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Abstract: Desbuquois dysplasia type 2 (DBQD2) and spondylo-ocular syndrome (SOS) are autosomal
recessive disorders affecting the extracellular matrix (ECM) and categorized as glycosaminoglycan
(GAG) linkeropathies. Linkeropathies result from mutations within glycosyltransferases involved
in the synthesis of the tetrasaccharide linker, a linker between the core protein of proteoglycan (PG)
and GAG. DBQD2 and SOS are caused by the isolated mutations of the xylosyltransferase (XT) iso-
forms. In this work, we successfully generated XYLT1- as well as XYLT2-deficient GAG linkeropathy
model systems in human dermal fibroblasts using a ribonucleoprotein-based CRISPR/Cas9-system.
Furthermore, it was possible to generate a complete XYLT-knockdown. Short- and long-term XT
activity deficiency led to the mutual reduction in all linker transferase-encoding genes, suggest-
ing a potential multienzyme complex with mutual regulation. Fibroblasts compensated for ECM
misregulation initially by overexpressing ECM through the TGFβ1 signaling pathway, akin to my-
ofibroblast differentiation patterns. The long-term reduction in one XT isoform induced a stress
response, reducing ECM components. The isolated XYLT1-knockout exhibited α-smooth muscle
actin overexpression, possibly partially compensated by unaltered XT-II activity. XYLT2-knockout
leads to the reduction in both XT isoforms and a strong stress response with indications of oxidative
stress, induced senescence and apoptotic cells. In conclusion, introducing XYLT-deficiency revealed
temporal and isoform-specific regulatory differences.

Keywords: xylosyltransferase-I and -II; CRISPR/Cas9; extracellular matrix; GAG-linkeropathy;
proteoglycan synthesis; glycosaminoglycan; myofibroblast differentiation

1. Introduction

The extracellular matrix (ECM) forms a dynamic network including a variety of
structural proteins, such as collagens and proteoglycans (PGs). The latter play an im-
portant role in the homeostasis of the ECM, regulating hygroscopic abilities and, thus,
influencing tissue elasticity [1,2]. They are composed of a core protein to which up to
100 different covalently bound glycosaminoglycans (GAGs) are attached. GAGs are un-
branched polysaccharides consisting of repetitive, anionic disaccharides that can store a
large amount of water due to their strong polyanionic charge [3]. The biosynthesis of the
GAG chains starts with the formation of a tetrasaccharide linker that is O-glycosidically
covalently bound to a serine of a consensus sequence in the core protein. The synthesis of
the GlcA-β(1→3)Gal-β(1→3)Gal-β(1→4)xyl linker is catalyzed by five different glycosyl-
transferases. Firstly, xylosyltransferase (XT) transfers xylose during the rate-determining
step. The enzyme has two isoforms, XT-I (MIM: 608124) and XT-II (MIM: 608125), which
are encoded by the genes XYLT1 and XYLT2. This is followed by the addition of two
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galactoses by galactosyltransferase-I (GalT-I; encoded by B4GALT7; MIM: 604327) and
galactosyltransferase-II (GalT-II; encoded by B3GALT6; MIM: 615291). The linker region is
complemented by the transfer of a glucuronyl acid via glucuronyltransferase (encoded by
B3GAT3; MIM: 606374), which is followed by the polymerization of the respective GAG
chains [4–6].

Linkeropathies are multisystemic genetic connective tissue diseases caused by the
abnormal biosynthesis of PGs. This results in various clinical manifestations, such as
short stature, skeletal deformities, brachycephaly, joint problems, facial dysmorphysm and
cardiac defects [7]. One group are the GAG linkeropathies, which are characterized by
mutations in the XYLT1, XYLT2, B4GALT7, B3GALT6 and B3GAT3 genes [8].

Desbuquois dysplasia type 2 is an autosomal recessive disorder characterized inter
alia by severe pre- and postnatal growth retardation, short stature, joint hypermobility,
joint dislocation and a flat face with prominent eyes. Genetic mutations in the XYLT1 gene
have been identified as the cause [9,10]. The mutations described in a total of 28 patients
are heterogeneous and include splice, nonsense and missense mutations [9–16]. Another
clinical picture associated with genetic changes in the XYLT1 gene is the Baratela–Scott
syndrome. The symptoms include short stature, patellar dislocation, shortened long bones
and a flat face with a broad nasal bridge [17]. The causes are homozygous XYLT1 mutations
and the hypermethylation of the XYLT1 gene [16].

Homozygous XYLT2 mutations lead to spondylo-ocular syndrome, which is associated
with short stature, retinal detachment, amblyopia, nystagmus, hearing loss, heart valve
defects, bone fragility and mild learning difficulties [18–21]. To date, 24 patients from 13
different families have been described harboring this syndrome [18–26]. Predominantly
homozygous mutations lead to the clinical picture of spondylo-ocular syndrome, but the
most recently discovered pathogenic mutations were compound heterozygous [23].

The different clinical manifestations between Desbuquois dysplasia type 2 and spondylo-
ocular syndrome indicate that XT-I and XT-II cannot compensate for each other and that
there may be differences in the catalytic activity of the two isoforms [8]. Initial studies in
model systems such as the mouse show reduced GAG concentrations and the resulting
changes in PG expression due to mutations in the two XYLT genes [27,28]. The defective
synthesis of the ECM may be the cause of short stature, the hyperflexibility of the joints and
skin and abnormal wound healing. Due to the limited availability of patient material, the
aim of this study was to establish CRISPR/Cas9-based knockout (KO) models of XYLT1 and
XYLT2 in primary dermal fibroblasts. Primary cells offer the advantage of the most precise
comparability with the original tissue. These in vitro models will be used to characterize
the molecular mechanisms of GAG linkeropathies and contribute to the understanding of
the crucial role of the XT isoforms in ECM homeostasis.

2. Materials and Methods
2.1. Cell Culture

Fibroblasts were purchased from Coriell (Coriell Institute for medical research, Camden,
NJ, USA) and cultured in Dulbecco’s modified Eagles’s medium (Thermo Fisher Scientific,
Waltham, MA, USA) mixed with 10% fetal calf serum (Gibco, Waltham, MA, USA), 2%
L-glutamine and 1% antibiotic and antimycotic solution (100×; PAA, AT). Cells were
cultivated at 5% CO2 and 37 ◦C.

2.2. CRISPR/Cas9-Based KO in Human Dermal Fibroblasts

The ribonucleoprotein-based CRISPR/Cas9 system was used to generate a KO of the
XT genes. The complex consists of a Cas9 nuclease, an ATTO 550-labeled tracrRNA and a
crRNA. Predesigned gRNAs from the manufacturer Integrated DNA Technologies (IDT,
Coralville, IA, USA) were used (Table 1). An RNP complex was prepared for transfection.
Subsequently, 11.5 µL crRNA (1 µM) and 11.5 µL of the Cas9 nuclease (1 µM) were added
to OptiMEM (477 µL) and incubated (5 min, room temperature (RT)). The transfection
reagent Lipofectamine 2000 (9.2 µL; Thermo Fisher Scientific, Waltham, MA, USA) was
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also diluted in OptiMEM (490.8 µL) and added to the RNP complex after incubation. The
transfection mixture was placed into the wells of a 6-well plate and incubated again (20 min,
in the dark). A total of 48,000 cells per cavity of a 6-well plate were resuspended in 2 mL
antibiotic-free medium and dropped onto the transfection mixture. After 24 h, the medium
was changed to medium containing antibiotic.

Table 1. crRNA for the CRISPR/Cas9 KO of the XT genes. The nucleotides were predesigned and
synthesized by IDT (USA).

Target 5′–3′ Sequence IDT Label

XYLT1 CTTACTGCCGCCACAAGTTA XYLT1.1.AA
XYLT2 GGTTACTGCCCGTACCACCT XYLT2.1.AB

2.3. Fluorescence-Based Cell Sorting and Cell Separation

The cells were trypsinized at 24 h after transfection with the RNP-based CRISPR/Cas9
complex, and the cell pellet resuspended in Dulbecco’s phosphate-buffered saline (DPBS).
Sorting was performed on the S3e Cell Sorter (BioRad Laboratories, Hercules, California,
USA) by differentiation via emission at λ = 395 nm with excitation at λ = 561 nm. The cells
obtained were transferred to collagen-coated 6-well plates and cultured to 90% confluence.
In the next step, the cell pool was separated to generate single cell clones.

2.4. TA Cloning

TA cloning was conducted, according to the manufacturers protocol (Thermo Fisher
Scientific, Waltham, MA, USA), to separate alleles and, therefore, to better characterize
heterozygote mutations introduced by the CRISPR/Cas9 system. After the replication of
the circular vector using E. coli TOP10, prokaryotic cells were lysed and plasmid DNA was
purified and subsequently analyzed by sanger sequencing.

2.5. siRNA-Based Double-Knockdown (dKD)

Firstly, the working solutions (target siRNAs: 5 µM; control siRNA: 10 µM) of the
siRNAs (Table 2) used were prepared from the stock solutions (50 µM) with nuclease-free
water. The required number of cells were prepared in antibiotic-free medium according to
the cultivation vessel. Regarding transfection, 10 µL Lipofectamine 2000 was diluted in
OptiMEM (490 µL) and incubated (5 min, RT). The siRNA working solution (30 µL) was
added to OptiMEM (470 µL) and then added to the Lipofectamine 2000 suspension and
incubated (15 min, RT). The transfection mixture was added dropwise to the cell suspension.
The medium was changed to a complete medium after 6 h.

Table 2. siRNA sequences for the siRNA-mediated knockdown. The siRNAs were predesigned and
synthesized by ThermoFisher (Waltham, MA, USA).

Target 5′–3′ Sequence

XYLT1 GCAUCAUGCUACCAAUCUGtt
ttCGUAGUACGAUGGUUAGAC

XYLT2 GGCCGUUUAUCACGAGCAGtt
ttCCGGCAAUAGUGCUCGUC

2.6. RNA Extraction, Reverse Transcription and Quantitative Real-Time Polymerase Chain
Reaction (qPCR)

The RNA was isolated using the NucleoSpin RNA kit (Macherey-Nagel, Düren,
Germany), according to the manufacturer’s instructions. An amount of 1 µg of RNA
was used for reverse transcription utilizing the SuperScript II Reverse Transcription kit
(ThermoFisher, USA). The qPCR was performed using the LightCycler 480 II system (Roche,
Mannheim, Germany). A reaction mix contained 2.5 µL cDNA (diluted 1:10 with H2O), 5 µL



Biomedicines 2024, 12, 572 4 of 25

of SYBR Green Taq-Polymerase mix (Roche, Mannheim, Germany), 0.25 µL of each primer
(25 pmol/µL; Table 3) and 2 µL H2O. Forty amplification cycles were used. The product
was validated via melting curve analysis. Relative transcription levels were determined by
the ∆∆CT method.

Table 3. Primer sequences, annealing temperatures (TA) and resulting product sizes used for qPCR.

Target Sequence TA/◦C Product Size/bp

ACAN CACCCCATGCAATTTGAG
GCCACTGTGCCCTTTTTA 63 158

ACTA2 GACCGAATGCAGAAGGAG
CGGTGGACAATGGAAGG 59 169

B2M TGTGCTCGCGCTACTCTCTCTT
CGGATGGATGAAACCCAGACA 63 137

B3GALT6 CCCCGCTGTGGTCTTTGTTG
CGCCCCCGTTTCTTCCTC 63 188

B3GAT3 GCTGTTTGAGGAGATGCGCTG
TCAGAAGACTGCTCTCCAGGT 63 251

B4GALT7 GCCATGCACAGTGATCAGAG
CCCTACACTGTGTCTCTGCA 63 196

COL1A1 GATGTGCCACTCTGACT
GGGTTCTTGCTGATG 63 151

DCN CCTTCCGCTGTCAATG
GCAGGTCTAGCAGAGTTG 63 102

GAPDH AGGTCGGAGTCAACGGAT
TCCTGGAAGATGGTGATG 59 223

IL1B ACAGATGAAGTGCTCCTTCCA
GTCGGAGATTCGTAGCTGGAT 63 73

IL6 ACAGCCACTCACCTCTTCAG
GTGCCTCTTTGCTGCTTTCAC 63 122

IL8 GAACTGAGAGTGATTGAGAGTGGA
CTCTTCAAAAACTTCTCCACAACC 63 125

MMP1 AGAAACACAAGAGCAAGATGTG
TGGCGTGTAATTTTCAATCCTGT 63 298

NOX4 CTTCCGTTGGTTTGCAGATT
GAATTGGGTCCACAACAGA 63 246

RPL13A CGGAAGGTGGTGGTCGTA
CTCGGGAAGGGTTGGTGT 63 115

SDHA AACTCGCTCTTGGACCTG
GAGTCGCAGTTCCGATGT 63 177

TGFB1 GCGATACCTCAGCAACC
ACGCAGCAGTTCTTCTCC 63 331

XYLT1 GAAGCCGTGGTGAATCAG
CGGTCAGCAAGGAAGTAG 63 281

XYLT2 ACACAGATGACCCGCTTGTGG
TTGGTGACCCGCAGGTTGTTG 63 139

2.7. Xyloslytransferase Activity Assay

The quantification of XT-I and XT-II activity was carried out according to the SPE-
UPLC-MS/MS method of Kleine et al. [29].

2.8. Galactosyltransferase Activity Assay

The quantification of GalT-I was based on the SPE-UPLC-MS/MS method by Kuhn
et al. [30].

2.9. Determination of the Sulfated GAG (sGAG) Concentration in Fibroblasts

The Blyscan sGAG assay kit (Biocolor Life Science Assays, Carrickfergus, UK) was
used to determine the sGAG concentration in cell cultures. The assay was performed
according to the manufacturer’s instructions.
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2.10. Western Blot

The samples to be analyzed via Western blot were lysed with RIPA lysis buffer (Thermo
Fisher Scientific, Waltham, MA, USA). A bicinchoninic acid assay was performed to deter-
mine the total protein concentration.

Regarding the detection of α-smooth muscle actin (α-SMA), 3.5 µg total protein so-
lution was applied to 8–16% Tris-glycine gel. An amount of 5 µg total protein solution
was separated using the 3–8% Tris-acetate gel for the detection of collagen type I (ColI).
Separation was performed at 125 V for 2 h and subsequently transferred onto a polyvinyli-
dene difluoride membrane using a semi-dry electro-blotting apparatus. The remaining
binding sites of the membrane were saturated with a 5% BSA solution in TBS-T buffer for 1
h. Incubation with the primary antibody was carried out on the Coulter mixer overnight at
4 ◦C. The secondary antibody was incubated for 1 h at RT (Table 4).

Table 4. The antibodies and concentrations used for Western blotting.

Primary Antibody Dilution Secondary Antibody Dilution

Rabbit-anti-COL1A1 (ab34710;
Abcam, Cambridge, UK)

1:10,000
Goat-anti-rabbit IgG-HRP polyclonal

(ab150113; Abcam, Cambridge, UK)
1:5000

Mouse-anti-αSMA (GA61161-2; Cell
Signaling Technology, Cambridge, UK)

1:1000
Horse-anti-mouse igG-HRP polyclonal
(ab150078; Abcam, Cambridge, UK)

1:2000

Mouse-anti-gapdh (ab8245; Abcam,
Cambridge, UK)

1:5000
Horse-anti-mouse igG-HRP polyclonal
(ab150078; Abcam, Cambridge, UK)

1:2000

2.11. Bicinchoninic Acid Assay

A bicinchoninic acid assay was performed to normalize protein levels. The assay was
carried out according to Smith et al. and performed as described previously [31,32].

2.12. Determination of the Pro-MMP1 Concentration in the Cell Culture Supernatants

The Human Pro-MMP1 Quantikine ELISA kit (R&D-Systems, Minneapolis, MN, USA)
was used to quantify the Pro-MMP1 concentration in the supernatants of fibroblasts. The
ELISA was performed according to the protocol provided by the manufacturer.

2.13. Determination of the TGFβ1 Concentration in Cell Culture Supernatants

The TGFβ1 concentration in cell culture supernatants was determined using the TGF
beta 1 human ELISA kit (Abcam, Cambridge, UK). The ELISA was performed according to
the protocol provided by the manufacturer.

2.14. Determination of Cell Viability and Caspase Activity in Fibroblasts

Cell viability can be determined using the ApoLive-Glo multiplex assay (Promega,
Fitchburg, WI, USA) in a joint experiment with the caspase activity of fibroblasts. The assay
was performed according to the manufacturer’s instructions.

2.15. Quantitative Senescence Assay

The fluorophore methylumbelliferyl-β-galactopyranoside (MUG) was converted to
7-hydroxyl-4-methylcoumarin by the senescence associated-β-galactosidase. The assay
was carried out according to Schmidt et al. [33].

2.16. Determination of the Interleukin 6 (IL6) Concentration in Cell Culture Supernatants

The concentration of IL6 in cell culture supernatants was determined automatically on
the Cobas e411 (Roche, Mannheim, Germany) using an electrochemiluminescence assay.
Firstly, the samples were incubated with a monoclonal, biotinylated IL6 antibody. Another
antibody directed against a different epitope, which is coupled to a ruthenium complex, was
added and enabled magnetic fixation of the IL6 to the electrode with streptavidin-coated
microparticles. After washing, the ruthenium complex was excited by applying a voltage
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and emitting light at a wavelength of 620 nm. The concentration of IL6 is proportional to
the absorption.

2.17. Determination of the Intracellular Ca2+ Concentration of Fibroblasts

The intracellular determination of the Ca2+ concentration was made possible by the
fluorophore Fluo-8-AM. The binding of Ca2+ ions increased the fluorescence of the molecule
and, thus, enabled the quantification of the Ca2+ concentration within the fibroblasts.

Firstly, 8500 cells/well of a black 96-cavity plate (clear bottom) were seeded and
cultured (24 h, 37 ◦C). The cells were first washed with DPBS and then overlaid with 100 µL
Fluo-8 solution (15 µM in 0% fetal calf serum medium) (1 h, 37 ◦C) to load the cells with
Fluo-8-AM. The cells were washed again (2×) and 100 µL 0% fetal calf serum medium was
added. The fluorescence was measured every 30 s for 1 h at an excitation wavelength of
λ = 490 nm and an emission wavelength of λ = 520 nm.

2.18. Inhibition of the TGFβ Receptor Kinase and Focal Adhesion-Associated Kinase (FAK)
in Fibroblasts

In order to analyze the effects of TGFβ signal transduction, activin receptor-like kinase
(ALK) 4, 5 and 7 were blocked by selective inhibition, thus impairing the signaling pathway.
The inhibitor StemMACS SB431542 (TGFβRKI, 10 µM) was added to the medium for
this purpose.

The FAK inhibitor PP2 (FAKI, 10 µM) was used to analyze the effects of signal trans-
duction by FAK.

2.19. Immunofluorescence

In this study, the cells were cultivated in 8-well chamber slides, which were coated
beforehand. The poly-L-lysine (100 µg/mL) coating was used to detect human ColI and
the ColI (Rat tail; 35 µg/mL) coating was used for α-SMA. The fibroblasts were fixed either
with methanol/acetone (1:1; for visualization of α-SMA) or with 4% paraformaldehyde
(for the visualization of ColI) (15 min, 4 ◦C). Regarding permeabilization, the fixed cells
were incubated with 0.1% Triton X-100 (10 min, RT), washed (3×) and incubated with 5%
BSA in DPBS (1 h, RT). After another wash, the cells were incubated with the primary
antibody (50 µL, 2 h, RT) and then washed and incubated with the secondary antibody
(50 µL, 1 h, RT) (Table 5).

Table 5. The antibodies and concentrations used for immunohistochemical staining.

Primary Antibody Dilution Secondary Antibody Dilution

Rabbit-anti-COL1A1 (ab34710; Abcam,
Cambridge, UK) 1:100 Goat-anti-rabbit (Alexa-555)

(A-32732; Thermo Fisher Scientific, USA) 1:200

Mouse-anti-αSMA (GA61161-2; Cell
Signaling Technology, Cambridge, UK) 1:50 Goat-anti-mouse (Alexa-488)

(A-11001; Thermo Fisher Scientific, USA) 1:200

After nuclear staining with DAPI (300 nM, 5 min, RT), the cells were mounted with
ROTIMount FluorCare (Roth, Mannheim, Germany). The analysis was performed by
fluorescence microscopy.

2.20. Statistical Analysis

GraphPad Prism 9 (Boston, MA, USA) was used for the statistical analysis of this study.
Data were analyzed using Mann–Whitney U test and are shown as the standard error of
the mean (SEM).
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3. Results
3.1. Generation of Separated CRISPR/Cas9-Mediated XYLT1 and XYLT2 KOs in Human Dermal
Fibroblasts and Their Initial Characterization

Neonatal human dermal fibroblasts were transfected with an RNP-based CRISPR/Cas9
system (gRNA targets: XYLT1 or XYLT2), sorted by flow cytometry based on the fluores-
cence signal of the RNP complex and then separated. A single clone colony with mutations
was identified for each of the KO target genes XYLT1 and XYLT2 (Figure 1A). The XYLT1
mutant clone showed overlaps in the genomic sequence from two bases upstream of the
PAM sequence. No sequence overlaps were detected for the XYLT2-mutated clone. How-
ever, the comparison with the reference sequence showed a deletion of a thymine base
three bases downstream of the PAM sequence. The TA cloning of the XYLT1 genetically
modified culture showed a heterozygous 5 bp deletion, which led to a frameshift with an
early stop codon in the amino acid (AS) sequence. Only alleles with the 1 bp deletion, a ho-
mozygous mutation, could be detected for the XYLT2 KO, and a resulting frameshift with a
premature stop codon (Figure 1B). XYLT1 mRNA expression was significantly decreased for
both XYLT1 and XYLT2 genetically altered fibroblasts compared to the control (Figure 1C;
0.46-fold and 0.42-fold). The XYLT1-deficient culture showed no significant change in
XYLT2 mRNA expression compared to the control. The XYLT2 mRNA expression of the
XYLT2-mutated fibroblasts was decreased to 0.1-fold compared to the control fibroblasts
(Figure 1C). The quantification of XT-I activity for both KO cultures showed a significant
reduction to 0.45-fold of the control fibroblast activity. When XT-II activity was determined,
no significant change was detected for the XYLT1-deficient fibroblasts compared to the
control. By contrast, the XYLT2-deficient fibroblasts showed a significant reduction to 0.28
times the activity of the control (Figure 1D).
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XYLT2: g 7647-7669). The PAM is indicated in green. (B) Sequence alignment after TA cloning
to identify the mutations and the corresponding names of the clones, as well as the effects on the
amino acid sequence (AS) of the XT-I and XT-II proteins (ht = heterozygous; hm = homozygous).
(C) Analysis of the XYLT1 and XYLT2 mRNA expression of the KO fibroblasts is shown. Control
(n = 1) and both KO cultures (n = 1) were seeded at a cell density of 50 cells/mm2. Relative gene
expression analysis was performed after 72 h of cultivation using the ∆∆CT method for the XYLT1
and XYLT2 genes. The expression of RPL13A, SDHA and B2M genes was used for normalization.
(D) Analysis of intracellular XT-I and -II activity was performed after 72 h of cultivation using
the SPE-UPLC-MS/MS method. Mean values with standard errors shown are composed of three
biological and three technical replicates each (ns = not significant; ** p < 0.01; **** p < 0.0001).

The B4GALT7 mRNA expression analysis of the XYLT1-deficient fibroblasts showed a
reduction to 0.72-fold of the control expression. The reduction in expression of the XYLT2-
deficient fibroblasts was not significant. Both XYLT1- and XYLT2-deficient fibroblasts
showed a significant reduction in B3GALT6 mRNA expression to 0.89- and 0.83-fold of
controls, respectively. A significant reduction in B3GAT3 mRNA expression was again
detected for both KO cultures analyzed compared to the controls (Figure 2A; 0.64- and
0.37-fold). When analyzing GalT-I activity, no significant differences were detected between
the control and the XYLT1- or XYLT2-deficient fibroblasts (Figure 2B).
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Figure 2. Analysis of glycosyltransferase, as well as sulfated glycosaminoglycan (sGAG) expression
of KO fibroblasts. (A) The control (n = 1) and the two KO cultures (n = 1) were seeded at a cell
density of 50 cells/mm2 and analyzed by the ∆∆CT method after 72 h of cultivation for the analysis
of B4GALT7, B3GALT6 and B3GAT3 mRNA expression. The expression of RPL13A, SDHA and B2M
genes was used for normalization. (B) Analysis of the GalT-I activity was also performed after 72 h of
cultivation using the SPE-UPLC-MS/MS method. Normalization was performed to the total protein
concentration. (C) Cells were seeded at a cell density of 80 cells/mm2 and lysed and isolated by
papain after 144 h for the determination of sGAG concentration. Normalization was performed to the
total protein concentration. Mean values with standard errors shown are composed of three biological
and three technical replicates each (ns = not significant; * p < 0.1; *** p < 0.001; **** p < 0.0001).

The altered gene expressions and enzyme activities of the transferases involved in the
tetrasaccharide linker indicate an altered GAG synthesis. The sGAG concentration was
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significantly reduced for both XYLT1- and XYLT2-deficient fibroblasts to 0.62- and 0.73-fold
of the control cell concentration, respectively (Figure 2C).

Changes in the GAG synthesis may have an impact on the concentration and func-
tionality of PGs and the ECM homeostasis. The XYLT1-deficient fibroblasts showed a
significant reduction in DCN (0.86-fold) and ACAN (0.07-fold) expression compared to
controls. No significant changes could be detected for the expression of COL1A1 and
MMP1. By contrast, the ACTA2 mRNA expression increased significantly to 1.60-fold of
the control. The expression of TGFB1 was slightly reduced to 0.73-fold of the control. The
XYLT2-deficient fibroblasts also showed a significant reduction in DCN (0.50-fold) and
ACAN (0.03-fold) mRNA expression compared to the control. No significant change was
detected in COL1A1 expression compared to the control. The MMP1 mRNA expression
showed a significant increase to 4.18-fold of the control expression. Significant reductions
in the mRNA expression were detected in XYLT2-deficient fibroblasts for the genes ACTA2
(0.47-fold) and TGFB1 (0.64-fold) compared to controls (Figure 3A).
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Figure 3. Analysis of extracellular matrix (ECM)-associated genes and proteins from XYLT1 or XYLT2
KO fibroblasts. (A) The control (n = 1) and the two KO cultures (n = 1) were seeded at a cell density
of 50 cells/mm2 and analyzed by the ∆∆CT method after 72 h of cultivation for the analysis of DCN,
ACAN, COL1A1, MMP1, ACTA2 and TGFB1 mRNA expressions. The expression of RPL13A, SDHA
and B2M genes was used for normalization. Means with standard errors presented are composed of
three biological, as well as three technical, replicates each. Quantification of ColI (B) and α-SMA (D)
was performed by Western blot after 144 h of cultivation. Quantification was performed by ImageJ
and GAPDH expression was used for normalization. Means with standard errors presented are
composed of three biological replicates. Pro-MMP1 (C) and TGFβ1 (E) expressions were quantified
by ELISA and normalized to total protein concentration. Means with standard errors presented are
composed of three biological and as three technical replicates each (ns = not significant; * p < 0.1;
** p < 0.01; **** p < 0.0001).
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Western blot quantification showed a significant reduction (0.39-fold) in ColI expres-
sion in XYLT1-deficient cells compared to controls. The XYLT2-deficient fibroblasts showed
a significant reduction to 0.07-fold of the control ColI expression (Figure 3B).

The Pro-MMP1 concentration showed a significant increase for both KO cultures
compared to the control. The Pro-MMP1 concentration of the XYLT1 KO fibroblasts
increased 1.51-fold compared to the control concentration and the XYLT2-deficient cells
showed a 4.32-fold increase compared to the control (Figure 3C).

Western blot quantification of α-SMA expression normalized to the respective GAPDH
expression showed a significant increase to 3.43-fold of the control expression for the XYLT1-
deficient fibroblasts. By contrast, the α-SMA expression of XYLT2-deficient fibroblasts was
significantly reduced to 0.13-fold of the control expression (Figure 3D).

The determination of the TGFβ1 concentration in the supernatants of XYLT1- and
XYLT2-deficient cells showed no significant changes compared to the control (Figure 3E).

Finally, the effects of the altered ECM homeostasis on viability, senescence, apoptosis
and oxidative stress were analyzed. The determination of the viability of the KO fibrob-
lasts by means of aminopeptidase activity showed a slightly significant increase in both
compared to the control of about 1.7-fold (Figure 4A). Quantification of SA β-galactosidase
activity indicated a significant increase in the senescence of the XYLT1- and XYLT2-deficient
fibroblasts relative to the control activity (Figure 4B; 2.68- and 1.5-fold). The analysis of
caspase 3 and 7 activity, as markers of progressive apoptosis, showed a weakly significant
increase to 1.3-fold over the control for the XYLT2-deficient fibroblasts (Figure 4C).
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for the quantification of viability. (B) The cellular senescence was determined by SA β-galactosidase
activity after 72 h from three biological and two technical replicates. Normalization was performed
by reference to the total DNA concentration. (C) Apoptosis quantification after 74 h was performed
using caspase 3/7 activity. This was based on three biological replicates. (D,E) The control and
XYLT1 and XYLT2 KO fibroblasts were seeded at a cell number of 50 cells/mm2 and analyzed
after 72 h using the ∆∆CT method for the relative gene expression analysis of NOX4, IL1B, IL6 and
IL8. RPL13A, SDHA and B2M were used as housekeeping genes. The mean values with standard
errors presented are composed of three biological and three technical replicates. (F) The IL6 protein
expression was quantified by ELISA after 72 h in the supernatant of the cultures. The mean values
and the standard error are composed of three biological replicates and were related to the total DNA
of the samples. (G) An amount of 250 cells/mm2 were seeded and the uptake of Fluo-8 was analyzed
in six replicates each after 24 h to determine the intracellular Ca2+ concentration (ns = not significant;
* p < 0.1; ** p < 0.01; *** p < 0.001; **** p < 0.0001).

The gene expression of NOX4 and IL1B was significantly increased in the XYLT1-
deficient fibroblasts (1.91- and 1.72-fold, respectively). The IL6 mRNA expression showed a
significant reduction to 0.73-fold of the control. No significant change could be detected
for the IL8 mRNA expression (Figure 4D). The XYLT2-deficient cells showed significantly
increased levels of all four mRNA expressions compared to the control. NOX4 showed
a 2.58-fold induced expression, IL1B was increased to 67.77-fold of the control. The IL6
showed a 4.03-fold overexpression and IL8 was increased 285-fold compared to the control
(Figure 4E).

The quantification of the IL6 protein concentration showed significant inductions for
both KO cultures relative to the control concentration. The XYLT1-deficient fibroblasts
were increased by 1.51-fold and the XYLT2-deficient fibroblasts showed 8.05-fold IL6 levels
relative to controls (Figure 4F).

The progression determination of the intracellular Ca2+ concentration using the flu-
orescence signal of Fluo-8 showed a greater increase in intracellular concentration for
the XYLT1- and XYLT2-deficient fibroblasts compared to controls. The XYLT2-deficient
fibroblasts reached a 2.14-fold concentration and the XYLT1-deficient fibroblasts reached a
1.46-fold concentration compared to the controls (Figure 4G).

3.2. Establishment of a Simultaneous XYLT1 and XYLT2 KO in Dermal Fibroblasts

A persistent double KO (dKO) of XYLT1 and XYLT2 was to be introduced into neonatal
dermal fibroblasts to generate completely XT-deficient fibroblasts. Consequently, the
fibroblasts were sequentially transfected with one RNP-based CRISPR/Cas9 complex each
for XYLT1 and XYLT2. The transfections were performed 24 h apart. Only 1.2 × 104 cells
could be detected in the XYLT1/XYLT2 dKO fibroblasts 48 h after the second transfection
with a CRISPR/Cas9 complex (Figure 5A; control: 2.3 × 105 cells). The mRNA expression
of the target genes XYLT1 and XYLT2 showed no changes in expression compared to the
controls (Figure 5B). The DNA of the double-transfected fibroblasts showed a subsequence
in addition to the main sequence in the area of the gRNA bindings for XYLT1 and XYLT2
(Figure 5C). However, this is hardly detectable but could indicate mutations in the cell pool.
Overall, it was not possible to establish a stable and effective XYLT dKO in the fibroblasts.
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Figure 5. Characterization of an XYLT1 and XYLT2 double KO (dKO) in dermal fibroblasts. (A) Nor-
mal human dermal fibroblasts (NHDFs) (n = 1) were seeded at a cell density of 50 cells/mm2 in
gelatin-coated six-well plates and transfected Lipofectamine 2000 mediated with 3.8 nM XYLT1 and
3.8 nM XYLT2-Cas9-RNP complex for the dKO,. The cell number of viable cells was determined by
tryptan blue 48 h after the second transfection. (B) Relative gene expression analysis was performed
72 h after the second transfection for the XYLT1 and XYLT2 genes. (C) The dKO genomic DNA
was isolated 24 h after the second transfection and analyzed by Sanger sequencing. The region
of gRNA (blue box; g 211908-211930; XYLT2: g 7647-7669) and PAM (green box) is highlighted.
Means and standard errors shown are composed of three biological and three technical replicates
(ns = not significant).

3.3. Establishment of a Simultaneous XYLT1 and XYLT2 dKD in Dermal Fibroblasts

The generation of a persistent, complete XT-deficient KO model was not possible. A
transient, siRNA-mediated dKD of XYLT1 and XYLT2 was performed in this subproject.
Fibroblasts were transfected with XYLT1 and XYLT2 siRNA (50 nM each) to establish
the dKD of XYLT1 and XYLT2. The XYLT1 mRNA expression of the double-deficient
fibroblasts showed a significant reduction in the control mRNA expression to 0.18-fold. A
significant reduction in XYLT1/XYLT2 dKD fibroblasts to 0.14-fold compared to the control
was detected for the relative mRNA expression of XYLT2. The method established here
for the lipofectamine-mediated dKD of XYLT1 and XYLT2, thus showing a knockdown
efficiency of >80% for both target genes (Figure 6A). The B4GALT7 mRNA expression of
XYLT1/XYLT2 double-deficient fibroblasts decreased significantly to 0.74-fold compared
to control fibroblasts. No significant change was detected in the mRNA expression of
B3GALT6 between the controls and the dKD fibroblasts. The relative B3GAT3 mRNA
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expression of fibroblasts was significantly reduced by the XYLT1/XYLT2 dKD to 0.51-fold
of the control (Figure 6A). The XYLT-deficient cells showed a significant reduction in the
XT-I activity to 0.05-fold of the control activity. The XT-II activity of the XYLT-deficient
fibroblasts was significantly reduced to 0.19 times the activity of the controls (Figure 6B). No
difference in the GalT-I activity was detected between the controls and the XYLT1/XYLT2
double-deficient fibroblasts (Figure 6C).
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Figure 6. Analysis of the gene expression of XYLT1, XYLT2, B4GALT7, B3GALT6 and B3GAT3 and the
activity determination of XT-I, XT-II and GalT-I. (A) The NHDFs (n = 4) were seeded at a cell density
of 119 cells/mm2 and transfected Lipofectamine 2000 mediated with 50 nM XYLT1 and 50 nM XYLT2
siRNA. As a control, NHDFs were treated with 100 nM of a control siRNA. A relative gene expression
analysis was performed after 48 h of cultivation using the ∆∆CT method for the XYLT1, XYLT2,
B4GALT7, B3GALT6 and B3GAT3 genes. The expression of RPL13A and GAPDH genes were used
for normalization. Analysis of XT-I and -II activity (B), as well as GalT-I activity (C) was performed
after 72 h of cultivation using the SPE-UPLC-MS/MS method. Mean values with standard errors
shown are composed of three biological, as well as three technical, replicates each (ns = not significant;
** p < 0.01; **** p < 0.0001).

The ECM homeostasis was investigated after analyzing the expression of the enzymes
involved in tetrasaccharide linker synthesis. The mRNA expression of the two PG genes
DCN and ACAN was significantly increased in the XYLT1/XYLT2 double-deficient fibrob-
lasts compared to the control (Figure 7A; 1.38- and 4.09-fold). The expression of COL1A1
was also significantly increased 1.48-fold in the dKD cells compared to the control. In
line with this, the MMP1 mRNA expression of the XYLT1/XYLT2-deficient fibroblasts
decreased significantly to 0.66-fold of the control expression. The ACTA2 and TGFB1 genes
were each significantly increased in expression in the dKD fibroblasts (Figure 7A; 1.70- and
2.20-fold, respectively).

The mRNA expression analysis revealed a variety of changes in the ECM homeostasis.
Some of the targets analyzed were subsequently characterized at the protein level. The
quantification of the fluorescence signal indicated a significantly increased ColI expres-
sion of XYLT1/XYLT2-deficient fibroblasts compared to controls (Figure 7B; 1.23-fold).
Figure 7B shows exemplary images of the control and dKD fibroblasts at 100× magnifica-
tion. The extracellular Pro-MMP1 concentration in the XYLT1/XYLT2-deficient fibroblasts
was significantly reduced to 0.36-fold of the Pro-MMP1 concentration in the control cells
(Figure 7C). The quantification of the fluorescence signal indicated a significantly increased
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α-SMA expression of XYLT1/XYLT2-deficient fibroblasts compared to controls (Figure 7D;
2.13-fold). Figure 7D shows exemplary images of the control and dKD fibroblasts at 100×
magnification. The α-SMA could be detected in fiber-like structures in the morphologically
magnified dKD cells. The extracellular TGFβ1 concentration of the XYLT1/XYLT2-deficient
fibroblasts was significantly increased to 2.75 times the TGFβ1 concentration in the control
cells (Figure 7E).
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Figure 7. Analysis of ECM-associated genes and proteins of XYLT1/XYLT2 double-knockdown (dKD)
fibroblasts. (A) The NHDFs (n = 4) were seeded at a cell density of 119 cells/mm2 and transfected
Liofectamine 2000 mediated with 50 nM XYLT1 and 50 nM XYLT2 siRNA. The NHDFs were treated
with 100 nM of a control siRNA as a control. Relative gene expression analysis was performed
after 48 h of cultivation using the ∆∆CT method. The genes analyzed were DCN, ACAN, COL1A1,
MMP1, ACTA2 and TGFB1. RPL13A and GAPDH were used as housekeeping genes. The mean
values with standard errors presented are composed of three biological, as well as three technical,
replicates each. (B) Quantification of ColI was performed by immunofluorescence. Cells were fixed
with 4% paraformaldehyde 72 h after the dKD. Staining was performed by a primary rabbit anti-ColI,
secondary goat anti-rabbit (Alexa-550-labeled) antibody (red) and DAPI (blue). The quantification
of total fluorescence from six images each of three biological replicates is shown. Fluorescence
was normalized to the cell number of each image. (C) The supernatant was analyzed after 72 h of
cultivation and normalized to the respective total protein amount for the Pro-MMP1 ELISA. The mean
with the standard error from three biological and two technical replicates is shown. (D) Quantification
of α-SMA was performed by immunofluorescence. Cells were fixed with acetone/methanol (1:1, v/v)
72 h after the dKD. Staining was performed by primary mouse anti-α-SMA, secondary goat anti-
mouse (Alexa-488-labeled) antibody (green) and DAPI (blue). The quantification of total fluorescence
from six images each of three biological replicates is shown. Fluorescence was normalized to the cell
number of each image. (E) The supernatant was analyzed after 72 h of cultivation and normalized to
the respective total protein amount for the TGFβ1 ELISA. The mean with standard error from three
biological and two technical replicates is shown (** p < 0.01; *** p < 0.001; **** p < 0.0001).
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3.4. Analysis of TGFβ Signal Transduction following XYLT1/XYLT2 dKD in Dermal Fibroblasts

The XYLT1/XYLT2 dKD showed an induction of ECM protein expression, which is
characteristic for myofibroblast differentiation. The TGFβ signal transduction can trigger
the differentiation of fibroblasts into myofibroblasts. TGFβ induces the de novo synthesis of
α-SMA and, thus, the formation of the myofibroblast-typical phenotype and a feed-forward
reaction of further cytokine production [34]. The signaling pathway was inhibited to
analyze the causal relationship between TGFβ1 induction and myofibroblast differentiation
in XYLT1/XYLT2 dKD fibroblasts. The specific inhibition of the kinase domain of the TGFβ
receptor was investigated using SB431542 (TGFβRKI). In addition, the signal transduction
via the FAK, which is also relevant for myofibroblast differentiation, was inhibited by the
specific inhibition of the Scr domain using PP2 (FAKI) (Figure 8A).
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Figure 8. Quantification of α-SMA in XYLT1/XYLT2 dKD fibroblasts after treatment with TGFβRKI or
FAKI. The NHDFs (n = 1) were seeded at a cell density of 50 cells/mm2 on collagen-coated chamber
slides and transfected Lipofectamine 2000 mediated with 50 nM XYLT1- and 50 nM XYLT2-siRNA.
As a control, NHDFs were treated with 100 nM of a control siRNA. Either 10 µM TGFβRKI, 10 µM
FAKI or dimethyl sulfoxide (−I) was added to the lipofection medium. After 72 h, acetone/methanol
(1:1, v/v) fixation of the cells was performed for the analysis of α-SMA protein expression by
immunofluorescence analysis. Staining was carried out using primary mouse anti-α-SMA, secondary
goat anti-mouse (Alexa-488-labeled) antibody (green) and DAPI (blue). The Lewis structures of the
inhibitors used (A), quantification of total fluorescence from six images of each of three biological
replicates (B) and exemplary images at 100× magnification are shown (C) (ns = not significant;
**** p < 0.0001).
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The XYLT1/XYLT2 double-deficient fibroblasts showed an increase (1.84-fold) in
α-SMA expression compared to the control. Cultivation with the addition of TGFβRKI
showed no significant difference in α-SMA expression between the control cells and the
XYLT1/XYLT2 dKD fibroblasts. The addition of FAKI during the cultivation of control
fibroblasts and dKD cells also resulted in no significant difference between the two con-
ditions in terms of the α-SMA expression. The comparison of the α-SMA expression of
the non-inhibited XYLT1/XYLT2 dKD fibroblasts (−I) with the α-SMA expression of the
inhibition approaches of the dKD cells (TGFβRKI or FAKI) showed a significant reduction
(0.51- and 0.61-fold, respectively) in each case (Figure 8B).

Images of fibroblasts cultured without an inhibitor (−I) showed α-SMA-positive cell
bodies and the formation of fiber structures after XYLT1/XYLT2 dKD. The corresponding
control showed isolated weak α-SMA-positive cell bodies. The sample images of the
controls treated with the respective inhibitors (+TGFβRKI, +FAKI) also showed hardly
any α-SMA-positive cells. The XYLT1/XYLT2 dKD fibroblasts treated with the respective
inhibitors also showed only a few α-SMA-positive cell bodies (Figure 8C).

4. Discussion
4.1. Characterization of the Introduced Genetic Mutations

An RNP-based CRISPR/Cas9 system was used to generate the desired KOs. The
components required for the CRISPR/Cas9 system were not overexpressed by a plasmid or
viral vector within the cell but transfected in a limited concentration as an RNP complex.
This limitation reduces the possibility of off-target effects [35,36]. A further advantage of
the RNP system is the degradation of the components within about 24–48 h, which can
increase the viability of the transfected cells [37]. This is a particularly important factor in
the transfection of sensitive primary cells.

A heterozygous clone was identified for the XYLT1 KO system. The 5 bp deletion up-
stream of the PAM led to a reading frame shift and the resulting stop codon (p.Leu289Serfs*4).
The resulting protein has only 292 instead of 959 AS and ends at the beginning of the
transmembrane domain without the catalytic region of the protein. It is known from the
literature that truncated XT-I proteins can lead to delocalization [9,11,15]. The mutation
p.Arg481Trp leads to a ubiquitous distribution of the protein in the cytoplasma instead of
localization in the Golgi, and the mutation p.Val724Serfs*10 allowed the truncated XT-I
protein to be found in the endoplasmic reticulum. The mutant detected in this work is
shorter than the delocalized variants and, therefore, possibly also localized in the cyto-
plasma. Incomplete XYLT1 mRNA is, thus, not necessarily completely degraded by the
nonsense-mediated mRNA decay mechanism but can also lead to mislocalized proteins.
An accumulation of nonfunctional proteins, for example in the endoplasmic reticulum, is a
possible trigger of cellular stress responses [38,39].

The XYLT2 KO culture analyzed showed a homozygous 1 bp deletion, which led to a
premature stop codon and, thus, significantly shortened XT-II protein (98 instead of 865 AS).
The literature also describes almost exclusively homozygous XYLT2 mutations, which lead
to variable phenotypic characteristics [19]. The mutation described here is located at the
beginning of the transmembrane domain and, thus, upstream of the catalytic domain [19].
The resulting protein can presumably neither be correctly localized nor catalytically active.

The two most probable off-target regions for both KO systems generated were analyzed
by Sanger sequencing and no changes in the genomic sequences within these regions were
detected. The off-target sequences with the most sequence homologies had at least three
mismatches. Base mismatches in the gRNA region lead to a strongly reduced efficiency
of Cas9 [40]. The effects observed can, therefore, be attributed to the mutations in the
target genes.

4.2. Analysis of Tetrasaccharide Linker Transferase Expressions and Their Activities

The XYLT1 KO cells showed significantly reduced XYLT1 mRNA expression (to 46%).
The XYLT2 KO also leads to reduced XYLT2 expression (to 10%) in the cells. The hetero-
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geneous character of the XYLT1 KO may explain the higher residual expression of XYLT1
mRNA. The remaining wild-type allele can still be fully expressed. The literature also
shows a higher residual expression in heterogeneous clones compared to two mutant
alleles [41]. The XYLT1 KO has no effect on the mRNA expression of the XYLT2 gene.
Fischer et al. previously detected an induction (to 130%) of XYLT2 mRNA expression in
a XYLT1-deficient fibroblast model [42]. The XYLT2 KO, on the other hand, leads to a
reduction in XYLT1 mRNA expression (to 42%). Changes in XYLT1 mRNA expression
in XYLT2 deficiency have not yet been investigated in other models. The analysis of XT
isoform activities confirmed the observations described at the mRNA level. The literature
also shows reduced XT activities with mutations in the two genes [27,42,43]. The method
of isoform-specific activity determination has only been in use since 2023, which is why no
literature comparisons can be used [29]. This work, therefore, shows the different regula-
tions of the two XT isoforms for the first time. The XT-I deficiency results in suppression of
XT-I expression and activity but not in any altered expression of XT-II. The XT-II KO, on
the other hand, regulates both XT-I and XT-II expression and activity. The two isoforms
appear to be differentially regulated.

4.3. Analysis of sGAG Concentration and DCN and ACAN mRNA Expressions

The altered gene expressions and enzyme activities of the transferases involved in
tetrasaccharide linker synthesis suggest altered sGAG synthesis. Altered GAG synthe-
sis may also have an effect on PG synthesis [6]. There is a reduction (to 62% and 73%,
respectively) in the sGAG concentration in both XYLT1- and XYLT2-deficient fibroblasts
compared to control cells. This can be explained by the reduced XT activity as well as
the reduced mRNA expression of the downstream transferases. Without a functional
tetrasaccharide linker, no disaccharides can be attached to synthesize GAGs [6,44]. XYLT1-
deficient cells exhibit reduced sulfate incorporation in PGs, which is due to reduced GAG
production [27,45]. A general reduction in GAG concentration was also observed in mXylt2-
deficient mice [28,46].

Reduced GAG concentrations can also be detected for other GAG linkeropathy models.
A reduction (to 50%) was demonstrated in B4GALT7-deficient zebrafish using the Blyscan
assay [47]. Malfait et al. were able to detect a reduction in the sGAG concentration for
B3GALT6-deficient patient fibroblasts, and a B3GALT6 KO system in zebrafish also showed
a reduced GAG concentration [48–50]. The GAG analyses of various B3GAT3 mutations
from patient material and in the zebrafish model also show reduced HS and CS levels and,
thus, reduced GAG concentrations [51–54].

ACAN expression is very strongly repressed in both KO cultures (to 3–21%). Fischer
et al. were unable to detect ACAN expression in fibroblasts after a XYLT1 KO, nor were
they able to induce it by adding TGFβ1 [42]. There is evidence in the literature of a
correlation between reduced ACAN mRNA expression and short stature in patients [55,56].
Short stature is a prominent feature in all GAG linkeropathies. Aggrecan is an important
component of cartilage particularly, together with collagen type I. The aggrecan aggregates
form a large network that enables the shock resistance of the tissue by binding water
molecules [57]. Osteoarthritis is a joint disease in which there is a loss of PGs and GAGs in
the cartilage. Reduced XYLT1 mRNA expression and associated ACAN mRNA expression
were detected in a rat model [58]. The exact relationships between the regulation of ACAN
expressions have not yet been discovered. However, it has been shown that the aggregates
are degraded by proteases, such as MMPs, and that this degradation can be promoted by
cytokines [57]. In addition, cytokines, such as IL1β, repress the expression of ACAN [57,58].
In line with the reduction in DCN mRNA expression detected in this study and an even
more extensive reduction in ACAN expression, Han et al. have already shown a negative
regulation of ACAN expression by a DCN KO [59]. This could be one reason for the
strikingly strong regulation of ACAN expression in the cultures analyzed in this study.
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4.4. Analysis of the Expression of ECM-Associated Proteins

Without a fully synthesized tetrasaccharide linker, PG biogenesis cannot be terminated,
which, for example, disrupts functional ColI fibril formation [60]. Reduced ColI protein
concentrations could be determined for the two XYLT KO fibroblast cultures by Western
blot analysis. This observation was also detected by Fischer et al. in a XYLT1-deficient
fibroblast model [42]. Nonfunctional ColI fibrils, for example, are recognized by the cell and
degraded by MMP1 [61]. An induction of the pro-MMP1 concentration in the supernatants
of XYLT1- or XYLT2-deficient fibroblasts can be observed in this work. This altered collagen
synthesis is linked to various skeletal dysplasia. Defective collagen synthesis is described
in the literature as the cause of a large number of subtypes of Ehlers–Danlos syndrome.
Symptoms such as joint hyperflexibility, abnormal wound healing and hyperextensible
skin occur [60,62–64].

It can be assumed that the mechanical properties of the ECM are disturbed by the
defective GAG synthesis and the associated alteration of ECM synthesis and that signal
transductions comparable to a wound injury could possibly be triggered. It is possible
that TGFβ1 can no longer be stored in the ECM structure [65]. The altered ECM home-
ostasis is also likely to affect the elasticity and tensile strength of fibroblasts and have an
impact on their signal transduction. The increased firmness of the surrounding ECM may
trigger myofibroblast differentiation [66–68]. The mutant fibroblasts analyzed exhibited
large and sprouting cell bodies. The α-SMA is a marker protein for the differentiation
of fibroblasts into myofibroblasts [69,70]. The XYLT1-deficient fibroblasts expressed sig-
nificantly increased levels of α-SMA compared to their controls (343%). By contrast, the
XYLT2 KO cells showed a reduction in α-SMA to below 15%. The observations regarding
the XYLT1-deficient culture were also detected by Fischer et al. [42]. However, Fischer
et al. also described patient fibroblasts with extensive genomic deletion, including XYLT1,
which exhibited an α-SMA reduction [43]. The XYLT1-deficient fibroblasts appear to be
able to produce α-SMA. However, no feed-forward loop is initiated, which triggers TGFβ
expression and generally increased ECM production. The ECM production of the XYLT2-
deficient fibroblasts is completely shut down. The nevertheless altered phenotype of the
XYLT2-deficient fibroblasts can possibly be explained by cell senescence [71]. The two cell
states are closely linked. Myofibroblasts also pass over into senescence after the wound
closure is complete.

4.5. Analysis of Viability, Senescence, Apoptosis and Oxidative Stress

The mutations introduced in the XT genes lead to homeostasis changes in the ECM.
The viability of both KO models is significantly induced. The modified mRNA transcripts
and possibly misfolded and mislocated proteins can trigger stress responses, such as the
nonsense-mediated mRNA decay and the unfolded protein response in the fibroblasts
analyzed [38]. The increased aminopeptidase activity could be due to an induction of the
unfolded protein response and the endoplasmic reticulum-associated protein degradation.
These rescue mechanisms of the cell recognize misfolded and accumulating proteins and
degrade them [72,73]. For this purpose, the synthesis of chaperones and other auxiliary
proteins is stimulated. An altered metabolic profile can also be the reason for increased
aminopeptidase activity. The analysis of SA β-galactosidase activity shows an induction
for both KO models. The induction of the cytokines of the senescence-associated secretory
phenotype accompanies the entry into senescence and changes the aminopeptidase activity
of the cells.

The literature describes the possibility of DNA damage-induced senescence, which
prevents the cells from passing on the defective genetic material [74,75]. The CRISPR/Cas9-
induced KOs generated could, thus, have triggered senescence due to genome instability.
In addition, permanent oxidative stress in the cultures could have led to the induction of
senescence. Chronic activation, for example, of the unfolded protein response, leads to
oxidative stress up to senescence and also apoptosis of the cells [76–78]. Mochitate et al.
described reduced ColI and also α-SMA production as a result of stress, which had trig-
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gered senescence in the cells [79]. These observations are consistent with the XYLT2 KO
expression pattern. A possible marker of oxidative stress is NOX4, whose mRNA expression
is significantly induced for XYLT1 and XYLT2 KO. NOX4 can be induced by the shear stress
of the cell and, thus, promote the production of ROS and the expression of senescence-
associated secretory phenotype [80]. The production of ROS leads to a feed-forward loop
in the dysregulation of the ECM. ROS exerts an inhibitory effect on the expression of
ColI [81,82]. This mechanism could reinforce the detected changes in the KO models. The
initiated oxidative stress in the KOs further promotes the degradation of the ECM and,
thereby, reinforces the dysregulation.

Another marker for oxidative stress could be the intracellular Ca2+ concentration. The
Ca2+ stimulates ECM production and, thus, promotes aminopeptidase activity [83,84]. A
permanent dysregulation of oxidative stress can lead to apoptosis. An induced caspase3/7
activity for the KO of the XYLT2 gene was detected in this study. The XYLT1 KO showed
no significant change compared to the control.

Finally, the expressions of exemplary cytokines were examined. The IL1β represses
the expression of ACAN [85] and is present in the XYLT1 and XYLT2 KOs induced at
the mRNA level. This could be another explanation for the strongly regulated ACAN
expression. Both IL6 and IL8 are cytokines of the senescence-associated secretory pheno-
type [86]. However, IL6 also has a profibrotic effect. Increased IL6 concentrations have
been detected in the serum of patients suffering from systemic scleroderma with excessive
ECM production [87], and cell culture models of scar formation also showed increased
IL6 expression [88]. IL6 can induce ECM expression via the STAT3 signaling pathway [89].
This could be a compensatory mechanism of the cell to compensate for reduced ECM
production. The IL6 concentration in the supernatants, as well as IL8 mRNA expression,
is elevated for both XYLT KOs. This may correlate with the induced senescence and be a
mechanism for inducing ECM production.

4.6. Characterization of XYLT1- and XYLT2-Double-Deficient Dermal Fibroblasts

For the generation of stable XT-deficient dermal fibroblasts, an attempt was made
to perform a sequential KO. Only 5% of the control cell number could be detected in the
XYLT1/XYLT2 dKO system 48 h after the completed transfection. Due to the high loss of
cells, a stable culture cannot be established. The results indicate that the fibroblasts cannot
compensate for a complete XT deficiency. Fischer et al. have already postulated that HEK
cells with a complete XT deficiency are not viable [90].

In the next step, an attempt was made to develop an siRNA-mediated knockdown
model. Successful knockdown was confirmed both at the mRNA level and due to the re-
duced XT activity of both isoforms. The mRNA expression of the other glycosyltransferases
genes involved in the synthesis of the tetrasaccharide linker were also partially reduced as
a result of the dKD. B4GALT7 and B3GAT3 were significantly reduced in expression, but
B3GALT6 was unchanged compared to the control. The reduction in B4GALT7 mRNA ex-
pression could not be verified using the GalT-I activity assay, as this was already the case in
the individual KOs. A dKD has a similar effect on the enzymes involved in tetrasaccharide
linker synthesis as the KOs of the two individual isoforms.

The subsequent characterization of exemplary ECM-associated targets showed an
induction of almost all of the genes investigated. The induction of ECM-associated targets
is characteristic of myofibroblast differentiation [34]. The induction of ColI (gene: COL1A1)
detected at the mRNA level was confirmed by immunofluorescence at the protein level.
It was noticeable that the collagen fibers formed aggregates. It is possible that these are
caused by the probably nonfunctional GAGs and PGs. The latter are required for the
assembly of collagen fibrils [91]. Correlating with the increased ColI synthesis, a decreased
MMP1 mRNA expression as well as a reduced Pro-MMP1 concentration in the supernatant
of the dKD cells compared to the controls could be detected. These observations also
indicate myofibroblast differentiation. ColI expression is stimulated and MMP1 expression
decreases, for example, through the release of TGFβ1 [92,93].
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Increased ACTA2 and TGFB1 expression accompanied by a general increase in ECM
production is again characteristic of myofibroblast differentiation [42,69,70]. In addition,
the XT-deficient fibroblasts showed morphological changes, with the cell bodies appearing
larger and forming more lamellipodia. These results are initially surprising, as myofibrob-
last differentiation was previously associated with induced XT-I activity [94]. One possible
explanation could be a compensatory response of the cells to the dysfunctional ECM. The
fibroblast induces the increased production of ECM components via various signaling
pathways in order to restore the ECM function. Despite reduced XT activity, ECM protein
production is induced. A similar reaction has been described in fibroblasts with biglycan
deficiency [95].

A possible mechanism for the initiation of ECM production could be the release of
TGFβ1 from the ECM of fibroblasts. A dysfunctional ECM structure can release the TGFβ1
stored in latency complexes and, thus induce a feed-forward loop [96]. Therefore, the
importance of the TGFβ1 signaling pathway and the formation of focal adhesions for the
myofibroblast differentiation observed in this work was analyzed in the next subproject.
Fibroblasts were treated with an inhibitor in parallel to dKD to test whether there is a causal
relationship between the increased TGFβ1 expression and myofibroblast differentiation
during XYLT1/XYLT2 dKD. Care was taken in the inhibitor selection process to ensure
that no other kinases were affected. It could be shown that SB431542 treatment inhibits
α-SMA expression and, thus there is a connection between myofibroblast differentiation
during XYLT1/XYLT2 dKD and the TGFβ signaling pathway. The FAK is another protein
involved in myofibroblast differentiation. It transmits signals, for example, mechanical
tension emanating from the ECM, via the focal adhesions to various intracellular signaling
pathways. The TGFβ signal transduction leads to the activation of the FAK [97]. Reduced
α-SMA expression in the XYLT1/XYLT2 dKD fibroblasts was detected as a result of the
treatment and a correlation was demonstrated.

The results of the dKD system thus show a short-term myofibroblast differentiation
with an accompanying induction of ECM components. In the long term, however, the
XYLT1 and XYLT2 single KO systems showed reduced ECM component production. One
possible starting point for the explanation is the analysis at different time points. Due to the
transience, the characterization of the cells after siRNA-mediated knockdown is performed
after only a few cell cycles, within 48–72 h. The characterization of the single KOs takes
place several cell division cycles after the introduction of the respective KO. The permanent
malproduction of ECM molecules and the probable accumulation of dysfunctional proteins
trigger stress reactions up to cell cycle arrest in the cells.

There are a few limitations to this study. So far, we have used a single clone with the
corresponding perfect control for each of the two single knockouts. Nevertheless, further
runs should be carried out in the future to verify the results of the single clones. This
work has demonstrated a method for generating in vitro models of GAG linkeropathies
for primary fibroblasts. In the future, this method can be transferred to more long-term
cell models, such as immortalized cells. In addition, the analyses of the TGFβ signaling
pathway can be transferred to the individual clones in follow-up studies.

5. Conclusions

This work demonstrates a method to successfully generate a XYLT1- and XYLT2-
deficient GAG linkeropathy model systems in human dermal fibroblasts. Furthermore, it
was possible to perform a complete XYLT knockdown. After XT loss, the fibroblasts initially
compensate for the misregulated ECM homeostasis with ECM overproduction. Effects
were comparable to those observed after TGFβ1-indueced myofibroblast differentiation.
The permanent loss of one of the two XT isoforms induces a stress response that leads to
the reduction in ECM components. The XYLT1 KO still allows α-SMA overproduction.
Cells may be able to partially compensate for the loss via unaltered XT-II activity. The
XYLT2 KO leads to a reduction in both XT isoforms and a strong stress response in case of
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permanent dysregulation. In addition to oxidative stress, induced senescence and evidence
of apoptotic cells has been proven.

There are temporal- and isoform-specific regulatory differences in the XYLT deficiency
models investigated here, which need to be analyzed in more detail in further studies.
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