearing loss had a single homozygous
variant in EHD1 c.1192C>T (p. R398 W) [94]. Ehd1−/− and Ehd1R398W/R398W mice showed
a substantial decrease in the reuptake, leading to increased urinary β2-microglobulin
excretion (Table 4) [94].

A boy with short stature, visual impairment, and developmental delay was found to
have compound heterozygous mutations in LAMB2, which codes laminin 2, after presenting
with recurrent macroscopic hematuria and albuminuria [95]. Pierson syndrome, an autoso-
mal recessive condition characterized by congenital NS, ocular abnormalities (commonly
microcoria), muscular hypotonia, and neurological deficits, was linked to homozygous or
compound heterozygous mutations in LAMB2 [96]. Lamb2−/− mice developed massive
proteinuria (Table 4) [97].
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A rare heterozygous substitution (p. Leu239Pro) in MAFB, a leucine zipper tran-
scription factor, was found in two families with FSGS associated with Duane retraction
syndrome, characterized by impaired horizontal eye movement as a result of cranial nerve
malformation [98]. According to structural modeling, the p. Leu239Pro substitution in
the DNA-binding domain might interfere with the stability of the nearby zinc finger [98].
Neonatal mice with p. Leu239Pro showed impaired differentiation in their podocytes
compared to control mice (Table 4) [98].

Mitochondrial illnesses, a clinically and genetically varied category of multisystemic
disorders affecting many organs, are caused by impaired replication or maintenance of
mitochondrial DNA (mtDNA) [99]. Mutations in MGME1 affect the mitochondrial function
and result in mitochondrial disease syndrome [99]. Mgme1−/− mice exhibited severe
nephropathy with elevated plasma levels of urea and creatinine, leading to a shorter life
span than in WT mice (Table 4) [100].

A rare recessive genetic disorder known as Galloway–Mowat syndrome causes neu-
rodevelopmental abnormalities and progressive renal glomerulopathy, and the responsible
gene is WDR73 [101]. WDR73 depletion affected focal adhesion assembly in cultured
podocytes, and podocyte-specific Wdr73 knockout mice were found to be more susceptible
to glomerular injury with adriamycin than control mice (Table 4) [102].

10. Additional Information

This section describes genes that have been somewhat established as causative genes
for more than five years but for which new additional information has been reported.

To evaluate the pathogenicity of NPHS2 p. R229Q, which was the most frequent mis-
sense variant, Nphs2R231Q/R231Q mice were generated. Nphs2R231Q/R231Q mice developed
albuminuria and were more susceptible to nephrotoxic serum than control mice [103].

A new major modification locus for podocyte injury in Tns2−/− mice was detected on
chromosome 10 [104].

Sphingosine-1-phosphate lyase insufficiency syndrome, a rare metabolic condition
linked with nonlysosomal sphingolipid storage, is caused by biallelic loss-of-function
mutations in SGPL1 [105]. The majority of those affected had SRNS that progressed quickly
to ESKD [105]. In Sgpl1−/− mice, SGPL1 gene transfer eliminated nephrosis, developmental
delay, and lipidosis and significantly increased the survival [105].

The inflammatory process altered the WT1 expression and localization in podocytes,
causing kidney injury [106]. The WT1 expression was lowest at 36 h after inflammation
induction and its phosphorylated form was found in the cytoplasm mainly, which was
associated with decreased Nphs1 mRNA expression and increased tumor necrosis factor α
and interleukin 1β mRNA expression [106].

The expression of THSD7A was enhanced in specific membrane domains, resulting in
stabilized podocyte cell dynamics [107]. THSD7A might be involved in controlling the slit
diaphragm dynamics of the glomerular filtration barrier [107].

11. Conclusions

To date, the functional role of many genes in podocytes has been elucidated by
using podocyte-specific knockout/transgenic mouse models. There have also been reports
about inflammatory mediators, mitochondria, and age-related changes in the kidney. By
elucidating the abnormalities and mechanisms of genes in various parts of the kidney,
kidney diseases will become clearer than they are now.

Substantial strides have been made in understanding the genetics and pathophysiology
of kidney diseases thanks to advances in science, but these advances are still ongoing. In
the future, genetic analyses of patients with proteinuric glomerulopathy may ultimately
lead to personalized treatment.
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