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Abstract: Inflammatory bowel disease (IBD) is a group of chronic disorders characterized by pain,
ulceration, and the inflammation of the gastrointestinal tract (GIT) and categorized into two major
subtypes: ulcerative colitis (UC) and Crohn’s disease. The inflammation in UC is typically restricted
to the mucosal surface, beginning in the rectum and extending through the entire colon. UC patients
typically show increased levels of pro-inflammatory cytokines, leading to intestinal epithelial apopto-
sis and mucosal inflammation, which impair barrier integrity. Chronic inflammation is associated
with the rapid recruitment and inappropriate retention of leukocytes at the site of inflammation,
further amplifying the inflammation. While UC can be managed using a number of treatments, these
drugs are expensive and cause unwanted side effects. Therefore, a safe and effective treatment for UC
patients is needed. Palmitoylethanolamide (PEA) is an endogenous fatty acid amide and an analog
of the endocannabinoid anandamine. PEA administration has been found to normalize intestinal
GIT motility and reduce injury in rodents and humans. In the current study, we examined the
efficacy of PEA encapsulated in phytosomes following oral administration in experimental ulcerative
colitis. Here, we showed that PEA at a human-equivalent dose of 123 mg/kg (OD or BID) attenuated
DSS-induced experimental colitis as represented by the reduction in clinical signs of colitis, reduction
in gross mucosal injury, and suppression of leukocyte recruitment at inflamed venules. These findings
add to the growing body of data demonstrating the beneficial effects of PEA to control the acute
phase of intestinal inflammation occurring during UC.
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1. Introduction

Inflammatory bowel diseases (IBDs), including ulcerative colitis (UC) and Crohn’s
disease, are chronic and recurrent disorders of the gastrointestinal tract [1]. They are
characterized by intestinal inflammation resulting from the infiltration of neutrophils,
lymphocytes, or macrophages and leading to mucosal disruption and ulceration [2]. Despite
some shared characteristics, the two forms of IBD can be distinguished by differences in
genetic predisposition, risk factors, and clinical, endoscopic, and histological features [3].
Inflammation in UC is characteristically restricted to the mucosal surface. It starts in the
rectum and generally extends proximally in a continuous manner through the entire colon;
however, some patients with proctitis or left-sided colitis might have a caecal patch of
inflammation [4].
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Although the exact pathogenesis of IBDs is poorly understood, there is evidence that it
involves the interaction of the immune system, genetic susceptibility, and the environment.
Secreted pro-inflammatory cytokines (e.g., TNF-α and IL-6), as well as reactive oxygen
species generated by recruited immune cells such as neutrophils, cause intestinal epithelial
apoptosis and mucosal inflammation, resulting in the loss of barrier integrity in patients
with UC and IBD [5]. Furthermore, an increase in leukocyte recruitment is a key feature
of colitis and is regulated by the interaction between endothelial adhesion molecules and
their specific ligands on leukocytes [6,7]. Importantly, chronic inflammation is associated
with the rapid recruitment and often inappropriate retention of leukocytes at the site of
inflammation, which likely amplifies the inflammatory response [8]. Therefore, the repair
of the mucosal barrier and suppression of inflammation are effective strategies for the
treatment of UC. Conventional drugs for UC include corticosteroids, amino salicylates, and
antibiotics, as well as anti-TNF-α therapies [3,6,9]. However, these drugs have limitations
including substantial economic burden and undesirable side-effects, e.g., anti-TNF-α med-
ications can cause malignancies, infections, and congestive heart failure [10]. Hence, an
effective and safe treatment for UC patients is urgently needed.

Palmitoylethanolamide (PEA) is an endogenous amide belonging to the family of fatty
acid ethanolamides (FAEs) [11]. The anti-inflammatory and analgesic effects of PEA are
likely mediated by direct or indirect targeting on a number of receptors, such as cannabinoid
type 1 receptor (CB1) and cannabinoid type 2 receptor (CB2) in breast cancer cells [12],
transient receptor potential vanilloid type-1 (TRPV1) ion channels in sensory neurons [13],
and PPARα [14,15] and the orphan receptor GPR55 in striatal neurons [16]. PEA has been
detected in the rodent and human digestive tracts, and when administered i.p., it normalizes
intestinal motility [17] and reduces intestinal injury caused by ischemia–reperfusion [14].
PEA confers this protection on intestinal injury partially through its effect on the PPARα
receptor [14]. However, whether PEA exhibits any protective effects in relieving clinical
signs of ulcerative colitis in mice is not known.

In the present study, we employed a phytosomal drug delivery system to administer
PEA through oral gavage in mice. The treatment represents a novel pharmacological
approach utilizing the encapsulation of PEA in phytosomes in order to improve oral
absorption. We aimed to evaluate the effects of PEA in a mouse model of dextran sodium
sulphate (DSS)-induced colitis. We investigated whether PEA treatment attenuates DSS-
induced clinical signs of colitis, pathological alterations of the colonic structure, and colonic
leukocyte recruitment in mice.

2. Materials and Methods
2.1. Animals

Male C57BL/6 mice were purchased from Charles River Laboratories International
Inc. (Saint-Constant, QC, Canada). All mice were of wild type and 12–14 weeks old, with
20–30 g body weight, and housed in ventilated plastic cage racks in a pathogen-free room
at the Carleton Animal Care Facility (CACF), Faculty of Medicine, Dalhousie University,
Halifax, NS, Canada. Animals were kept on a 12 h light/dark cycle at 21 ◦C and were
acclimatized for one week prior to experimentation. All experimental procedures were
approved by the University Committee on Laboratory Animals at Dalhousie University
under protocol number #21-113 and were performed following the guidelines and standards
of the Canadian Council on Animal Care.

2.2. Experimental Model

Experimental colitis was induced via administration of 4% or 5% DSS (w/v) in drinking
water (36–50 kDa; Cat # 160110, MP Biomedicals, Solon, OH, USA) for five days. On day 6,
DSS water was replaced with fresh drinking water for one day. Control mice received only
normal drinking water for the entire course of the experiment. Over the six-day study
period, mice were monitored daily for body weight, their overall health (eye opening, fur
and motor activity), stool consistency, and blood in the stool to obtain a clinical illness
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score (Table 1). On the morning of day seven, mice were sacrificed and colon was excised.
Subsequently, colon was placed on filter paper to measure its length and weight was
recorded. The colon was then processed for histological analysis.

Table 1. Assessment of health, diarrhea, and fecal blood score.

Score Diarrhea Score Visible Fecal Blood Score Eye Opening Posture Fur Motor

0 Normal pellets No blood Open No hunch No change Active

1 Slightly loose Slightly bloody Intermediate mild hunching Ruffled (Harsh) No move for 2 s

2 Loose Blood Half Moderate hunching Piloerection No move for 5 s

3 Very loose Very bloody Half + Discharge Severe hunching Ruffled/Pilo No move for 10 s
Ruffled: not shiny, not groomed; piloerection: appearing of goosebumps on mice due to distress, ill health, or
hypothermia; motor activity: exploring, moving, and grooming.

2.2.1. PEA Phytosome Preparation

Based on the dose of PEA employed in clinical trials, human-equivalent dose of PEA
was chosen (123 mg/kg) once daily (OD) or twice daily (BID), p.o. PEA phytosome com-
position contains 40% PEA/60% excipients (50% sunflower lecithin, 8% microcrystalline
cellulose, and 2% silicon dioxide). PEA phytosome was prepared by reconstituting 30.7 mg
of PEA phytosome to 5 mL purified water to make a stock solution of 24.6 mg/mL PEA
and 36.9 mg/mL excipients. Placebo phytosome or empty phytosome was prepared by
reconstituting 184.5 mg of placebo phytosome to 5 mL purified water to make a stock solu-
tion of 36.9 mg/mL placebo excipient. Both placebo phytosome and PEA phytosome have
the same concentration of excipients per dosing volume. The dosing volume of 10 mL/kg
was used.

2.2.2. Experimental Groups

Mice were divided into following groups (n = 14/group):

1. Water + no treatment;
2. DSS + no treatment;
3. Water + PEA (123 mg/kg, p.o., OD);
4. Water + PEA (123 mg/kg, p.o., BID);
5. DSS + PEA (123 mg/kg, p.o., OD);
6. DSS + PEA (123 mg/kg, p.o., BID).

Experiments in groups 3–10 were repeated with empty phytosome gavage.

2.3. Tissue Processing and Histology

Briefly, paraffin tissue slices (thickness, 5 µm) were deparaffinized with xylene, stained
with hematoxylin and eosin (H&E), and observed through light microscopy (Axio Vision,
Zeiss, Milan, Italy). The degree of inflammation on microscopic cross-sections of the colon
was graded semiquantitatively from 0 to 4 as previously described by [18,19]; in particular,
the morphological criteria were considered as described in Table 2 [19].

Table 2. Assessment of histopathological score.

Score Extent of Inflammation
Inflammatory Cell Infiltration
(Intact/Undamaged
Epithelium)

Inflammatory Cell
Infiltration (Epithelial
Erosion)

Loss of Epithelium
and Crypts, Crypts
Filled with Mucus

Increased Space
between MM and
SM Due to Oedema

0 No evidence of
inflammation

1 Mucosa
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Table 2. Cont.

Score Extent of Inflammation
Inflammatory Cell Infiltration
(Intact/Undamaged
Epithelium)

Inflammatory Cell
Infiltration (Epithelial
Erosion)

Loss of Epithelium
and Crypts, Crypts
Filled with Mucus

Increased Space
between MM and
SM Due to Oedema

2 Mucosa + muscularis
mucosae (MM) Focal Focal Crypt filled with mucus One-third

3 Mucosa + MM +
submucosa (SM) Multifocal Multifocal Epithelial erosion Two-thirds

4 Mucosa + MM + SM +
muscularis Diffuse Diffuse Loss of crypt +

ulceration Full

2.4. Intravital Microscopy (IVM) of Mouse Colon

On day 7, half of the animals were anesthetized using sodium pentobarbital (90 mg/kg,
54 mg/mL; Ceva Sainte Animal, Montreal, QC, Canada) in a 1:2 dilution with 0.9% sodium
chloride (NaCl). Depth of anesthesia was monitored using the pedal withdrawal reflex and
additional anesthesia (9 mg/kg, 54 mg/mL; 1:10 dilution) was given as required. Fifteen
minutes prior to imaging, Rhodamine-6G (0.05%, 1.5 mL/kg; Sigma-Aldrich, Oakville,
ON, Canada) and fluorescein isothiocyanate-labelled bovine serum albumin (FITC-BSA,
5%, 1 mL/kg; Cat # A9771, Sigma-Aldrich, Oakville, ON, Canada) were administered
via tail vein injection. A laparotomy was performed to expose the distal colon. Each
mouse was placed on its side with the distal colon placed on the viewing platform of a
specifically designed stage fixed to a heating pad [20]. A glass slide was placed over the
intestine. A continuous flow of 0.9% NaCl (heated to 37 ◦C, 7 mL/hr) was administered to
maintain physiological conditions. An epifluorescence microscope (Leica DMLM, Wetzlar,
Germany) with a mercury-arc light source (LEJ EBQ 100; Carl Zeiss, Jena, Germany) enabled
visualization of the intestinal microcirculation. Leukocyte trafficking was visualized within
both submucosal collecting venules (V1, diameter: 50–100 µm) and post-capillary venules
(V3, diameter: 20–35 µm). For each venule type, 6 videos of 30 s in length were acquired.
Videos were analyzed in a blinded manual fashion using Fiji [21]. Adherent leukocytes
were defined as labelled cells that remained immobile for the entire 30 s recording period.
Endothelial surface area was estimated under the assumption of cylindrical vessel geometry.
Non-adhesive and adhesive leukocytes were quantified and reported in cells/mm2 units.

2.5. Statistical Analysis

All data were analyzed using the statistical software package Prism 9 (GraphPad
Software, La Jolla, CA, USA). Shapiro–Wilk test was used to confirm normal distribution of
data. One-way ANOVA followed by Holm–Šídák’s multiple comparison test was used to
analyze normally distributed data. Data were expressed as means ± standard deviations.

3. Results
3.1. Mice Administered Dextran Sodium Sulfate (DSS) Exhibit Clinical Signs of Ulcerative Colitis

The DSS-induced colitis mouse model is commonly used to address the pathogenesis of
inflammatory bowel disease (IBD) and to test the efficacy of small molecule compounds [22].
DSS is a synthetic sulphated polysaccharide that reproducibly induces acute and chronic
colitis by interfering with the intestinal epithelial cell barrier, resulting in the release of
cytokines and other inflammatory mediators [23,24]. In the current study, we induced
experimental colitis in C57BL/6J mice by adding 4% or 5% DSS to the drinking water for
5 days (Figure 1A). Control mice were given unsupplemented water. Significant weight
loss was evident in mice on day 6 and 7 after 4% or 5% DSS administration, respectively,
compared to the control mice (Figure 1B). Furthermore, the weight loss was more severe in
mice after 6 and 7 days of 5% DSS compared to the mice administered 4% DSS. To further
determine the severity of the murine model of DSS-induced colitis, we assessed the clinical
illness score by examining the stool consistency and the presence of blood in the stool. A
higher score indicated a more severe disease condition. Both diarrhea score and fecal blood
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score remained 0 throughout the experiment in the mice given water (Figure 1C,D). In mice
administered 4% DSS, the diarrhea score was significantly increased on day 7 whereas the
presence of blood in the stool was observed only in DSS mice from Day 5–7 (Figure 1C,D).
On the other hand, the diarrhea score was significantly increased as early at day 4 post
DSS 5% administration, which was further associated with the presence of blood in the
stool when compared to the mice administered water (Figure 1C,D). We also observed
increased mortality (40%) in mice given 5% DSS. These mice were moribund and anemic
and exhibited enlarged caeca. Together, these data suggest that mice administered 5% DSS
exhibited a more severe phenotype of colitis that was associated with significant weight
loss and increased clinical illness scores compared to the mice given either 4% DSS or water.
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Figure 1. Mice administered dextran sodium sulfate (DSS) exhibit clinical signs of ulcerative colitis.
(A) Schematic diagram of DSS-induced colitis mouse model. (B) Percentage reductions in body
weight, (C) diarrhea score (stool consistency), and (D) fecal blood score in mice given either water
or DSS 4% or DSS 5% from day 1 to day 5. Data are represented as means ± SEMs; N = 9 or 10.
Statistical analysis was performed separately for each day using one-way ANOVA; * p < 0.05 water
vs. DSS 4%; ˆ p < 0.05 water vs. DSS 5%; # p < 0.05 DSS 4% vs. DSS 5%.

3.2. DSS Administration Decreases Colon Length and Increases Colon Weight

A shorter colon length and increased colon weight are considered as hallmarks of
experimental colitis [18,25]. Our results revealed a significant reduction in colon length in
mice given 4% DSS compared to the mice given water whereas no change in colon length
was observed in mice given 5% DSS (Figure 2A). We next measured the colon weight and
found that there was a significant increase in colon weight in mice administered either 4% or
5% DSS compared with the control mice (Figure 2B). Additionally, colonic inflammation was
also examined through histology, where mouse colon tissues were stained with H&E. The
histopathological scoring system was established based on criteria such as inflammatory
cell infiltrates, epithelial changes, the extent of inflammation from mucosa to muscularis,
and the mucosal architecture (Table 2). We noted that the appearance of the structure of
the colon tissues from mice given 4% or 5% DSS was altered when compared with mice
given just water (Figure 2C–E). In control mice, the layers of colon tissues such as the
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surface epithelium, mucosa, submucosa, and muscularis were well defined and intact
(Figure 3A). On the other hand, a series of pathological changes were observed in DSS
(4% and 5%)-group mice (Figure 3B–D). First, we noted the infiltration of inflammatory
cells (with undamaged surface epithelium), which comprise of neutrophils, eosinophils,
monocytes, plasma cells, and lymphocytes at differing ratios (Figure 3B). Second, we
observed the infiltration of inflammatory cells with epithelial erosion, which is the loss of
the surface epithelium with underlying inflammation reaching the basement membrane. If
the epithelial erosion exceeds the submucosa, then it is defined as comprising ulcerations
(Figure 3C). Third, we noted the loss of a crypt or crypt filled with mucus (Figure 3C,D).
Finally, we noted the increase in the thickness of the colon wall due to the presence of
significant edema in the submucosa of colon tissue (Figure 3D). Mice given DSS 4% or 5%
exhibited a significant increase in their histopathological score compared with the mice
given water (Figure 3E). While there was no significant difference in the histopathological
score of the colon tissue between mice given DSS 4% and DSS 5% (Figure 3E), we did
observe an enlarged and discolored caecum in mice given 5% DSS compared to those
given DSS 4%, likely suggesting that these mice presented a more severe phenotype of
colitis (Figure 3F). This finding was consistent with the clinical illness score, where mice
in the DSS 5% group exhibited more severe forms of clinical signs compared to the mice
given DSS 4%. Unlike Crohn’s disease, ulcerative colitis causes mucosal inflammation and
ulcers, which involve the entire colon and sometimes also affect the caecum but not the
small intestine. To ensure that DSS-induced colitis in mice is only restricted to the colon,
mouse small intestine sections were stained with H&E. We noted that the layers of the
small intestine were very well defined and intact in mice administered 4% DSS compared
to water-given control mice, suggesting that DSS-induced inflammation was only localized
to the colon tissue (Figure 3G).
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Figure 2. DSS administration decreases colon length and increases colon weight. (A) Colon length
and (B) colon weight from mice given either water or DSS 4% or DSS 5%. Hematoxyline and eosin
staining of colon tissues of mice administered either (C) water, (D) DSS 4%, or (E) DSS 5%. Data are
represented as means ± SEMs; N = 8–10 (water and DSS 4%) and 5 (DSS 5%). White bar indicates
mice given water only. ** p < 0.01, and **** p < 0.0001 using one-way ANOVA with a post hoc analysis.
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Figure 3. DSS administration induces histological alterations in mouse colons: Hematoxyline and
eosin staining of colon tissues of mice given either water or DSS 4% or DSS 5%. (A) Well-defined intact
layers of colon tissue from mice given water. Mice being given DSS 4% or DSS 5% causes histological
alteration in colon tissue including (B) inflammatory cell infiltration with intact or undamaged surface
epithelium (black arrow indicates intact surface epithelial layer); (C) inflammatory cell infiltration
from mucosa to muscularis, surface epithelial erosion, and loss of crypts (black arrow indicates
erosion of epithelial layer); and (D) crypts filled with mucus. The bracket “]” indicates the oedema in
submucosa leading to the increase in the thickness of the colon tissue. (E) Histopathological score of
colon tissues of mice given either water, DSS 4%, or DSS 5%. (F) A picture of a dissected mouse (ad-
ministered DSS 5%) showing enlarged and discolored caecum. (G) Hematoxyline and eosin staining
of small intestine in mice administered DSS 4%. Data are represented as means ± SEMs; N = 8–10
(water and DSS 4%) and 5 (DSS 5%). White bar indicates mice given water only. **** p < 0.0001 using
one-way ANOVA with a post hoc analysis.

3.3. DSS Administration Increases Colonic Leukocyte Recruitment in Mice

Higher leukocyte recruitment and increased leukocyte adhesion are characteristic
of chronic inflammatory disorders [6,26]. In the current study, we employed intravital
microscopy (IVM) for the experimental evaluation of the microcirculation of the colon.
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IVM allows the in vivo examination of many pathophysiological processes including
leukocyte–endothelium interactions and capillary blood flow [27,28]. We noted that there
was a significant increase in leukocyte adhesion in collecting colon submucosal venules
(V1) (Figure 4A,E–G) and in post-capillary venules (V3) (Figure 4B) in mice given either 4%
or 5% DSS compared to the mice given water. Furthermore, there was a significant increase
in the number of rolling leukocytes in colon-collecting venules (V1) in mice administered
either 4% or 5% DSS compared to the control group (Figure 4C,E–G), where no significant
difference was observed in post-capillary venules among the groups (Figure 4D). These
results imply that DSS administration (either 4% or 5%) amplifies the inflammatory pheno-
type by altering the colonic vasculature during experimentally induced ulcerative colitis in
mice. Together, the results indicate that 4% DSS causes moderate inflammation whereas 5%
DSS causes damage that may represent extensive irreversible tissue pathology. Given these
observations, we decided to use only DSS 4% for our subsequent experiments.
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Figure 4. DSS administration increases leukocyte recruitment in colon tissue in mice. (A) Adherent
and (C) non-adherent leukocytes from colon-collecting venules (V1) and (E–G) representative images
of leukocytes (red triangles) in collecting venules of the colon from mice given either water, DSS 4%,
or DSS 5%. (B) Adherent and (D) non-adherent leukocytes from post-capillary venules (V3) from
mice given either water, DSS 4%, or DSS 5%. Data are represented as means ± SEMs; N = 8–10 (water
and DSS 4%) and 5 (DSS 5%). White bar indicates mice on water. * p < 0.05 and ** p < 0.01 using
one-way ANOVA with a post hoc analysis.
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3.4. PEA Administration Ameliorates Clinical Signs of DSS-Induced Colitis in Mice

We next examined the effect of PEA in an experimental-induced colitis model in
mice. Mice given water or 4% DSS were treated with PEA (123 mg/kg p.o.) once or
twice daily (Figure 5A). Based on the different doses of PEA employed in clinical trials,
human-equivalent doses of PEA were chosen in the current study to examine its effect in
DSS-induced colitis mice [29–32]. Since PEA has extremely low solubility, it was integrated
into phytosome to increase its absorption and was delivered to mice through oral gavage
for six days (Figure 5A). Additional water or DSS control groups were treated with PEA or
empty phytosome, respectively (see Supplementary Figure S1). All water control groups
did not show any clinical signs of colitis. In DSS control animals (with and without EP),
we observed that mice exhibited the same reduction in body weight post 6 and 7 days of
DSS administration (Supplementary Figure S1A). The reduction in body weight was also
associated with an increased diarrhea score and fecal blood score in both DSS-alone and
DSS + EP (all doses) groups (Supplementary Figure S1B,C). Therefore, we only compared
the PEA treatment groups with the DSS control group without EP (Figure 5). We found
that at day 6 and 7 following DSS administration, there was a significant reduction in body
weight in mice given DSS alone compared to the control mice given water (Figure 5B).
Furthermore, the DSS-induced reduction in body weight was ameliorated when DSS-
administered mice were treated with PEA (BID) (Figure 5B). DSS-induced reduction in
body weight was further associated with an increase in diarrhea score compared to the mice
given water. This increase in diarrhea score was suppressed when DSS-administered mice
were treated with PEA (OD) (Figure 5C). The diarrhea score in mice treated twice daily with
PEA was also reduced (n.s.). There was a significant increase in fecal blood score from day
4 to 7 post DSS administration compared to the mice given water (Figure 5D). The increase
in fecal blood score was attenuated when DSS-administered mice were treated with PEA
(OD and BID) on day 7 (Figure 5D). Together, these data indicate that PEA treatment in
mice attenuated DSS-induced clinical symptoms of ulcerative colitis.
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Figure 5. PEA treatment ameliorates clinical signs of DSS-induced colitis in mice. (A) Schematic
diagram of DSS-induced colitis mouse model with PEA treatment. (B) Percentage reductions in body
weight, (C) diarrhea score (stool consistency), and (D) fecal blood score in mice given either water
or DSS 4% with or without PEA treatment (123 mg/kg, OD or BID, p.o.). Data are represented as
means ± SEMs, N = 9 or 10. Statistical analysis was performed using two-way ANOVA: * p < 0.05
1-water vs. DSS 4%, * p < 0.05 3-DSS-PEA-OD vs. DSS 4%, and * p < 0.05 4-DSS-PEA-BID vs. DSS 4%.
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3.5. PEA Treatment Did Not Attenuate DSS-Induced Decrease in Colon Length and Increase in
Colon Weight

Next, we examined the effect of PEA on colon length and weight. In the control
experiments with water and DSS animals treated with EP, we did not see any effects on
colon length and weight. Therefore, we used the water and DSS control groups without EP
for comparisons again (Supplementary Figure S2A,B). We found that mice given DSS alone
exhibited a significant reduction in colon length and increase in colon weight compared
to control mice given water (Figure 6). In DSS mice treated with PEA, no change in colon
length and weight was observed compared to untreated DSS animals (Figure 6). Together,
these findings suggest that PEA treatment did not ameliorate DSS-induced decrease in
colon length and increase in colon weight.
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Figure 6. PEA administration partially reverses DSS-induced decrease in colon length. Colon length
and colon weight from mice given either water or DSS 4% alone or DSS 4% treated with either PEA
OD or BID. Data are represented as means ± SEMs; N = 5–6. * p < 0.05, ** p < 0.01, and **** p < 0.0001
using one-way ANOVA with a post hoc analysis.

3.6. PEA Treatment Partially Reverses the DSS-Induced Histopathological Changes in the Colon

Surface epithelial erosion, the loss of crypts, and inflammation were absent in the
water control group with PEA treatment (Figure 7A). In contrast, colon tissues from mice
given 4% DSS alone showed extensive areas of mucosa with the loss of crypts or crypts
filled with mucus, surface epithelial erosion, the infiltration of inflammatory cells, and
ulceration (Figure 7B). We next examined the effect of PEA on the histopathology of mouse
colons with DSS-mediated colitis. The treatment of PEA altered the appearance of colon
tissue architecture, partially reverting it to being closer to the healthy control (water) group
with reduced patches of inflammation and ulceration, epithelial erosion, and the loss of
crypts (Figure 7C,D). The histopathological score was significantly (~7-fold) higher in the
DSS group alone compared to the healthy water control group (Figure 7E). With PEA
treatments, there was a significant reduction in the histopathological score compared to the
mice administered DSS alone (Figure 7E). Overall, our results indicate that PEA treatment
partially prevents DSS-mediated histopathological alterations in colon tissues in mice.
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treated with (C) PEA, OD or (D) PEA, BID. (E) Histopathological scores of colon tissues of mice. Data
are represented as means ± SEMs; N = 8–10. * p < 0.05, ** p < 0.01, and **** p < 0.0001 using one-way
ANOVA with a post hoc analysis.

3.7. PEA Treatment Reduces Leukocyte Recruitment in Mouse Colons in DSS-Induced Colitis

We next examined whether PEA treatment alters colonic microcirculation in DSS-
induced colitis. We noted that mice being treated with DSS alone elicited a significant
increase in the number of adherent leukocytes in both V1 (Figure 8A,E–H)-collecting
venules and V3 (Figure 8B) post-capillary venules and rolling leukocytes (only in V1
venules (Figure 8C) and not in V3 venules (Figure 8D)) compared to the control mice
only given water. PEA treatment in DSS animals prevented the increase in the number
of adherent leukocytes in V1 venules. Leukocyte adherence in V3 venules was reduced
too but did not reach significance. The number of rolling leukocytes in V1 venules was
suppressed when DSS-given mice were treated with PEA (Figure 8C); however, no changes
were observed in rolling leukocytes in V3 venules when DSS mice were treated with
PEA (Figure 8D). In conclusion, the DSS colitis-associated recruitment of both rolling and
adherent leukocytes was partially attenuated by PEA treatment.
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Figure 8. PEA treatment reduces DSS-induced increased in leukocyte recruitment in mouse colons.
(A) Adherent and (C) non-adherent leukocytes and (E–H) representative images of leukocytes (red
triangles) in collecting venules (V1) of the colon in mice given either water or DSS 4% and treated
with PEA, OD or BID. (B) Adherent and (D) non-adherent leukocytes from post-capillary venules
(V3) from mice given either water or DSS 4% or DSS 4% mice treated with PEA, OD or BID. Data are
represented as means ± SEMs; N = 8–10. * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001 using
one-way ANOVA with a post hoc analysis.

4. Discussion

PEA is a naturally occurring acylethanolamide and its anti-inflammatory, analgesic,
and anti-convulsant properties are believed to be of potential therapeutic interest [33,34].
The present study was the first of its kind where PEA was phytosome-encapsulated and
administered orally to examine its efficacy in treating DSS-induced ulcerative colitis. Prior
studies had examined the effect of PEA on experimentally induced colitis in mice; however,
the majority of these studies utilized the (1) intrarectal administration of DNBS to induce
colitis in mice and (2) intraperitoneal route for PEA treatment in colitis mice [35–37], except
one study wherein PEA was administered orally [38]. Our study employed DSS (given
in drinking water) to induce colitis in mice due to its ease of administration, rapidity,
reproducibility, and controllability [22]. Based on our pilot experiments, DSS 5% induced a
very severe form of colitis compared to DSS 4% with significant mortality. Therefore, we
decided to use only DSS 4% for our subsequent experiments.

We first examined the effect of PEA on the clinical symptoms of DSS-induced colitis in
mice. We observed that PEA (OD or BID) attenuated body weight reduction, diarrhea, and
rectal bleeding. The shortening of the colon is a result of its thickening due to inflammation,
oedema, and muscular hypertrophy [39,40]. These events are usually present in patients
with UC, resulting in decreased transit times due to the shortening of the colon, likely con-
tributing to diarrhea in UC patients [40]. In our experiments, we were able to reproduce the
reduction of colon length through DSS administration. This DSS effect was not significant
anymore following PEA treatment. This was in agreement with previous studies using
parenteral PEA [35,37,38,41]. The effect on colon weight was inconclusive: PEA taken once
daily increased colon weight whereas PEA taken twice daily seemed to reduce colon weight
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compared to untreated mice. However, the effect of PEA was further supported by its
ability to reduce the histological signs of colon injury. One of the main pathological features
of IBD is the infiltration of polymorphonuclear neutrophils and mononuclear cells into
colonic tissues [19,40]. In line with the previous studies [11,37,38], PEA treatment resulted
in the attenuation of intestinal inflammation, demonstrated by the reduction in oedema,
infiltration of inflammatory cells, and ulcer formation.

Immune system dysregulation and increased leukocyte recruitment are key patho-
logical features of both human IBD and experimental colitis [7,40,42,43]. Using IVM to
simultaneously monitor the trafficking of fluorescently labeled leukocytes in mice given
DSS, our study was the first to examine the effect of PEA on intestinal microcirculation in
DSS-induced colitis mice. Our in vivo study clearly demonstrated the activation of rolling
and adherence of leukocytes in DSS-treated mouse colons. Interestingly, our study showed
that PEA treatment (OD or BID) attenuated the increased leukocyte recruitment to the
inflamed colonic venules, indicating a beneficial effect of PEA against the DSS-mediated
amplification of the inflammatory response. Our findings are consistent with previous
reports that also used IVM and noticed increased leukocyte recruitment in response to
DSS administration in mouse colons [7,42,44]. These studies implicated leukocyte–platelet
recruitment in colonic venules as requiring interaction between P-selectin and PSGL-1 on
endothelial cells [7,44]. Meanwhile, another study revealed that nicotine treatment attenu-
ates colitis through downregulating B2 integrin or MAdCAM-1 expression on the inflamed
colonic microvessels [44]. Whether PEA suppresses leukocyte recruitment by modulating
P-selectin/PSGL-1 interaction or MAdCAM-1 expression is not clear and warrants further
investigation. Since the expression of cellular adhesion molecules such as selectins and inte-
grins is dependent on inflammatory pathways, PEA action on anti-inflammatory receptors
(e.g., CB2, PPARα) might play a role in this context.

Our study was the first to investigate the efficacy of PEA encapsulated in phytosomes
following oral administration in experimental ulcerative colitis. Here, we showed that
PEA at a human-equivalent dose of 123 mg/kg (OD or BID) attenuated DSS-induced
experimental colitis as represented by the reduction in the clinical signs of colitis, reduction
in gross mucosal injury, and suppression of leukocyte recruitment at inflamed venules.
These findings add to the growing body of data demonstrating the beneficial effects of
PEA to control the acute phase of intestinal inflammation occurring during UC. PEA
is a non-toxic endogenous lipid obtained from animal and vegetable foods, and due to
its pharmacological and toxicological profile, PEA might be considered as a potential,
easily manageable, and low-cost tool to treat colitis symptoms. Interestingly, PEA is
currently administrated orally as a dietary supplement, in anti-inflammatory and analgesic
preparations in dermatology and gynecology [45].

5. Conclusions and Future Direction

In conclusion, the current study suggested that PEA may represent a viable prophy-
lactic and/or therapeutic option for patients with UC. However, it would be important to
further elucidate whether anti-inflammatory effects of PEA are mediated by targeting CB1
or CB2 receptors, GPR55, PPAR alpha, or the TRPV1 channel.

PEA signaling in vivo is regulated by the enzyme fatty acid amide hydrolase (FAAH) [25];
it would be of interest to assess whether the inhibition of FAAH potentiates the pharmaco-
logical effects of PEA. Collectively, our results suggest that orally administered, phytosome-
encapsulated PEA has the potential to be used as a supplement to relieve symptoms in
patients suffering from UC.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines12051000/s1, Figure S1: Body weight and clinical
scores in Water control groups and DSS groups with empty phytosome (EP); Figure S2: Colon
length and colon weight scores in Water control groups and DSS groups with empty phytosome
(EP); Figure S3: Intravital microscopy results in Water control groups and DSS groups with empty
phytosome (EP).

https://www.mdpi.com/article/10.3390/biomedicines12051000/s1
https://www.mdpi.com/article/10.3390/biomedicines12051000/s1
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