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Abstract: Most structural faults in metal parts can be attributed to fatigue crack propagation. The
analysis and prognostics of fatigue crack propagation play essential roles in the health management
of mechanical systems. Due to the impacts of different uncertainty factors, the crack propagation
process exhibits significant randomness, which causes difficulties in fatigue life prediction. To im-
prove prognostic accuracy, a physics-based Tweedie exponential dispersion process (TEDP) model is
proposed via integrating Paris Law and the stochastic process. This TEDP model can capture both the
crack growth mechanism and uncertainty. Compared with other existing models, the TEDP taking
Wiener process, Gamma process, and inverse process as special cases is more general and flexible in
modeling complex degradation paths. The probability density function of the model is derived based
on saddle-joint approximation. The unknown parameters are calculated via maximum likelihood
estimation. Then, the analytic expressions of the distributions of lifetime and product reliability
are presented. Significant findings include that the proposed TEDP model substantially enhances
predictive accuracy in lifetime estimations of mechanical systems under varying operational condi-
tions, as demonstrated in a practical case study on fatigue crack data. This model not only provides
highly accurate lifetime predictions, but also offers deep insights into the reliability assessments of
mechanically stressed components.

Keywords: fatigue crack; tweedie exponential dispersion process (TEDP); Paris Law; lifetime; prognostics

1. Introduction

In the field of engineering design, reliability is a crucial concept. Reliability is generally
defined as the probability of a product or structure remaining free from failure in specific
circumstances [1]. For reliability assessment, fatigue reliability analysis has long been a
central focus, as approximately 90% of structural failures in metal components can be
attributed to fatigue crack propagation. Modeling and forecasting the crack propagation
process is of critical significance in evaluating structural safety, and represents a crucial
task in fatigue reliability analysis [2].

However, rationally modeling and accurately forecasting the growth of cracks poses
great challenges, due to the complexity and uncertainty of propagation mechanisms [3,4].
The first challenge lies in the uncertainty of crack measurement. In this case, the integration
of image processing [5,6] and other technologies provides a powerful tool for accurate and
non-invasive monitoring of crack size and propagation. In more depth, the sophisticated
nature of crack development is caused by a combination of many factors, such as the
inhomogeneity of the internal microstructure of materials, changes in load conditions, and
the randomness of environmental factors. It has become increasingly important to discuss
the laws and uncertainty of crack propagation in fatigue reliability analysis and structural
life evaluation. In this regard, many models and methods are constantly being developed
to contribute to research on crack propagation. These models can be broadly categorized
into physics-based models and data-driven methods [3].
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The physics-based models are primarily exemplified by the Paris model [7], which
relies on classical linear elastic mechanics principles, and considers material properties and
stress concentration factors [4]. The Paris model, an authoritative empirical physical model,
along with its variations [8–12], have been widely studied and adopted for modeling the rate
of crack growth. These models, though widely accepted, typically simplify assumptions,
making it difficult to quantify the uncertainty of crack development effectively [3]. Data-
driven approaches can be classified into machine learning methods and stochastic process
models. The former methods require a large amount of crack growth history data to be
effective, which is expensive and difficult to achieve in practice [13]. The latter models
employ stochastic processes that have low historical data dependency in order to model
the uncertain and random behavior of crack growth. Research on modeling fatigue crack
growth through the utilization of stochastic processes has been frequently seen in recent
years. Specifically, the Wiener process (WP), Gamma process (GP), and inverse Gaussian
process (IGP) with independent incremental properties [14] have been studied the most
because of their excellent characteristics in degradation modeling.

The WP is excellent for capturing the randomness and variability inherent in crack
growth phenomena [15,16]. In addition, the applicability of alternative methods, such
as GP [17,18] and IGP [19,20], in dealing with the crack growth process with monotonic
characteristics, has been fully confirmed. However, utilizing only one of the WP model,
GP model [21], or IGP model [22] may lead to the risk of the optimal model not being
used when dealing with complex real crack growth data. The single model may lack the
universality required by various data types, and the efficiency of modeling and prognostics
will be affected if only the single best model is selected through comparing the metrics of
the three models.

To this end, a Tweedie exponential dispersion (TED) distribution [23] has been in-
troduced, providing a more comprehensive framework. It contains a series of significant
distributions, including the Gamma distribution, inverse Gaussian distribution, and nor-
mal distribution [24]. This attribute grants the TED model a greater ability to adapt to
different data types, thus describing the real-world phenomenon more accurately [23,25,26].
Furthermore, Hong and Ye [27], Duan and Wang [28], and Chen et al. [29–31] extended
the TED distribution to the TED process (TEDP), considering non-linearity, random effects,
and measurement error, which promotes the exploration of its application in a wider con-
text [32]. Yan et al. [33] have applied the TEDP model to analyze the fatigue life of flax
fiber-reinforced composites, demonstrating its utility in composite material evaluation.
Similarly, Zhou and Xu [34] have successfully utilized the model in the analysis of laser
degradation data, showing its broader applicability across different types of degradation
analyses. Despite these advancements, the integration of TEDP models with physical
properties to enhance their applicability and accuracy in engineering contexts remains
largely unexplored. Although the generic TEDP has been confirmed to be flexible and
able to achieve better modeling performance when dealing with crack growth data [35],
at present, there are relatively few examples in the literature dedicated to the design of
dedicated TEDP models specifically for metal fatigue crack growth.

It is worthwhile to develop TEDP models for the analysis of fatigue crack propagation
and prognostics, but applying such models in isolation suffers from an inability to reflect
physical, real-world information. Given this context, the hybridization of physics-based
models and data-driven methods has garnered increasing attention recently, as these
hybrid approaches combine the relative strengths of the two techniques [33,36]. Therefore,
designing a physics-based TEDP model for metal fatigue crack propagation and prognostics
is feasible and meaningful as well as pioneering, and as such, is the aim of this paper.

In this paper, a physics-based TEDP model for fatigue crack propagation, combined
with Paris Law, is established on the basis of a full understanding of the meaning of each
parameter in both the TEDP model and the Paris Law. The fatigue crack propagation
mechanisms, under various physical information and degradation uncertainties can be
captured accurately. Then, the corresponding probability density function (PDF) of this
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model is derived based on saddle-joint approximation, and the parameter estimation
procedures of the presented model are developed by using maximum likelihood estima-
tion (MLE). The effectiveness of the proposed model is verified based on a real fatigue
crack dataset.

The main contributions of this article are as follows:

(1) A physics-based model effectively integrating the Paris Law with the TEDP model is
developed, which enhances the adaptability and accuracy of the model in engineering
applications by introducing various physical properties and degradation uncertainties.

(2) A novel parameter estimation method is introduced, increasing the mathematical
traceability of the model and ensuring robustness in application to diverse types of
degradation data.

(3) We derive an analytic lifetime distribution, which offers a comprehensive depiction of
degradation uncertainty, providing a more nuanced approach to lifetime estimation
compared to point estimates.

The reminder of this paper unfolds as follows. Section 2 introduces the Paris Law and
the fundamental TEDP model. In Section 3, a refined TEDP model tailored for crack propa-
gation is developed based on the Paris Law. Section 4 undertakes reliability estimations,
while Section 5 verifies and analyzes the model through case studies. Section 6 concludes
with some key findings.

2. Foundations
2.1. Tweedie Exponential-Dispersion Distribution

Stochastic process models have been widely used for degradation modeling. Among
them, the Tweedie exponential dispersion (TED) distribution is a class of the exponential dis-
tribution family suitable for modeling degradation paths with positive response variables
that may exhibit excessive dispersion and very asymmetric characteristics. If the degrada-
tion process of a product is a stochastic process obeying the TEDP model, denoted as Y(t),
then the stochastic process {Y(t)|t > 0} satisfies the following three characteristics [26].

(1) Y(0) = 0;
(2) {Y(t)|t > 0} has steady and independent increments;
(3) The increments of {Y(t)|t > 0}, denoted as ∆Yj = Y

(
tj
)
− Y

(
tj−1

)
, obey exponen-

tial dispersion distribution, i.e., ∆Yj ∼ ED
(
η∆tj, λ

)
. Its probability density can be

expressed as

fY
(
∆yj
∣∣η, λ

)
= c
(
∆yj
∣∣△tj, λ

)
exp

{
λ
[
∆yjω(η)− ∆tjκ(ω(η))

]}
, (1)

where η is the drift parameter, λ is the dispersion parameter, κ(·) is a fitness function, and
c(·) is a standardized function, and can guarantee that the cumulative distribution function
(CDF) of Equation (1) is equal to one. η and λ are independent of each other.

According to [37], we can have E[Y(t)] = ηt, var[Y(t)] = V(η)/λ. V(η) is called the
variance function. η = κ′(ω(η)) and V(η) = κ′′ (ω(η)), where κ′(·) and κ′′ (·) are the first
and second derivatives of κ(·), respectively. The TEDP model is defined by its variance
function, which can be expressed as the following power function.

V(η) = ηρ, (2)

where ρ∈(−∞,0]∪[1,+∞). Although the exact PDFs of TED distribution are not known
in closed form, their cumulants can be found. When ρ takes different values, the TEDP
model can also be degenerated into specific stochastic processes such as WP, GP, IGP, and
the compound Poisson process, which are shown in Table 1. Note that the TEDP model
can cover a variety of common stochastic processes through a change in parameters, and
thereby has a wide range of applications in engineering.
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Table 1. Tweedie exponential dispersion stochastic process.

The Distribution Form ρ The Distribution Form ρ

Extremely stable ρ < 0 Gamma ρ = 2
Gaussian ρ = 0 Positive stable 2 < ρ < 3
Poisson ρ = 1 Inverse Gaussian ρ = 3

Compound Poisson 1 < ρ < 2 Positive stable ρ > 2

2.2. Paris Law of Crack Propagation

Fatigue crack propagation can be simulated by the Paris Law [38]:

da/dN = C(∆K)m, (3)

where ∆K is the stress intensity range, C and m are the material characteristics, and N is
the number of load cycles. Assuming that the crack under consideration passes through
the thickness center crack on an infinite plate perpendicular to the crack plane, the stress
intensity can be expressed as follows:

∆K = Y∆σ
√

πa, (4)

where Y is the geometric factor, and ∆σ is the stress amplitude. The relationship between
crack growth rate and ∆K is shown in Figure 1.
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As can be seen from Equation (3), the magnitude of C depends on m. In fact, C and m
have a strong negative correlation [39,40]. Hence, in order to minimize the impact of the
correlation between C and m on the following parameter estimation, a scaling factor K0 is
introduced as:

da/dN = C′(∆K/K0)
m′

, (5)

where m′ = m, and C′ = CK0
m.

3. The Physics-Based TEDP Model for Crack Growth
3.1. The Physics-Based TEDP Model Based on Paris Law

It has been considered that the best way to study the random propagation of fatigue
cracks is to regard “the time required to reach a given crack length” as a stochastic process,
and record it as {t(a)|a > 0} [41]. Because the number of cycles is closely related to time,
this paper regards “the number of cycles N required to reach a given crack length” as the
research variable. Then, the variable N(a) from the Paris Law in Equation (3) can be seen
to approximately follow the TEDP model, i.e., {N(a)|a > 0} ∼ ED(ηa, λ). Appendix A
gives the specific proof for this.
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Without loss of generality, the number of cycles required for crack growth to reach a
given crack length follows the TEDP model. The physics-based TEDP model integrating
the Paris Law is formulated by:{

N(a) = N0 + ED(ηa, λ), a > 0
da/dN = 1

C′(∆K/K0)
m′ , η = ε exp{−m ln(∆K/K0)− ln C′}+ d , (6)

where ε and d are the compensation coefficients that need to be estimated. m represents
the dependency of the crack growth rate on changes in the stress intensity factor, and C′

reflects the crack resistance and crack propagation susceptibility of the material.
According to the properties of TEDP, N(a) also has similar properties, as follows:

(1) N(a0 = 0) = 0;
(2) {N(a)|a > 0} has steady and independent increments;
(3) The increment of cycle number ∆N follows the TED distribution.

Furthermore, as the degradation trajectory of crack propagation is nonlinear, a time
scale function Λ(a, q) is introduced, which is usually determined by physical or empirical
observation of degradation. A typical flexible form is that of the power function:

Λ(a, q) = (a − b)q, ∆Λj = Λ
(
aj, q

)
− Λ

(
aj−1, q

)
(7)

Correspondingly, the PDF of ∆N can be given by:

f
(
∆Nj|η, λ

)
= c
(
∆Nj

∣∣∆Λj, λ
)

exp
{

λ
[
∆Njω(η)− ∆Λjκ(ω(η))

]}
, (8)

Then, the mean function and variance function of the physics-based TEDP model are
respectively E[N(a)] = ηΛ(a, q) and var[Y(a)] = ηρΛ(a, q)/λ. Additionally, the functional
expression of κ(·) is determined by the parameter ρ as follows:

κ(ω(η)) =


α−1

α

(
ω(η)
α−1

)α
, ρ ̸= 0, 1, 2

− log(−ω(η)), ρ = 2
eω(η), ρ = 1

, (9)

where α = (ρ − 2)/(ρ − 1).

3.2. The PDF Based on Saddle-Joint Approximation

Although κ(·) has an analytic form, it remains that c
(
∆Nj

∣∣∆Λj, λ
)

in Equation (8) has
no closed form, except for some special values. The saddle-point approximation method
(SAM) can be used to obtain the PDF of the TEDP.

To find the saddle-point approximation of Equation (8), a unit deviation is defined as:

d
(
∆Nij

∣∣∆Λij, η
)
= 2

{
sup

ω(η)∈D
[
∆Nij

∆Λij
ω(η)− κ(ω(η))]−

∆Nij

∆Λij
ω(η) + κ(ω(η))

}
, (10)

where D is the range of ω(η). Then, Equation (8) can be approximated by:

f
(
∆Nij|η, λ

)
≈ g

(
∆Nij

∣∣∆Λij, λ
)

exp
{
− λ

2 ∆Λijd
(
∆Nij

∣∣∆Λij, η
)}

, (11)

Then, the approximate expression of f
(
∆Nij|η, λ

)
can be given by:

f
(
∆Nij|η, λ

) ∼= √ λ

2π∆Λ1−ρ
ij ∆Nρ

ij

exp
[
− λ∆Λij

2 d
(
∆Nij

∣∣∆Λij, η
)]

, (12)

The detailed derivation process is presented in Appendix B.
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However, as the specific expression of the unit deviation is still unknown, the calcula-
tion of Equation (12) remains difficult. Based on the formula of κ(ω(η)), as in Equation (9),
the unit deviation function can be expressed in different forms under different values of ρ,
as shown in Table 2.

Table 2. Formulae of the unit deviation under different ρ.

ρ d
(

∆Nij

∣∣∣∆Λij, η
)

ρ = 0
(

∆Nij/∆Λij − η
)2

ρ = 1 2
[

∆Nij
∆Λij

ln
(

∆Nij
η∆Λij

)
−
(

∆Nij
∆Λij

− η
)]

ρ = 2 2
[
ln
(

η∆Λij
∆Nij

)
+

∆Nij
η∆Λij

− 1
]

ρ ̸= 0, 1, 2 2
{
(∆Nij/∆Λij)

2−ρ

(2−ρ)(1−ρ)
− η1−ρ

(1−ρ)
∆Nij
∆Λij

+
η2−ρ

2−ρ

}

3.3. Maximum Likelihood Estimation

Suppose that there are n samples, and that the crack length of the ith sample at the cycle
number Nij is aij, 1 ≤ i ≤ n, 1 ≤ j ≤ m. Let li be the sampling number of the ith sample. The
degradation increment of the two measured values is expressed as ∆Nij = Nij − Ni(j−1),

and the increment of the length of the crack is expressed as ∆Λij = Λ
(
aij, q

)
−Λ

(
ai(j−1), q

)
.

For the ith sample, ∆Ni =
[
∆Ni1, ∆Ni2, . . . , ∆Nili

]T and ∆Λi =
[
∆Λi1, ∆Λi2, . . . , ∆Λili

]T.
Considering that the samples are independent of each other, let f∆Ni (∆Ni|θ ) be the

joint probability density of the degradation of the ith sample, and f∆Y(∆Yn|θ ) be the joint
probability density of the degradation of all samples.

f∆Y(∆Yn|θ ) =
n
∏
i=1

f∆Ni (∆Ni|θ ) =
n
∏
i=1

li
∏
j=1

f (∆Nil |θ ), (13)

where θ represents unknown parameters, and θ = (ε, m, C′, d, ρ, λ).
Therefore, the likelihood function of the unknown parameter θ of the physics-based

TEDP model is given by:

L(θ|∆Y ) =
n
∏
i=1

m
∏
j=1

f (∆Nil |θ ), (14)

Combining Equations (12) and (14), we can obtain the approximate expression of the
log-likelihood function about the unknown parameter θ as follows:

ℓ(θ|∆Y ) = ln
n
∏
i=1

m
∏
j=1

√
λ

2π∆Λ1−ρ
ij ∆yρ

ij

exp
[
− λ∆aij

2 d
(
∆Nij

∣∣∆Λij, η
)]

= mn
2 ln λ

2π −
n
∑

i=1

m
∑

j=1

[
1−ρ

2 ln ∆Λij +
ρ
2 ln ∆Nij +

λ∆Λij
2 d

(
∆Nij

∣∣∆Λij, η
)] , (15)

The average degradation rate of crack propagation, η, is related to the crack propaga-
tion rate da/dN. That is, with respect to the material constants C′, m and the stress intensity
range △K, the average drift parameter η can be calculated by:

η =

n
∑

i=1
ε exp

{
−m

(
ln ∆Ki

K0

)
−ln C′

}
+d

n
. (16)

According to the above steps, the numerical expression of the likelihood function under
the given parameter θ can be calculated. To find the MLE of θ, it is necessary to compare the
likelihood function values under different values of θ to obtain its extreme value. Obviously,
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presetting a reasonable parameter range can greatly improve the efficiency of optimization.
First, let the partial derivative of the Equation (15) be 0 for λ. Then, we have:

∂ℓ
λ = mn

2 − 1
2

n
∑

i=1

m
∑

j=1

[
∆Λij

2 d
(
∆Nij

∣∣∆Λij, η
)]

, (17)

λ̂ =
mn

n
∑

i=1

m
∑

j=1

[
∆Λij

2 d
(
∆Nij

∣∣∆Λij, η
)] , (18)

Substituting Equation (18) into Equation (15), we have a profile log-likelihood func-
tion, ℓ(ε, m, C′, d, ρ|∆Y ). Then, through setting the range of the unknown parameters, the
optimization procedure of the likelihood function by the MLE method with respect to the
unknown parameters is presented in Table 3.

Table 3. Optimization procedure of the unknown model parameters via MLE.

Step 1 Set the initial value θ0 and the range of ε, m, C′, d, ρ.
Step 2 Set the iterative step size h.
Step 3 Maximize the corresponding profile likelihood function.
Step 4 Repeat Step 3, and get a likelihood function set ℓ(k)(θ|∆Y ), k = 1, 2, · · ·
Step 5 Select the largest value to obtain the MLE, θ̂ = argmax

{
ℓ(k)(θ|∆Y )

}

To make the proposed parameter estimation procedure more intuitive, its schematic is
shown in Figure 2.
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4. Reliability Analysis

According to the meaning of degradation failure, the lifetime T of the product is
generally defined as the time when the real performance degradation value reaches the
failure threshold for the first time, that is, the first arrival time. In fatigue failure crack
propagation, according to the theory of fracture mechanics, the failure point needs to be
divided based on the critical stress value. The crack length threshold ac is related to Kc,
which is given by:

∆K = Kc(1 − R), (19)

where Kc = Kmax.
We consider the time when the crack propagates to the critical value as the failure

time, i.e.,
T = in f {a : N(a) ≥ Nc|N0 < Nc }, (20)

where Nc is the number of cycles corresponding to the critical value of crack length. Nc can
be calculated by the following integral operation:

Nc =
∫ ac

a0
1

C(△K)m da =
1

C(Y △ σ
√

π)
m (

1
m/2 − 1

)(
1

a(m/2−1)
0

− 1

a(m/2−1)
c

), (21)

Based on the definition of lifetime, as in Equations (20) and (21), the reliability R(a) of
a metal product under crack length a can be expressed as:

R(a) = Pr

{
sup
ς≤a

N(ς) ≤ Nc

}
, (22)

Considering the computational complexity of the first arrival time of TEDP, the condi-
tional CDF of cycle number N on parameter θ can be approximated using the Birnbaum–
Saunders distribution [27,42], as follows:

FT(a|θ) ∼= Φ
[√

λ
ηρ

(
η
√

Λ(a, q)− Nc√
Λ(a,q)

)]
, (23)

where Φ(·) is the CDF of the standard normal distribution. Taking the derivative of FN(a|θ )
yields the conditional PDF as follows:

f (a|θ ) = ηΛ(a,q)+Nc
2Λ(a,q) ×

√
λ

2πηρΛ(a,q)

× exp

[
− λ

2ηρ

(
η
√

Λ(a, q)− Nc√
Λ(a,q)

)2
]

Λ′(a; q)
, (24)

The conditional reliability function of the metal product can be given by:

R(a|θ ) = 1 − FN(a|θ ), (25)

Therefore, the estimated p-percentile lifetime of the metal product can be computed by:

aP ∼=

[(
zp

√
ηρΛ(a,q)

λ +

√
z2

p

(
ηρΛ(a,q)

λ

)
+ 4ηΛ(a, q)Nc

)2
]1/q

4η2Λ2(a, q)
, (26)

where zp is the p-percentile of the Gaussian distribution.
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5. Case Study
5.1. Model Verification and Parameter Estimation

In this study, we used the statistical analysis results of crack propagation data from
Virkler et al. [43]. The fatigue crack growth was investigated statistically. Sixty-eight
repeated constant-amplitude crack propagation tests were carried out on 2024-T3 aluminum
alloy, which was formed into a plate with a length of 558.8 mm, a width of 152.4 mm, and
a thickness of 2.54 mm. Moreover, a central slit with a length of 2.54 mm and a width of
0.18 mm was machined as a stress lifting device. Figure 3 displays the number of load cycles
in which the crack tip advanced by a predetermined increment a, from the initial crack
length of 9 mm to the final length of 49.8 mm. Table 4 shows the experimental conditions.
Further details can be found in [43].
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Table 4. Experimental conditions and other related parameters.

Loading Mode R △σ

Compound Poisson 0.2 24.14 Mpa

After the data preprocessing, the proposed degradation model was applied for the
reliability analysis. However, before using the physics-based TEDP model to analyze the
reliability of the crack propagation process, Λ(a, q) had to be determined in advance. Ac-
cording to the curve trend, some deterministic models were selected through the definition
of the Paris Law [17].

Because the dimensions in the length and width direction of the experiment were
much larger than those in the thickness direction, and the load was located in the plane
formed by the length and width direction, the problem met the conditions of the plane
stress problem, and can thus be simplified as a plane stress problem. Therefore, Equation (4)
can be modified to calculate in the following form:

∆K = Y(a/b)∆σ
√

πa, (27)
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where Y(a/b) is a function that corrects for finite specimen width, and a/b is the ratio of
crack length to specimen width.

Equation (27) and the model mentioned above were used to estimate the unknown
parameters. The specific parameter iteration process is shown in Figure 4. The estimation
of all parameters reflected iterative convergence.
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The parameter estimation results, based on the proposed maximum likelihood estima-
tion method, are shown in Table 5. K0 was calculated via linear regression, and C and η
were calculated using Equation (6) and Equation (16), respectively.

Table 5. Parameter estimation results of the proposed model.

η λ ρ q K0

ε m C d
33.228 2.418 11.697 0.2030.837 2.881 7.863 × 10−5 74.234

1.2873

5.2. Efficiency Comparison of Different Models

In order to illustrate the rationality and applicability of the proposed model, we used
WP, GP, and IGP models to replace the TEDP model in the proposed physics-based TEDP
model for comparison. An AIC criterion was used to evaluate the models’ performance.
By combining the principles of information entropy and Kullback–Leibler distance, the
AIC criterion encouraged the goodness of model fitting and avoided over-fitting as much
as possible. Its specific definition was AIC = 2KP − 2 ln θ, where lnθ is the log-likelihood
function and KP is the number of free parameters of the model. The comparative results
are shown in Table 6.

Table 6. Parameter estimation results of the compared model.

Model
Estimates

lnθ AIC
η λ ρ

Physics-based TEDP 1.287 33.228 2.418 14,760.407 −29024.8
Physics-based WP 1.287 20.039 0 12,712.825 −25413.6
Physics-based GP 1.287 32.222 2 14,691.802 −28996.6
Physics-based IGP 1.287 33.607 3 14,614.402 −28357.3

As can be seen from Table 6, when ρ = 2.418, the log-likelihood function value of the
physics-based TEDP model is the largest and the corresponding AIC value is the smallest,
which indicates that it has high accuracy and low over-fitting risk in data fitting. Therefore,
the TEDP model can be regarded as a suitable model for data compared with the WP, IGP,
and GP models. This shows that the proposed model is more suitable for describing the
degradation processes of fatigue crack propagation. By adjusting the value of the parameter
ρ, this kind of TEDP model has better and wider applicability in degradation modeling.

The PDF and CDF curves of the product lifetime of the physics-based TEDP model
and the other three models are shown in Figures 5 and 6. It can be seen that the estimation
result of the physics-based TEDP model was closer to that of the physics-based GP model.
However, the physics-based WP and IGP models overestimated or underestimated the
lifetime to varying degrees.

The proposed model was used to predict the crack growth, and the result is shown in
Figure 7a. When the crack length was greater than 18 mm, the residual value was smaller,
and the fitting effect of the model was better. The distribution of the residual errors of the
prediction results is shown in Figure 7b. It can be seen that the residual value fluctuated
around zero, and the model well explained and predicted the nonlinearity and randomness
of the crack propagation process.
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residual errors of predictions.

Given that Virkler’s dataset measured the number of cycles for a specified crack length,
we redefined the p-percentile lifetime as defined by Equation (26) so that it was based on
the number of cycles instead of crack length. We then compared the estimated results with
the empirical lifetimes, and the result is shown in Figure 8. The graph presents a probability
density function derived from empirical data on material fatigue, characterized by the
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number of cycles to failure. The alignment between the empirical lifetime and the modeled
estimation signifies a robust correlation, indicating the model’s effectiveness in capturing
the central tendency of the observed data.
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For the sake of further demonstrating the effectiveness and superiority of the proposed
model, two other fatigue crack propagation models were employed as comparisons. The
first one was a two-stage physics-based Wiener process model for the field vibration data
of fatigue crack [36], which was denoted as Model-1. The other was a pure physical model
based on the Paris Law from [44], which was denoted as Model-2. Because the parameters
of Model-1 were related to the number of cycles (time scale) according to Paris Law, the
time scale was not converted into crack length. The crack length was predicted directly
under the corresponding number of cycles. The root mean square error (RMSE) between
the predicted and true crack length values and the goodness-of-fit metric R2 of the model
fitting were used as evaluation metrics to compare the performance of different models.

Table 7 shows the estimates of parameters and the evaluation metric values of different
models. It can be seen that the R2 value of the proposed model was larger than that of
Model-1, which indicates that the TEDP model fit the crack propagation paths much better
than Model-1 when integrated with the Paris Law. This may be because the TEDP model
was more flexible and accurate in describing complex nonlinear and random degradation
paths through adjustment of the parameter ρ. Moreover, when comparing the RMSE values
of the proposed model and Model-2, we found that the former again performed much
better. This suggests clearly that the proposed model combines both the merits of physics
models and stochastic processes, and can not only capture the fatigue crack growth paths
accurately, but also represent the propagation uncertainty well. This indicates that both
the physics information and crack data characteristics are fully utilized in the proposed
model. Hence, the physics-based TEDP model can compensate for the deficiencies of the
pure physical model in characterizing the randomness of crack growth, which is usually
introduced by time-varying load conditions and the interference of environmental factors.
Furthermore, Figure 9 also shows the prediction results of Model-1 and Model-2. Due to
the accumulation of random deviations of WP, the predicted errors in Figure 9a become
larger and larger as Model-2 is related to the estimated results of C and m. This model,
while straightforward and widely used, tends to underperform in predicting crack growth
in materials subjected to complex loading scenarios, and small deviations of C and m lead
to larger errors in the predicted results. In short, we can see that physics-based TEDP model
performed better than other models.
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Table 7. Comparison of results between different fatigue crack propagation models.

Model Estimates of Parameters RMSE R2

The proposed model
η = 1.287, λ = 33.228

ρ = 2.418, C = 7.863 × 10−5

m = 2.881
0.8919 0.9757

Model-1 η = 0.140, σB
2 = 2.057 × 10−18

µa = −3.65 × 10−20, σα
2 = 1.877

- 0.7319

Model-2 C = 8.03 × 10−5

m = 2.872
5.1338 -
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5.3. Discussion

We extensively analyzed the application and performance of the TEDP model in the
context of fatigue crack propagation. The TEDP model demonstrated considerable flexibil-
ity and adaptability, effectively accommodating crack growth scenarios by adjusting param-
eters, particularly when describing complex, nonlinear, and stochastic degradation paths.

Despite its high adaptability and excellent statistical performance across multiple
metrics, the effectiveness of the TEDP model is significantly constrained by the quality
and type of the data it processes. The model presupposes that the degradation process is
irreversible and monotonically increasing, and it handles increment data characterized as
non-negative random variables. These assumptions may compromise the model’s accuracy
in scenarios involving data with substantial fluctuations or directional changes, such as
those encountered under periodic loading conditions or in complex stress environments.
Consequently, in practical settings, especially where data characteristics do not align with
these fundamental assumptions, the TEDP model may prove unsuitable or exhibit subopti-
mal performance. Notably, in specific scenarios, the TEDP model’s inherent flexibility and
resilience allow it to adapt and include other models such as the Wiener process (WP) and
Gaussian process (GP), enabling it to handle a broader range of data types.

6. Conclusions

In view of the uncertainty in the process of metal fatigue crack propagation, a Tweedie
exponential dispersion model based on proportional Paris Law was established, and
parameter estimation was conducted using the maximum likelihood estimation algorithm
based on saddle-point approximation. The model was applied to Virkler fatigue test data
to demonstrate its effectiveness. The results showed that the proposed model can fit cracks
well. Compared with previous studies on fatigue crack propagation, which have generally
relied on a single random process or a pure physics model, the proposed model exhibited
several significant improvements as follows:
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(1) Enhanced flexibility and adaptability. Adjusting the parameters of the TEDP model
through the Paris Law can diversify the flexibility and adaptability of the proposed
model, which is of great significance in reflecting the actual crack propagation process
given its nonlinear and random characteristics. Both the physical and data-based
information types relating to fatigue crack propagation are fully utilized.

(2) Mathematical transparency and traceability. The model is further strengthened by
integrating the MLE estimation of saddle-point approximation techniques. These
methods together endow the physics-based TEDP model with extraordinary mathe-
matical transparency and traceability. The effectiveness of the framework is verified
by case study.

(3) Quantitative analysis of lifetime and reliability. The analytic expressions of the distri-
butions of lifetime and product reliability are derived, which can not only provide
predictions of fatigue lifetime, but also quantify the uncertainty of crack propagation.

Although the proposed model in this paper includes a comprehensive quantitative
uncertainty method, it can be further improved by comprehensively considering environ-
mental conditions and other factors. In future, we can use various real data from different
industries in order to verify the model and apply it in predictive maintenance systems,
with the aim of providing a reliable tool for industry professionals to use in the effective
prediction and management of the life cycle of structural components.
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Appendix A

It is known that

fa(∆Y|η∆a, λ∆a ) = h(λ∆a, ∆a) exp
{

θa−κ(θ)
λ∆a

}
, (A1)

E(∆Y(a)) ≈ 1
C(Y∆σ

√
π)

m
(m

2 − 1
)(

a0
− m

2 +1 − a−
m
2 +1

)
, (A2)

var[∆Y(a)] ≈ var
[

1
C(Y∆σ

√
π)

m
(m

2 − 1
)(

a0
− m

2 +1 − a−
m
2 +1

)]
(A3)

The number of crack propagation cycles can be expressed by:

Y =
l

∑
i=1

∆Ni, (A4)

where ∆Ni(1 ≤ i ≤ l) and l indicate the observation times, and a and ∆Ni are independent
of each other.

Let the characteristic function of ∆Ni be φi(t). The definitions of the moment generat-
ing function and the characteristic function are respectively expressed by:

MN(a) = E
[
eiaN

]
, (A5)
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φi(a) = M∆N(a) = E
[
exp

(
ia fA

(
∆Y
∣∣µ∆a, σ2

∆a
))]

, (A6)

By the nature of independence, the characteristic function of the crack extension length
a is:

φN(a) = E
[

exp
(

it
l

∑
i=1

∆Ni

)]
= E

[
l

∏
i=1

exp(ia∆Ni)

]
=

l
∏
i=1

φi(a), (A7)

In order to prove φN(a) is the characteristic function of Tweedie exponential random
variables, we need to meet two conditions:

(1) φN(a) is 1 at t = 0. This condition is the basic requirement of the characteristic function
(that is, the characteristic function is 1 at the origin).

(2) φN(a) is an analytic function on the complex plane. This condition guarantees the
existence and uniqueness of the characteristic function.

Firstly, we verify that φN(t) is 1 at t = 0, i.e.,

φN(0) =
l

∏
i=1

φi(a) =
l

∏
i=1

exp
{

fa

(
∆Y
∣∣∣µ∆a, σ2

∆a

)}
= 1, (A8)

Next, we need to prove φN(a) is an analytic function on the complex plane. To prove
this, we need to prove the existence and continuity of the derivative of φN(a).

Suppose that the derivative of φN(a) exists and is continuous, which is denoted as
φ′

i(t). According to the nature of the derivative, the derivative of the characteristic function
φN(t) of the crack propagation length a can be expressed as

φN
′(a) =

(
N

∏
i=1

φi(a)

)′

, (A9)

Note that, the derivative ϕi
′(a) of each ϕi(a) exists and is continuous. Therefore, the

derivative ϕN
′(a) of ϕN(a) also exists and is continuous.

Therefore, we can draw the conclusion that the crack propagation length Y =
l

∑
i=1

∆Ni

obeys the Tweedie exponential dispersion process.

(1) Y(a0) = 0.
(2) {Y(a)|a > 0} has steady and independent increments.
(3) Each increment ∆Yj = Y

(
aj
)
− Y

(
aj−1

)
obeys the Tweedie exponential distribution,

as in Equation (1).

According to the properties of TEDP, the mean function and variance function of the
above stochastic process are E[Y(a)] = ηa and var[Y(a)] = ηρa/λ, respectively.

Appendix B

According to the above descriptions, the PDF of the increments is given by:

f
(
∆yj|η, λ

)
= c
(
∆yj
∣∣∆tj, λ

)
exp

{
λ∆tj

[
∆yj

∆tj
ω(η)− κ(ω(η))

]}
, (A10)

Then, its characteristic function is given by:

φ(z|θ ) = exp
{

λ∆tj[κ(ω(η) + iz/λ)− κ(ω(η))]
}

. (A11)

When φ(z|θ ) is completely integrable, the PDF of ∆yj can be expressed by Fourier
inversion theorem as follows:

f
(
∆yj|θ

)
= 1

2π

∫ +∞
−∞ φ(z|θ )e−iz∆yj dz. (A12)
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Since the integrand function is analytic, the integral region of Equation (A12) can

be shifted from (−∞,+∞) to i(ω(η)− ω
(

∆yj
∆tj

)
+ (−∞,+∞). Then, the unit deviation in

Equation (10) can be obtained.

Expanding based on the Taylor series at ω
(

∆yj
∆tj

)
yields the following expression:

κ
(

ω
(

∆yj
∆tj

)
+ iz/λ

)
−
(

ω
(

∆yj
∆tj

)
+ iz/λ

)
∆yj
∆tj

+ ω(η)
∆yj
∆tj

− κ(ω(η)) =

κ
(

ω
(

∆yj
∆tj

)
+ iz/λ

)
−
(

ω
(

∆yj
∆tj

)
+ iz/λ

)
∆yj
∆tj

+ ω(η)
∆yj
∆tj

− κ
(

ω
(

∆yj
∆tj

))
− 1

2 d
(
∆yj
∣∣∆tj, η, λ

)
≈ −

(η)2V
(

∆yj
∆tj

)
2 − 1

2 d
(
∆yj
∣∣∆tj, η, λ

) , (A13)

For the TEDP model, the variance function can be expressed as follows:

V
(

∆yj
∆tj

)
=
(

∆yj
∆tj

)ρ
(A14)

Substituting Equations (A13) and (A14) into Equation (A10), the PDF can be derived.
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