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Abstract: Glaucoma is a multifactorial pathology involving the immune system. The subclinical
immune response plays a homeostatic role in healthy situations, but in pathological situations,
it produces imbalances. Optical coherence tomography detects immune cells in the vitreous as
hyperreflective opacities and these are subsequently characterised by computational analysis. This
study monitors the changes in immunity in the vitreous in two steroid-induced glaucoma (SIG)
animal models created with drug delivery systems (microspheres loaded with dexamethasone and
dexamethasone/fibronectin), comparing both sexes and healthy controls over six months. SIG
eyes tended to present greater intensity and a higher number of vitreous opacities (p < 0.05), with
dynamic fluctuations in the percentage of isolated cells (10 µm2), non-activated cells (10–50 µm2),
activated cells (50–250 µm2) and cell complexes (>250 µm2). Both SIG models presented an anti-
inflammatory profile, with non-activated cells being the largest population in this study. However,
smaller opacities (isolated cells) seemed to be the first responder to noxa since they were the most
rounded (recruitment), coinciding with peak intraocular pressure increase, and showed the highest
mean Intensity (intracellular machinery), even in the contralateral eye, and a major change in
orientation (motility). Studying the features of hyperreflective opacities in the vitreous using OCT
could be a useful biomarker of glaucoma.

Keywords: optical coherence tomography; vitreous body; glaucoma; animal models; inflammation

1. Introduction

Chronic glaucoma is a leading cause of irreversible blindness in the world [1].
Increase in intraocular pressure (IOP) is a risk factor strongly associated with the onset
and progression of this optic neuropathy. However, several studies have indicated that
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the pathogenesis of the disease is multifactorial, and the immune perspective seems to
be of great relevance [2]. Residential glial cells are found to become activated in the early
stages of glaucoma. Elevated IOP triggers secondary responses responsible for retinal
ganglion cell (RGC) degeneration. Although the primary response may be favourable
in protecting the eye, the subsequent events that lead to long-lasting activation of glial
cells and adaptive immune responses can be destructive [3]. RGC death results in
irreversible visual field impairment [4,5] that is only detectable once 25–30% of RGCs
is lost, leading to delayed diagnosis. It is therefore essential to develop new tools and
markers to enable earlier detection. Furthermore, the association between autoimmunity
and progressive neuron loss in glaucoma may also allow the development of novel
therapeutic interventions that eventually offer a cure for the disease.

Immune cells present different morphologies based on their state of activation [6–8].
Soma size, analysed by in vivo fluorescence imaging, was proposed as a significant
marker of immune activation in the brain [6] and retina of glaucomatous mice [9].
Microglial activation (Iba1+ staining) appears to be the earliest detectable change in
the retina [10] that strongly correlates with and predicts the severity of glaucomatous
neurodegeneration [11]. Very few studies, however, have extensively analysed the
vitreous in entities with parainflammation [12]. Hyalocytes [13] are resident vitreous
cells that participate in immune regulation by means of phagocytic activity and their
contractile properties. In response to noxa, they are replaced and increase their mitotic
activity. All these changes are postulated as early biomarkers of value for diagnosing
ocular diseases [14].

Optical coherence tomography (OCT) is an objective, fast and cost-efficient technol-
ogy that allows in vivo acquisition of high-resolution cross-sectional images micrometres
from the eye structures. Latest-generation OCT systems allow non-invasive evaluation
of the vitreous in acute and chronic inflammatory processes under standard clinical
conditions. They also allow evaluation of the changes that occur after treatment [15–17].
In our previous paper on the use of computational OCT image analysis, we demonstrated
that hyalocyte-like Iba1+ cells were observed as hyperreflective opacities and described
their behaviour in the active/non-active state by characterising them in terms of size,
intensity, eccentricity and orientation in two chronic glaucoma models in rats with ocular
hypertension (OHT) [18].

This paper aims to corroborate the reliability of using computational OCT image
analysis of hyperreflective opacities in the vitreous as a biomarker of vitreous immu-
nity, in this case in two chronic steroid-induced glaucoma (SIG) rat models previously
developed by our research group by injecting biodegradable microspheres (Ms) loaded
with dexamethasone (MsDx) and a combination of dexamethasone and fibronectin (Ms-
DxF) (with sustained release of the active compounds) into the anterior chamber of the
eye [19,20]. Chronic exposure to glucocorticoids can raise IOP and is known to exert a
negative effect in the form of maladaptive glial cell alterations and neuron damage or
loss [21], leading to SIG [22]. We corroborate and validate the computational analysis of
the individual hyperreflective opacities as a better technique than the overall relative
measure of immunity using OCT. The study of eccentricity, intensity and orientation
characteristics of vitreous opacities using OCT is a reproducible and reliable method of
non-invasive assessment of SIG.

2. Materials and Methods
2.1. Data Collection

The dataset comprised images of the vitreoretinal interface obtained using OCT
(HR-OCT Spectralis, Heidelberg® Engineering, Heidelberg, Germany) in two previous
interventional studies on the generation of steroid-induced glaucoma models (MsDx and
MsDxF) [19,20], which detail the methodology followed. The experiment was previously
approved by the Ethics Committee for Animal Research (PI34/17) of the University
of Zaragoza (Spain) and was carried out in strict accordance with the Association for
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Research in Vision and Ophthalmology’s Statement on the Use of Animals. The MsDx
model was generated by injecting a 2-microlitre suspension (10% w) of biodegradable
PLGA microspheres [23] loaded with dexamethasone into the anterior chamber of Long–
Evans rats’ right eyes at 0 and 4 weeks [19]. The second model (MsDxF) was generated by
administering a 2-microlitre suspension (10% w) of biodegradable PLGA microspheres
co-loaded with dexamethasone and fibronectin at baseline in a single injection [20].
The left eyes did not undergo intervention. IOP (using a Tonolab® rebound tonometer)
measurement and OCT scans of both eyes were performed at 0, 2, 4, 6, 8, 12, 18 and
24 weeks. A cohort that did not undergo intervention served as the control and was
scanned at 0, 12 and 24 weeks.

2.2. Image Analysis

Images were acquired using a high-resolution OCT device with a plane power poly-
methylmethacrylate contact lens (thickness 270 µm, diameter 5.2 mm) (Cantor+Nissel®,
Northamptonshire, Northampton, UK) adapted to the rat cornea [24]. The retinal posterior
pole protocol with automatic segmentation, eye-tracking software and a tracking appli-
cation were used to ensure that the same points were re-scanned throughout this study.
“Enhance depth imaging” mode was disabled in all cases.

The raw OCT images were exported in Audio Video Interleave (AVI) format. In the
rodent version of this OCT device, the videos were composed of cross-sectional images
acquired from 61 3 mm long B-scans centred on the optic nerve. These cross-sectional
images had a resolution of 3 µm/pixel and an area of 2.906 mm2 (1536 × 496 pixels).
Therefore, each pixel had an area of 3.815 µm2. These videos were analysed using a custom
program implemented in MatLab (version R218a, MathWorks Inc., Natick, MA, USA).
The imaging data were analysed by a masked reader. Two different researchers, likewise
masked, performed OCT segmentation to verify reproducibility.

In order to measure the immune response, relative intensity in the vitreous/retinal
pigment epithelium (VIT/RPE) was quantified [15,25,26]. Our customised program
segments the vitreous and RPE by locating the inner limiting membrane (ILM) and
the inner and outer layers of the RPE using greyscale conversion (Figure 1). VIT/RPE
intensity was calculated as the mean of the pixel intensity in each region, giving VIT/RPE
relative intensity in each cross-sectional image. VIT/RPE relative intensity in each eye is
the mean of all B-scans.

The vitreous opacities in each cross-sectional image were analysed as they are
closely related to the immune cells. OCT analysis of hyperreflective opacities in the
vitreoretinal interface does not require a correction factor for histological correlation [27]
and ensures the characterisation of the actual opacity. These opacities were classified
according to size based on previous morphological analyses of retinal microglia and
histological analyses of hyalocytes [28]. Soma size can be used to discriminate between
non-activated and activated cells, as the morphology of microglia varies according
to their state of activation: the smallest cells (corresponding to early growth) have a
rounded or amoeboid morphology; resting (non-activated) cells have a thin cell body
with branched cellular processes; and reactive (activated) cells have a larger somatic size
and exhibit phagocytic activity and motility [6,7].

Our custom program automatically measured hyperreflective opacities and classified
them into groups according to their size: isolated cells (<10 µm2), non-activated cells
(10–50 µm2), activated cells (50–250 µm2) and cell complexes (>250 µm2). The size of the
opacities was calculated according to the number of pixels in each opacity. Background
intensity is lower than opacity intensity; therefore, background speckle noise was removed
to ensure the measurement of hyperreflective opacities (see Figure 1). In this way, the
physiological ocular phenomena were eliminated [29].
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Figure 1. OCT scan and 3D reconstruction of 61 right-eye B-scans in two models of steroid-induced 
glaucoma at 6 weeks’ follow-up. The black arrow indicates image sequencing by optical coherence 
tomography (serial slices). Abbreviations: MsDx: cohort with microspheres loaded with 
dexamethasone; MsDxF: cohort with microspheres loaded with dexamethasone and fibronectin 
injected into the anterior chamber; OCT: optical coherence tomography; RPE: retinal pigment 
epithelium. Red arrows show the vitreous opacities. 
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way, the physiological ocular phenomena were eliminated [29]. 

Several parameters can be calculated for each opacity. The total cell area, calculated 
by the number of opacities and the area of each opacity, represented the overall immune 
response to the induced glaucoma model. The mean number of opacities was an indicator 
of immunity to noxa over time, allowing analysis of in situ resident immune cellularity 
and intra- or extra-ocular recruitment [30–33]. The mean area of opacities was calculated 
for all cells and for each group according to cell size, attaining reliable cell soma 
reproducibility. The changing proportion between the activated and non-activated cell 
populations was analysed by quantifying the cell percentage for each group. 

Figure 1. OCT scan and 3D reconstruction of 61 right-eye B-scans in two models of steroid-induced
glaucoma at 6 weeks’ follow-up. The black arrow indicates image sequencing by optical coherence
tomography (serial slices). Abbreviations: MsDx: cohort with microspheres loaded with dexametha-
sone; MsDxF: cohort with microspheres loaded with dexamethasone and fibronectin injected into the
anterior chamber; OCT: optical coherence tomography; RPE: retinal pigment epithelium. Red arrows
show the vitreous opacities.

Several parameters can be calculated for each opacity. The total cell area, calculated
by the number of opacities and the area of each opacity, represented the overall immune
response to the induced glaucoma model. The mean number of opacities was an indicator
of immunity to noxa over time, allowing analysis of in situ resident immune cellularity and
intra- or extra-ocular recruitment [30–33]. The mean area of opacities was calculated for all
cells and for each group according to cell size, attaining reliable cell soma reproducibility.
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The changing proportion between the activated and non-activated cell populations was
analysed by quantifying the cell percentage for each group.

Opacity/cell intensity, calculated as the mean of the intensity of each pixel in the
opacity, is related to immune activation because it implies gene–protein expression prior
to soma remodelling. Eccentricity was also calculated: values close to 1 indicate linear,
elongated or flat cell morphology, while values close to 0 represent a rounded shape. Opac-
ity/cell orientation was used as an indirect parameter of motility or active displacement of
immunity towards the damage [7,9,11,34,35].

2.3. Statistical Analysis

All data were recorded in an Excel database and statistical analysis was performed
using SPSS software version 20.0 (SPSS Inc., Chicago, IL, USA). The variables under study
were eyes (intervened right eye versus non-intervened left eye), sex (male versus female),
type of steroid-induced glaucoma model (MsDx versus MsDxF) and control, number of
injections, IOP and vitreous signal features using OCT (VIT/RPE relative intensity, total
area, mean number of opacities, mean area of opacities, opacity percentage and opacity
eccentricity, intensity and orientation).

After checking for variable normality with the Kolmogorov–Smirnov test, we
performed a parametric test using multiple ANOVA comparisons and correlations
with Pearson’s P test. All values were expressed as mean ± standard deviations.
Values of p < 0.05 were considered to indicate statistical significance, and the Bonfer-
roni correction for multiple comparisons was calculated to avoid a high false-positive
rate. In Figures 2 and 3, statistically significant differences are indicated as follows: A
(MsDx–MsDxF), B (MsDx–control), C (MsDxF–control). Figures 4–9 show isolated
cells (<10 µm2; group 1), non-activated cells (10–50 µm2; group 2), activated cells
(50–250 µm2; group 3) and cell complexes (>250 µm2; group 4). Statistically significant
differences (p < 0.05) are indicated with alphabetic markers as follows: a (group 1–group
2), b (group 1–group 3), c (group 1–group 4), d (group 2–group 3), e (group 2–group 4) and
f (group 3–group 4).

3. Results
3.1. Microsphere Characterisation

Both microsphere formulations (MsDx and MsDxF) were spherical and had a mean
particle size of approximately 14 µm and a unimodal particle size distribution. The
microspheres’ surface was influenced by the production method: those prepared via
evaporation solvent from a simple emulsion (MsDx) had non-porous surfaces, according
to scanning electron microscopy (SEM), while the use of the double-emulsion technique
(MsDxF) produced small surface pores in the microspheres. Dexamethasone loading
was approximately 60 µg DX/mg Ms for the MsDx and approximately 72 µg DX/mg Ms
for the MsDxF. In both cases, sustained release of the active compounds was observed
for several weeks. For a more detailed description of these results, see previous studies
published by the research group [19,20,36].

3.2. Ophthalmological Analysis

A total of 280 OCT videos, obtained from 120 rats (60% females/40% males) at
different times of study follow-up, were analysed. MsDx (n = 43 rats): 49 videos from
the right eye (RE)/49 videos from the left eye (LE); MsDxF (n = 44): 44 RE/50 LE;
healthy controls (n = 32): 31 RE/57 LE. IOP progressively increased in both SIG models
and differences were found between the sexes. Glaucomatous and healthy males had
higher IOP levels than females throughout the study (data extracted from [19,20,37])
(Figure 2).
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chamber; IOP: intraocular pressure (data extracted from [37,38]). *: statistical significance (p < 0.05) 
between glaucoma models and healthy controls (ANOVA); A: significant differences between MsDx 
and MsDxF; B: significant differences between MsDx and healthy controls; C: significant differences 
between MsDxF and healthy controls. 
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model generated with two injections showed a higher VIT/RPE signal than the MsDxF 
model generated with a single injection throughout the study; however, after the first 
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controls (Figure 3a). Non-injected left eyes showed a slight increase in vitreous signal 
intensity versus healthy controls (Figure 3b). Healthy control animals’ IOP and vitreous 
signal intensity measurements were lower than those of both SIG animals (Figures 2 and 
3). Lastly, the influence of sex was analysed. In general, females with SIG showed slightly 
higher VIT/RPE OCT intensity than males and their healthy female counterparts. Healthy 
control males showed increased vitreous intensity at week 12 (16 weeks of life), after 
which vitreous intensity declined (Figure 3c,d). 

Figure 2. Intraocular pressure curves (right eyes) in two steroid-induced glaucoma models and
healthy controls for all right eyes (a), for the right eyes of the males (b) and for the right eyes of the
females (c). Abbreviations: MsDx: cohort with microspheres loaded with dexamethasone; MsDxF:
cohort with microspheres loaded with dexamethasone and fibronectin injected into the anterior
chamber; IOP: intraocular pressure (data extracted from [37,38]). *: statistical significance (p < 0.05)
between glaucoma models and healthy controls (ANOVA); A: significant differences between MsDx
and MsDxF; B: significant differences between MsDx and healthy controls; C: significant differences
between MsDxF and healthy controls.

3.3. Computational Analysis
3.3.1. VIT/RPE Intensity

OCT analysis of the vitreous detected slightly higher VIT/RPE intensities in the
injected right eyes in both SIG models in the final stages of this study (p > 0.05). The
MsDx model generated with two injections showed a higher VIT/RPE signal than the
MsDxF model generated with a single injection throughout the study; however, after the
first injection (week 2), both SIG models showed similar VIT/RPE intensities to healthy
controls (Figure 3a). Non-injected left eyes showed a slight increase in vitreous signal
intensity versus healthy controls (Figure 3b). Healthy control animals’ IOP and vitreous
signal intensity measurements were lower than those of both SIG animals (Figures 2 and 3).
Lastly, the influence of sex was analysed. In general, females with SIG showed slightly
higher VIT/RPE OCT intensity than males and their healthy female counterparts. Healthy
control males showed increased vitreous intensity at week 12 (16 weeks of life), after which
vitreous intensity declined (Figure 3c,d).
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Figure 3. VIT/RPE signal intensity. (a) Right eye from both sexes; (b) Left eye from both sexes;
(c) males; (d) females. Abbreviations: RE: right eye; LE: left eye; MsDx: cohort with microspheres
loaded with dexamethasone (green); MsDxF: cohort with microspheres loaded with dexamethasone
and fibronectin injected into the anterior chamber (red); healthy CONTROL: cohort of healthy animals
non intervented (black); VIT: vitreous; RPE: retinal pigment epithelium. A: significant differences
between MsDx and MsDxF.

3.3.2. Correlation Analysis

A correlation study was performed with the aim of evaluating the influence of the
model on the VIT/RPE intensity. Both SIG models are induced by intraocular injections,
which involve rupture of the eye barrier and induce anterior chamber-associated immune
deviation (ACAID) [39,40]. However, no strong statistically significant correlations between
either injections or intensities analysed by OCT were found in any SIG model or in the
healthy cohort, which implies a lower level of immune involvement. The most relevant
results and correlations are shown in bold in Table 1.

MsDx cohort: Both sexes presented an inverse correlation between IOPs at different
times, which was moderate in females (IOP 0 w/6 w in the right eye and IOP 2 w/18 w in
the left eye) and strong in males (IOP 2 w/12 w; r = −0.825, p = 0.012). Eyes with initially
lower IOPs were more likely to present higher IOPs at later times [18]. Furthermore, IOP at
early stages (2 and 4 w) correlated directly with OCT intensity at the final stages (24 w in the
right eye and 18 w in the left eye). This suggests a greater anti-inflammatory effect exerted
by dexamethasone in the injected right eye, delaying the IOP/OCT intensity correlation
in both sexes (males IOP 2 w/OCT 24 w; r = 0.999, p = 0.029, and females IOP 8 w/OCT
18 w; r = 0.999, p = 0.012). The inverse correlation (possibly reflecting the protective effect of
dexamethasone) was observed in males at week 6 (IOP 6 w/OCT 6 w; r = −0.999, p = 0.030)
and in females at week 8 (IOP 2 w/OCT 8 w; r = −0.999, p = 0.019). This protection was
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lost later when a direct correlation was found in males at week 8 (IOP 8 w/OCT 8 w;
r = 0.999, p = 0.028) and in females at week 18 (IOP 8 w/OCT 18 w; r = 0.999, p = 0.012).
This suggests earlier loss of anti-inflammatory action due to dexamethasone in males since
a direct IOP/OCT correlation was found earlier in this sex.

Table 1. Correlations in both steroid-induced glaucoma and healthy control animals. Abbreviations:
RE: right eye; LE: left eye; IOP: intraocular pressure; OCT: optical coherence tomography; w: weeks;
MsDx: cohort with microspheres loaded with dexamethasone; MsDxF: cohort with microspheres
loaded with dexamethasone and fibronectin injected into the anterior chamber; HC: healthy controls;
im: inverse moderate correlation; m: moderate correlation. In bold: statistically significant correlations.

Right Eye Left Eye

MsDx MsDxF HC MsDx MsDxF HC

IOP/IOP 4 w/6 w(m) 6 w/12 w (m) 4 w/8 w
(r = 0.934, p = 0.020) 2 w/18 w (im) 2 w/4 w (m)

4 w/6-8-24 w (m)

IOP/OCT

2 w/24 w
(r = 0.988, p = 0.002)

4 w/24 w
(r = 0.896, p = 0.040)

18 w/24 w
(r = 0.854, p = 0.031)

4 w/18 w
(r = 0.889, p = 0.043)

0 w/8 w
(r = 0.882, p = 0.020)

0 w/12 w
(r = −0.851, p = 0.032)

6 w/8 w
(r = 0.813, p = 0.049)

24 w/24 w (im)

MsDxF cohort: Females also presented a moderate inverse correlation (IOP 0 w/18 w)
and a direct correlation (IOP 0 w/12 w), supporting the more progressive and delayed
IOP increase in right eyes. This was also the case in left eyes (IOP 4 w/24 w; r = 0.919,
p = 0.010). However, males showed a strong direct correlation earlier (IOP 2 w/8 w;
r = 0.841, p = 0.002), which seems to imply a predisposition for an earlier IOP increase
in males in this model. No IOP/OCT correlations were found in the injected right eye.
However, male left eyes showed a strong inverse correlation at 12 w (IOP 0 w/OCT 12 w;
r = −0.851, p = 0.032) and a direct correlation at 8 w (IOP 0 w/OCT 8 w; r = 0.882, p = 0.020,
and IOP 6 w/OCT 8 w; r = 0.813, p = 0.049) and at 18 w (IOP 2 w/OCT 18 w; r = 0.999,
p = 0.022).

Healthy control cohort: An early and positive IOP correlation (IOP 4 w/IOP 8 w;
r = 0.934, p = 0.020) was observed in both sexes. Females showed an inverse correlation
according to IOP at early stages (IOP 0 w/6 w; r = −0.999, p = 0.021) and a direct IOP/OCT
correlation at the intermediate (IOP 12 w/OCT 12 w; r = 0.997, p = 0.049, in the left eye)
and late stages (IOP 18 w/OCT 24 w; r = 0.854, p = 0.031, in the right eye). In females, the
age-related degenerative process [41,42] produces higher vitreous OCT intensity (reflex of
immune involvement and/or activation) correlated with ocular normotension. But males
showed a moderate inverse correlation at the end of this study (IOP 24 w/OCT 24 w).

3.3.3. In Vivo Analysis of Vitreous Immunity

In our previous paper, we showed that the hyperreflective opacities in the vitreous
corresponded to hyalocyte-like Iba1+ cells [18,43] and that hypertensive eyes revealed many
hyalocyte-like cells surrounding the ciliary body, some of which migrated from the ciliary
body, crossing to the vitreous cavity [14]. In this study, the characteristics and behaviour of
the hyperreflective opacities were analysed individually using OCT image processing.

As a representation of total immune response [6,9], the total area of opacities/cells was
quantified. In both SIG models, induced eyes showed significantly increased total areas
(MsDx > MsDxF) versus healthy control animals (Figure 4a). To find out if the increase
in total cell area was because of an increased number or cell size, and thus an increase
in activated cells, the mean number of opacities was quantified over the study period. A
constant number of opacities (10–20) was found in the healthy control cohort, in contrast
to a higher and fluctuating number of opacities found in both SIG cohorts (approximately
45–35 opacities/cells in MsDx and MsDxF, respectively). Both SIG cohorts showed an initial
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increase, coinciding with the first intraocular injection and with OHT levels (Figure 4b).
The results of these two in-depth analyses concur with previous findings [18,26].
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Figure 4. Changes in total immune response (a) and cellular quantification (b) in both steroid-
induced glaucoma and healthy control animals. Abbreviations: RE: right eye; LE: left eye; MsDx:
cohort with microspheres loaded with dexamethasone; MsDxF: cohort with microspheres loaded
with dexamethasone and fibronectin injected into the anterior chamber; n: number; *: statistical
significance (p < 0.05), using ANOVA test.

To assess the reproducibility and reliability of the measurement, the hyperreflective
opacities or vitreous cell populations were divided, as we carried out previously in [18],
into isolated cells (<10 µm2), non-activated cells (10–50 µm2), activated cells (50–250 µm2)
and cell complexes (>250 µm2) [6,9] (Figure 5). This division based on size was possible
because the study of the vitreoretinal interface does not require a correction factor and
consequently can be measured directly.

Cell populations maintain similar sizes over time, implying reliability of measurement.
Complexes > 250 µm2 undergo the biggest variations, with peaks at the onset of damage.
Statistically significant differences (p < 0.05) were highlighted with alphabetic markers as
follows: a (group 1–group 2), b (group 1–group 3), c (group 1–group 4), d (group 2–group
3), e (group 2–group 4) and f (group 3–group 4).

Percentage of Opacities/Cells by Size

Changes in the proportion in the non-activated and activated state in both SIG cohorts
versus healthy eyes are shown in Figure 6. The healthy controls and both SIG cohorts
showed a population ratio ordered from lowest to highest as follows: isolated cells (less than
10 µm2) < complexes (more than 250 µm2) < activated cells (50–250 µm2) < non-activated
cells (10–50 µm2). A specular response was found between opacities of 10–50 µm2 (non-
activated cells) and 50–250 µm2 (activated cells) and between opacities of 50–250 µm2

(activated cells) and opacities > 250 µm2 (complexes). Dynamic fluctuations were observed
in both SIG cohorts, but on average, opacities 10–50 µm2 in size (non-activated cells) com-
prised approximately 40–50%. Both SIG cohorts maintained an anti-inflammatory profile
throughout the study, with the MsDx model exhibiting a lower proportion of activated
cells and higher cumulative intraocular dexamethasone release. This contrasts with the
non-steroid glaucoma models, which had a higher percentage of opacities 50–250 µm2 in
size (activated cells) [18].
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Figure 5. Cell subdivisions based on the mean area of vitreous opacities measured using OCT. Statis-
tically significant differences (p < 0.05) were highlighted with alphabetic markers as follows: a (group
1–group 2), b (group 1–group 3), c (group 1–group 4), d (group 2–group 3), e (group 2–group 4) and f
(group 3–group 4). Abbreviations: MsDx: cohort with microspheres loaded with dexamethasone; Ms-
DxF: cohort with microspheres loaded with dexamethasone and fibronectin injected into the anterior
chamber; isolated cells: < 10 µm2 (group 1); non-activated cells: 10–50 µm2 (group 2); activated cells:
50–250 µm2 (group 3); cell complexes: >250 µm2 (group 4).
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loaded with dexamethasone; MsDxF: cohort with microspheres loaded with dexamethasone and
fibronectin injected into the anterior chamber; isolated cells: opacities < 10 µm2 (group 1); non-
activated cells: 10–50 µm2 (group 2); activated cells: 50–250 µm2 (group 3); cell complexes: >250 µm2

(group 4). Data represented as percentages. Statistically significant differences (p < 0.05) were
highlighted with alphabetic markers as follows: a (group 1–group 2), b (group 1–group 3), c (group
1–group 4), d (group 2–group 3), e (group 2–group 4) and f (group 3–group 4).

Average Eccentricity of the Opacities/Cells

This analysis enhanced the characterisation of cell morphology as rounded morphology
(eccentricity close to 0) versus linear or flat morphology (eccentricity close to 1). In healthy
controls and both SIG cohorts, isolated opacities/cells (<10 µm2) presented the most rounded
or amoeboid morphology (eccentricity 0.85) as opposed to opacities/cells with progressively
larger sizes of 10–50 µm2 (non-activated), followed by those measuring 50–250 µm2 (activated
cells) and <250 µm2 (cell complexes), these being increasingly flat (eccentricity 0.95–1). How-
ever, both SIG cohorts showed higher roundness in isolated cells (0.4–0.7) than in healthy cells
(0.8) (Figure 7). In both SIG cohorts, the lower eccentricities coincided with increases in OHT
in the MsDx model at week 4 (both sexes) (Figure 2a) and week 18 (in males) (Figure 2b), and
in the MsDxF model at week 4 (both sexes) and week 24 (higher in females) (Figure 2c). The
MsDx model with the highest IOP levels showed the lowest eccentricities at those times. The
higher roundness of the isolated cells is related to recruitment to the noxa. Our findings were
in accordance with a previous study showing that the number of intravitreal cells was higher
in adult mice with experimentally elevated IOP [10].
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Figure 7. Mean eccentricity of vitreous opacity detected using in vivo OCT, according to size, in
both steroid-induced glaucoma and healthy control animals. Indirect study of cell soma morphology.
Abbreviations: MsDx: cohort with microspheres loaded with dexamethasone; MsDxF: cohort with mi-
crospheres loaded with dexamethasone and fibronectin injected into anterior chamber; isolated cells:
opacities < 10 µm2 (group 1); non-activated cells: 10–50 µm2 (group 2); activated cells: 50–250 µm2

(group 3); cell complexes: >250 µm2 (group 4). Statistically significant differences (p < 0.05) were
highlighted with alphabetic markers as follows: a (group 1–group 2), b (group 1–group 3), c (group
1–group 4), d (group 2–group 3), e (group 2–group 4) and f (group 3–group 4).
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Mean Intensity of Opacities/Cells

Under physiological conditions, the lowest intensity was quantified in isolated opaci-
ties/cells (<10 µm2) and progressively increased with size: opacities of 10–50 µm2 (non-
activated cells) followed by opacities of 50–250 µm2 (activated cells). However, in both
SIG cohorts, the greatest change in intensity was quantified in the smallest opacities/cells
(<10 µm2) (Figure 8) as a manifestation of activation of intracellular machinery and coin-
ciding with the increase in size. As soma size increased (activated cells with pseudopod
formation) [13,28,44,45], there was a relative decrease in mean intensity.

Biomedicines 2024, 12, x FOR PEER REVIEW 13 of 21 
 

 
Figure 8. Mean intensity of opacities/cells based on size in both steroid-induced glaucoma and 
healthy control animals. Abbreviations: MsDx: cohort with microspheres loaded with 
dexamethasone; MsDxF: cohort with microspheres loaded with dexamethasone and fibronectin 
injected into the anterior chamber; isolated cells: opacities < 10 µm2; non-activated cells: 10–50 µm2; 
activated cells: 50–250 µm2; cell complexes: > 250 µm2. Statistically significant differences (p < 0.05) 
were highlighted with alphabetic markers as follows: a (group 1–group 2), b (group 1–group 3) and 
c (group 1–group 4). Mean Orientation of the Opacities/Cells. 

Orientation was analysed to measure an active shift (change in mean orientation) of 
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(Figure 9), when both SIG cohorts experienced an increase in neuroretinal thickness, as 
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Figure 8. Mean intensity of opacities/cells based on size in both steroid-induced glaucoma and
healthy control animals. Abbreviations: MsDx: cohort with microspheres loaded with dexamethasone;
MsDxF: cohort with microspheres loaded with dexamethasone and fibronectin injected into the
anterior chamber; isolated cells: opacities < 10 µm2; non-activated cells: 10–50 µm2; activated cells:
50–250 µm2; cell complexes: >250 µm2. Statistically significant differences (p < 0.05) were highlighted
with alphabetic markers as follows: a (group 1–group 2), b (group 1–group 3) and c (group 1–group
4). Mean Orientation of the Opacities/Cells.

Orientation was analysed to measure an active shift (change in mean orientation) of
immunity towards the damage [11,14,34,46]. The healthy control cohort did not experience
any change. However, both SIG cohorts (MsDxF > MsDx) showed a change in orientation
of the smallest opacities (<10 µm2: isolated ovoid cells) around 12 weeks (Figure 9), when
both SIG cohorts experienced an increase in neuroretinal thickness, as found in our previous
studies with these same models (Supplementary Figure S1) [19,20].
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Figure 9. Mean orientation of vitreous opacity detected using OCT, according to size, in both steroid-
induced glaucoma and healthy control animals. In vivo analysis for motility. Abbreviations: MsDx:
cohort with microspheres loaded with dexamethasone; MsDxF: cohort with microspheres loaded with
dexamethasone and fibronectin injected into the anterior chamber; isolated cells: opacities < 10 µm2

(group 1); non-activated cells: 10–50 µm2 (group 2); activated cells: 50–250 µm2 (group 3); cell
complexes: >250 µm2 (group 4). Statistically significant differences (p < 0.05) were highlighted
with alphabetic markers as follows: a (group 1–group 2), b (group 1–group 3), c (group 1–group 4),
e (group 2–group 4) and f (group 3–group 4).

4. Discussion

Glaucoma is a multifactorial pathology in which immunity seems to be an early and
important factor [47]. Elevated IOP triggers an innate immune response involving res-
ident immune cells, such as microglia, and the infiltration of macrophages/monocytes
and other secondary responses are responsible for RGC degeneration in glaucoma [7].
The primary response may be initially favourable in protecting the eye; it restores tissue
equilibrium and promotes tissue cleaning, healing and functionality. If there is a defect in
immune response pathways due to accumulating risk factors, prolonged and sustained or
restrained inflammatory stimulation, or “neo-antigens” generated with ageing, the phys-
iological homeostasis may be disrupted and the regulatory mechanisms are altered [48],
thereby converting beneficial immunity into a neurodestructive autoimmune process [49].
Proinflammatory markers [50] and early cytokine dysregulation have been demonstrated
independently and prior to the detection of RGC and axonal loss [7,51]. The subsequent
events that lead to long-lasting activation of glial cells and adaptive immune responses be-
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come destructive, disrupting the homeostasis of the retina and resulting in the dysfunction
of the immune-privileged status of the eye [3].

A possible therapeutic target for alleviating non-IOP-dependent factors could be mod-
ulating immunity. Controlling immune activation reduced optic nerve damage and reactive
microglia-mediated neuroprotection in mouse retina, but eliminating it proved disadvan-
tageous [7,52,53]. This study shows concordant results. Both SIG models showed lower
vitreous signal intensities and lower counts of hyperreflective opacities (Figures 3 and 4)
than those found in previous non-steroid glaucoma models [18], but computational analysis
of vitreous hyperreflective opacities revealed similar behaviour (Figures 6–9). However,
these SIG models developed significant neuroretinal damage with worse electroretino-
graphic functionality, reduced structural thickness and lower RGC counts [19]. In other
words, the presence of the steroid, which a priori could be thought to exert a protective
anti-inflammatory effect, did not; rather, it produced and worsened the glaucomatous
damage, as occurs in corticosteroid-induced glaucoma in humans [54]. Recent studies
suggest that the immunity activated in glaucoma may not be counterbalanced by efficient
immune suppression, and a greater stimulation response is characterised by increased
proliferation and proinflammatory cytokine secretion. The potent anti-inflammatory effect
of dexamethasone is well known. However, in this paper, it was used to generate two SIG
models via sustained release from biodegradable Ms. Dexamethasone exerts a beneficial
protective effect in a situation of overt and active inflammation [55], but in our study, we
started from animals with no acute inflammation to counteract, sustainedly creating a
potential imbalance in the delicate equilibrium of ocular immune privilege. Resident immu-
nity may have been altered by overriding ocular immune inhibitors [56], and the balance
tipped towards proinflammation with significant neuroretinal damage in both models.

Several research groups have tried to study immunity in vivo, but the need for ge-
netically modified animals or the development of highly complex technology was pro-
hibitive [48], and also ex vivo with dead animals as a result [57]. Enabled by the ability
of light to pass through different optical densities, OCT is a fast, non-invasive device
that provides in vivo scans of the neuroretinal structure and measurement of the retinal
layers [58,59]. However, OCT has the handicap of not being able to differentiate among
cell types within the neuroretinal thickness from glial, supporting or vascular cells. In
the retina [9], in vivo microglia tracking using cSLO imaging has been reported [60]. This
technique requires the use of animals genetically modified to express fluorescence, and thus,
it cannot be used on humans. Analysis of the vitreoretinal interface using OCT, however, is
nowadays a standard technique employed in ophthalmological clinics. Our group recently
demonstrated that vitreous immune cells can be detected as hyperreflective opacities at the
vitreoretinal interface and monitored using OCT imaging [18] in healthy and glaucomatous
animals, coinciding with another group, who also confirmed it by confocal immunofluores-
cence in retinal vascular disease [61]. In the first phase, we focused on VIT/RPE relative
intensity after a positive correlation with clinical vitreous turbidity was demonstrated [62]
and validated under different conditions [17,26,63]. In the second phase, deeper compu-
tational analysis was performed to characterise the hyperreflective opacities that were
confirmed by histology as hyalocyte-like Iba1+ cells (a microglial marker). Microglia and
macrophages undergo characteristic morphological changes with their function. In an inac-
tive situation, they are branched to sense changes in the microenvironment. The vitreous
medium’s high water content makes it ideal for the transmission of soluble molecules,
meaning that hyalocytes can easily and rapidly detect changes in the microenvironment [64]
to target the noxa. Dexamethasone is a soluble molecule that was injected into the anterior
chamber. It could target the vitreous chamber and modify the vitreous microenvironment,
causing both SIG cohorts to maintain an anti-inflammatory profile since a higher proportion
of non-activated cells were counted throughout the study (Figure 6). Furthermore, when
damaged, hyalocytes [13] are activated and change shape (the number/size of intracellular
organelles and, thus, the membrane content increase, facilitating detection by OCT imaging
as hyperreflectivity), proliferate and migrate. These cells were associated with areas of
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retinal nerve fibre layer degeneration in glaucomatous patients [46], and a study using
OCT detected a higher density of vitreous opacities close to areas of cell death [25].

Our previous paper on vitreous analysis in glaucoma detected increased intensity
(onset of intracellular machinery) in the smallest opacities and a change in orientation (onset
of displacement) as indicators of activation [18]. It suggested that the smallest opacities
would be the first detected changes and could serve as an early marker of immune activation
in the vitreous. This study of SIG corroborates these results. Eccentricity and intensity seem
to be related to the increase in IOP (Figures 2a and 7), while the change in orientation seems
to be related to the increase in retinal thickness (Figure 9 and Supplementary Figure S1).
Orientation is particularly relevant in the MsDxF cohort, which showed a marked change
(Figure 9), indicating cells are oriented towards a certain point (retinal damage). This change
in orientation coincided with an increase in the mean number of opacities (Figure 4b),
suggesting that more cells were directed to the same retinal area. At later stages, the
mean orientation returns to 0, which suggests that there could be more neuroretinal areas
damaged in different areas and, therefore, more orientations to be adopted by the cells,
nullifying the summation effect of the mean orientation. This hypothesis was confirmed by
the results observed at later stages in the MsDx cohort. MsDx showed a further increase
in cells (Figure 4b) but no change in orientation was observed, suggesting that these cells
took several orientations and cancelled out their effect, which coincided with the increased
neuroretinal damage evidenced by low RGC counts in our previous study [19]. It is possible
that the return to 0 orientation of the opacities/hyalocytes in the two models could indicate
“ageing or motility damage” because of the accumulation, repetition and chronicity of
oxidative stress [35].

In this SIG study, the ocular barrier is altered in both Ms models by means of an in-
traocular injection in the anterior chamber that triggers an inflammatory response (ACAID
response) [65]. In contrast to previous hypertensive models such as those induced by
episcleral vein sclerosis or unloaded microspheres, no direct correlation was found between
inducing injections, vitreous intensity or vitreous microglial or hyalocyte response [10].
This suggests that the pro-inflammatory effect of the intraocular injection was partly coun-
teracted by the anti-inflammatory effect of the initial release of dexamethasone. As with
non-SIG models [18], those animals with the lowest initial IOP had the highest IOP af-
ter the application of hypertensive stimuli, and in the MsDx cohort, higher IOP at week
2 correlated with higher vitreous signals detected by OCT at week 24 (r = 0.988, p = 0.002).
Similarly, in left eyes, an inverse correlation was found between baseline IOP levels and
vitreous OCT at week 12 (r = −0.851, p = 0.032), reflecting possible higher late contralat-
eral inflammatory vitreous activation in the more hypotensive (susceptible) non-induced
eyes. In this sense, different studies of glaucoma models have demonstrated stable, lower-
intensity immune activation in the retina [66] and vitreous of the contralateral eye after
OHT induction [18]. In this study, no increase in the number of opacities was observed in
contralateral eyes, which means the hyalocytes were resident (without recruitment), but
changes were detected in cell populations, eccentricity and intensity. Characterisation of
hyperreflective opacities/immune cells (hyalocyte-like Iba1+ cells) in the healthy control co-
hort was explored in depth in our previous paper [18,61]. In summary, healthy rats showed
a higher proportion of vitreous opacities in OCT, coinciding with sizes corresponding to
non-activated cells, consistent with an anti-inflammatory or steady state [61] of the eye and
immune inhibitory privilege [56,65]. A variable number of opacities corresponding to cells
activated to maintain homeostasis was also quantified [11].

Limitations and future perspectives: There is still a long way to fully achieve the
understanding of immune cell actions and cascades in both healthy and glaucomatous
eyes. The authors are aware that there remain many aspects and unknowns to resolve. The
obtained results could not be easily extrapolated to humans and more data are needed
regarding the effectiveness of this study. The limitations in the histologic phenotyping
of our study meant it could not clarify the paradigm of the infiltrative origin [67] of the
increased vitreous opacities, although previous groups demonstrated the involvement of
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blood-derived inflammatory cells [61]. It would be beneficial to perform a computational
study correlating the changes in the parameters of eccentricity, intensity and orientation
of the vitreous opacities with neuroretinal changes, and to corroborate our topographic
hypothesis of a change in orientation of those vitreous cells towards the RGC damage
cluster by means of whole-mount histological studies or with new in vivo damage detection
techniques [68,69]. Glaucoma therapies based on neuro-immunomodulatory targeting are
emerging and immune cells could be important candidates [35].

5. Conclusions

Our method of analysing vitreous opacities/hyalocytes using OCT could serve as a
promising imaging biomarker to detect immunity in the eye. It could help in the early
diagnosis of disease onset and progression applicable to glaucoma and, potentially, in
other multifactorial neurodegenerative diseases [70,71]. This study supports the previ-
ous evidence that simple, non-invasive in vivo analysis of glaucoma from the immune
perspective is possible. We corroborate and validate the computational analysis of the
individual hyperreflective opacities as a better technique than the overall relative measure
of immunity using VIT/RPE by OCT. A clear example is the MsDxF cohort, which hardly
exhibited any difference in vitreous signal intensity compared to the healthy control cohort,
but in which subsequent detailed analysis showed higher cell counts and the study of
eccentricity, intensity and orientation characteristics using OCT coincided with the clinical
milestones of increased IOP or neuroretinal change. In view of the above, we believe
that the individualised study of vitreous opacities is a reproducible and reliable method
and offers information that can be correlated with clinical data, which could serve as a
non-invasive biomarker in glaucoma diagnosis.
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mdpi.com/article/10.3390/biomedicines12030633/s1, Supplementary Figure S1: Retinal thickness
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