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Abstract: An ultrasonic plasticizing and pressing method (UPP) that fully utilizes ultrasonic vibration
is proposed for fabricating thermoplastic polymer surface microstructures with high aspect ratios
(ARs). The characteristics of UPP are elucidated based on the plasticization of the raw material,
the melt flow, and the stress on the template microstructure during the forming process. Initially,
the micronscale single-stage micropillar arrays (the highest AR of 4.1) were fabricated by using
304 stainless steel thin sheets with micronscale pore (through-hole) arrays as primary templates.
Subsequently, anodic aluminum oxides (AAOs) with ordered nanoscale pore arrays were added as
secondary templates, and the micro/nanoscale hierarchical micropillar arrays (the highest AR up
to 24.1) were successfully fabricated, which verifies the feasibility and forming capability of UPP.
The superiority and achievements of UPP are illustrated by comparing the prepared hierarchical
micropillar arrays with those prepared in the previous work in four indexes: microstructure scale,
aspect ratio, forming time, and preheating temperature of the raw material. Finally, the water
contact angle (WCA) and oil droplet complete immersion time of the surface microstructures were
measured by a droplet shape analyzer, and the results indicate that the prepared micropillar arrays
are superhydrophobic and superoleophilic.

Keywords: ultrasonic vibration; surface microstructures; aspect ratio; hierarchical micropillar
array; superhydrophobic

1. Introduction

Surface microstructures with the designed distribution of different micro- and nano-
structural features present tunable functional properties, such as excellent optical [1–3],
biological [4,5], and electrochemical [6–8] properties, and are widely used in the fields of
biomedicine, energy, and environmental protection. However, it remains a great challenge
for conventional processing techniques to fabricate tailorable micro- and nano-structures
on a large scale. Compared with metals and inorganic non-metallic materials, polymer
materials are inexpensive, diverse, and provide better corrosion resistance, electrical in-
sulation, and biocompatibility. In addition, with the outstanding advantages of good
processability and high replication accuracy, polymer materials have become the preferred
raw material for large-scale, low-cost production of functional surfaces with micro- and
nanostructures [9,10]. The template method is the mainstream method for large-scale
production of polymer surface microstructures, and the main methods currently used in
practical applications are the sol–gel method [11,12], UV-curable imprinting [13,14], hot
embossing [15,16], and injection molding [17,18]. The sol–gel method is easy to carry out
the chemical reaction, and the required temperature is low, but it is prone to defects such as
micropores and bubbles, and the curing process is prone to shrinkage, making it difficult to
control the precision of the product. UV-curable imprinting can obtain nanoscale structures
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without heating, but the mold or substrate used must be transparent and covered with an
anti-adhesion layer, which severely limits its scope of application. Hot embossing allows
for smaller-scale structures with high aspect ratios, but requires high temperature and
pressure, and the polymer needs to be heated to the glass transition temperature, resulting
in a long forming time. Injection molding has the advantages of short-cycle, large-scale,
and low-cost production, but it has poor replication ability for nanoscale structures with
high aspect ratios. In addition, it requires high temperature and pressure conditions and is
difficult to achieve damage-free demolding. Therefore, there is still a demand to improve
the existing or develop new methods for large-scale, low-cost, and high-quality production
of surface microstructures.

The application of ultrasonic vibration as the primary or auxiliary energy source
for the fabrication of polymer surface microstructures to enhance melt flow and filling
capacity, improve microfabricated part performances, and reduce production costs has
been widely noticed and studied. Mekaru et al. [19] introduced ultrasonic vibration into
hot embossing, resulting in a substantial reduction or even disappearance of air bubbles
during the embossing process, which significantly improved the microstructure replication
accuracy. Sato et al. [20] applied ultrasonic vibration to the mold in injection molding, while
Qiu et al. [21] applied ultrasonic vibration directly to the polymer melt inside microcavities,
both of which significantly improved the forming quality of the microstructures, but the
latter was more effective. Lee et al. [22,23] rapidly replicated nanostructures and micro-
nanoscale hierarchical structures by room temperature ultrasonic embossing. Li et al. [24]
rapidly prepared a nanowire array on polyvinylidene fluoride polymer surfaces at room
temperature by ultrasonic loading. Liang et al. [25] prepared a microgroove array with
hydrophobicity by ultrasonic powder molding. Pan et al. [26] fabricated a high-depth
(~240 µm) polypropylene micro-square pore array using ultrasonic plasticization micro-
injection molding. Room-temperature ultrasonic embossing has high replication accuracy
for micro- and nano-structures, but it is difficult to emboss microstructures with high aspect
ratios, and the templates are mostly limited to high-strength and high-hardness materials.
Ultrasonic powder molding is a simple and low-cost process, but for microstructures with
high-convex features, the ends are prone to incompletely melted powder particles [27]. For
ultrasonic plasticization micro-injection molding, although the flowability of the polymer
melt is improved [28], it is still difficult to form nanoscale surface microstructures with
high aspect ratios.

Here, an ultrasonic plasticizing and pressing method (UPP) is proposed for large-
scale fabrication of micron- and nano-scale surface microstructures with high aspect ratios.
The proposed method fully exerts the effect of ultrasonic vibration, which is conducive to
improving the filling capability of the polymer melt for micro- and nano-scale pores. In addi-
tion, it is conducive to the exclusion of residual air in the microcavities, reducing the forma-
tion of air bubbles and thus improving the forming quality of the surface microstructures.

2. Materials and Methods
2.1. The UPP Process

The process of UPP consists of the three following stages:
(1) Mold assembly and raw material addition. As shown in Figure 1a, the bottom

mold, template, and top mold are mounted and fixed sequentially on the worktable of
the ultrasonic loading system, and the punching port of the top mold is aligned with the
ultrasonic horn. Then, the thermoplastic polymer pellets are added to the inner step surface
of the top mold.
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Figure 1. UPP process and the mold. (a–d) The schematic illustration of the UPP process. (e–g) The 
melt flow and stress diagrams. (h) The exploded diagram of the mold. (i,j) The top and bottom of 
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Figure 1. UPP process and the mold. (a–d) The schematic illustration of the UPP process. (e–g) The
melt flow and stress diagrams. (h) The exploded diagram of the mold. (i,j) The top and bottom of the
mold after installation, respectively. (k) The sample with a surface microstructure.

(2) Setting process parameters and ultrasonic loading. The process parameters, such as
resonant frequency, ultrasonic amplitude, ultrasonic trigger pressure and loading pressure,
ultrasonic duration time, and pressure holding time, are set. By pressing the start button,
the ultrasonic horn rapidly moves downward and presses against the polymer pellets
(Figure 1b), and ultrasonic loading is automatically initiated when the pressure reaches
the trigger pressure. Under high-frequency vibration, the thermoplastic polymer pellets
are rapidly plasticized and melted due to frictional and viscoelastic heat [29–31], and then
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fill the micropores of the template. After ultrasonic loading, the melt in the micropores is
rapidly cooled and solidified during pressure holding (Figure 1c).

(3) Demolding and removal of templates. After pressure holding, demolding, and
removal of templates to obtain the surface microstructures (Figure 1d).

2.2. Materials, Templates, and Equipment

The raw material was polypropylene pellets with a size of about 3 × 2.5 × 5 mm3,
which were supplied by Korea Chungnam Lotte Chemical Co., Seoul, Republic of Korea.
The primary template with a micropore (through-hole) array was obtained by laser cutting
a 304 stainless steel thin sheet with a thickness of 0.2 mm. Two primary templates were
designed, one with a pore diameter of 100 µm and a pitch of 150 µm, and the other with
a pore diameter of 50 µm and a pitch of 100 µm. In order to facilitate the description and
differentiation, the above two templates are named D100-array-LC and D50-array-LC after
laser cutting, respectively, and the latter is renamed D50-array-LCM after re-cutting by
adjusting the process parameter. The secondary templates were made of anodic aluminum
oxide (AAO) with ordered pore arrays, including two specifications, one with a pore size
of 390 nm and a pitch of 450 nm, and the other with a pore size of 250 nm and a pitch of
450 nm, and the thickness of both specifications was 50 µm. These two AAO templates are
named 390 nm-AAO and 250 nm-AAO, respectively.

The equipment used in this paper is an ultrasonic loading system, which mainly
consists of a pneumatic piston, a transducer, a horn, a worktable, an air source, and a
power supply. The pneumatic piston converts the air pressure into the mechanical pressure
of the horn. The piezoelectric ceramic of the transducer converts the alternating current
into high-frequency mechanical vibration, which can realize the ultrasonic loading on the
sample through the horn. The resonant frequency and maximum amplitude of ultrasonic
vibration are 20 kHz and 60 µm, respectively.

Figure 1h shows the mold designed for UPP, which mainly consists of the bottom
mold, thimbles and thimble plate, template (template component), top mold B, top mold A,
and the guide pillars with threads. A shallow groove was designed on the top of mold B to
hold polymer pellets and to prevent the polymer pellets from being vibrated down onto
the template microstructure at the moment of initiating ultrasonic vibration. The thimbles
and thimble plate were mounted in the deep groove on the lower surface of the bottom
mold for quick ejection of the sample. After machining and assembly, the top and bottom
of the mold are shown in Figures 1i and 1j, respectively. Figure 1k shows the sample after
demolding, and its central region is the formed surface microstructure.

2.3. Fabrication of Micropiller Arrays

The D100-array-LC, D50-array-LC, and D50-array-LCM templates were used in UPP,
respectively, for fabricating the micronscale single-stage micropillar arrays. The number
of polypropylene pellets was fixed at 8, and the total weight was about 0.18 g. Setting
process parameters on the ultrasonic loading system: the ultrasonic trigger pressure,
loading pressure, amplitude, and pressure holding time were set to 500 N, 300 kPa, 60 µm,
and 5 s, respectively. The ultrasonic duration time for the D100-array-LC template was
0.28 s, while for both the D50-array-LC and D50-array-LCM templates, it was 0.3 s. The
micro/nanoscale hierarchical micropillar arrays were prepared by combining D100-array-
LC (primary template) with 390 nm-AAO (secondary template), D100-array-LC with
250 nm-AAO, and D50-array-LCM with 250 nm-AAO in UPP. The same process parameters
were employed as for preparing the corresponding single-stage micropillar array (using
the same primary template). The residual AAO templates embedded in the sample surface
were dissolved in the 15% wt NaOH solution within 10 min. The above process parameters
were set based on our extensive preliminary experimental results.
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2.4. Characterization

The surface microstructures prepared by UPP were examined under scanning electron
microscopy (SEM, Quanta FEG450, FEI, Hillsboro, OR, USA) after spray gold treatment.
The hydrophobicity of the surface microstructures was characterized by water contact angle
(WCA), which was measured by a droplet shape analyzer (DSA100S, Krüss, Hamburg,
Germany) with a water droplet volume of 2.5 µL. The lipophilicity was characterized
by measuring the time for an oil droplet (micro-molecule lube oil supplied by Cylion
Technology Int’L Co. Ltd., Shenzhen, China) with a volume of 1 µL to completely immerse
into the surface microstructures; thus, the entire process of oil droplet immersion into the
surface microstructures was recorded.

3. Results and Discussion
3.1. The Characteristics and Advantages of UPP

The left sides of Figure 1e–g show the results of polypropylene pellets being plasticized
and filling the mold cavities when the ultrasonic duration times were 0.12 s, 0.15, and 0.21 s,
respectively. Based on the results, the flow of the melt during ultrasonic loading can be
categorized into three stages, as shown on the right sides of Figures 1e, 1f and 1g, respec-
tively. In the first stage, the polymer pellets are plasticized. Under high-frequency vibration,
the surface of polymer pellets rubs violently against the horn and mold, generating fric-
tional heat, while viscoelastic heat is generated within the material due to high-frequency
alternating stress loads. The frictional and viscoelastic heat leads to a rapid increase in
the temperature of polymer pellets with low thermal conductivity, which are plasticized
and melted. In the second stage, the melt flows from the top mold to the upper surface
of the template and converges to the template center while gradually diverging to the
micro-cavity holes. At this stage, the template microstructure is not only subjected to the
vertical stress from the melt but also to the tangential stress generated by the converging
flow of the melt. Since the ultrasonic loading pressure is mainly applied to the melt on
the upper surface of the top mold and is transferred axially to the worktable, whether
vertical stress or tangential stress is much smaller than the ultrasonic loading pressure. In
the third stage, after the melt has completely covered the upper surface of the template, it
continues to fill the template micro-cavity holes. The template microstructure is mainly
subjected to vertical stress from the melt, which is comparable in magnitude to ultrasonic
loading pressure.

From the melt flow diagrams, it can be seen that during ultrasonic loading, the
melt and the micro-cavity holes are always directly under the horn, and are subject to
the continuous action of ultrasonic longitudinal vibration (main vibration). This can
fully utilize the role of ultrasonic vibration. On the one hand, it effectively reduces the
melt viscosity [32,33], thus improving the filling ability of the melt to the micro-cavity
holes [34–36]. On the other hand, it is conducive to the elimination of residual air inside the
micro-cavity holes [19,37], which reduces the formation of air bubbles and thus improves
the forming quality of surface microstructures. From the stress diagrams, it can be seen that
for the templates used in this work, only the tangential stress may cause deformation or
fracture of the template microstructure, but this stress is much smaller than the ultrasonic
loading pressure. In addition, UPP avoids violent friction between the polymer pellets or
substrate and the template microstructure. Therefore, combined with the results of Figure
S1, it can be demonstrated that UPP is not prone to deformation or even fracture of the
template microstructure while ensuring sufficiently large melt filling pressure, which is
favorable for the reuse of the template.

3.2. Micronscale Single-Stage Arrays

Figure 2a shows the D100-array-LC template, where the upper surface (laser-cut
surface) of the template is outside the red box and the lower surface is inside the red box.
The diameters of the circular holes on the upper and lower surfaces are about 115.9 µm
and 106.0 µm, respectively, thus the template has a demolding angle of 1.42◦. The top and
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side views of the single-stage column array prepared by using the D100-array-LC template
are shown in Figures 2d and 2g, respectively. In Figure 2g, the solid box is a close-up view
of the dashed box. It can be found that the diameter, height, and pitch of the prepared
column array are consistent with the corresponding structural parameters of the template,
respectively. The column array is structurally intact and aesthetically pleasing. The results
indicate that the polypropylene melt filled the micropores adequately under the continuous
action of ultrasound vibration. In Figure 2j, the micropore array of the D100-array-LC
template remains intact and unobstructed after multiple uses, indicating that the template
can be recycled.
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Figure 2. The preparation of single-stage micropillar arrays. (a–c) The surface morphologies of D100-
array-LC, D50-array-LC, and D50-array-LCM templates, respectively. (d–f) Top views of φ110 µm
column, φ67 µm column, and φ64-33 µm cone-column arrays, respectively. (g–i) Side views of
the micropillar arrays, respectively. (j–l) The surface morphologies of the templates after multiple
uses, respectively.

As shown in Figure 2b, the diameters of the circular holes on the upper and lower
surfaces of the D50-array-LC template are about 67.9 µm and 51.3 µm, respectively. The
demolding angle of the D50-array-LC template is 2.38◦. Figure 2e,h show the top and
side views of the column array obtained by using this template, respectively. It can be
observed that the polypropylene melt was able to completely fill the micropores, and the
array structure was complete after solidification. However, some of the columns were
stretched and deformed due to excessive demolding resistance during ejection. Figure 2k
demonstrates that after multiple uses, the micropores of the D50-array-LC template were
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gradually blocked by the polypropylene pillars that were pulled off due to excessive
demolding resistance. Therefore, it is necessary to reduce the roughness of the inner surface
of the micropores or increase the demolding angle of the micropores by adjusting the laser
cutting parameters of the template. In Figure 2c, the diameters of the circular holes on the
upper and lower surfaces of the D50-array-LCM template are approximately 64.6 µm and
33.1 µm, respectively. Consequently, the demolding angle is increased to 4.5◦. As shown in
Figure 2f,i, the cone-column array prepared by using the D50-array-LCM template is neat
and aesthetic, with no cone columns being stretched or deformed. The overall forming
quality is very good, although there is a tiny flash on top of the cone column. Figure 2l
shows the micropore array of the D50-array-LCM template after multiple uses; it remains
intact and unobstructed. The results indicate that the template with a proper demolding
angle can be recycled in UPP and achieve damage-free demolding of the micropillar array.

In this section, a single-stage column array with a diameter of about 110 µm, a height
of 200 µm, and a pitch of 150 µm, as well as a single-stage cone-column array with a top
diameter of about 33 µm, a root diameter of about 64 µm, a height of 200 µm, and a pitch of
100 µm, were successfully fabricated by UPP.

3.3. Micro/Nanoscale Hierarchical Arrays

The successful fabrication of a micronscale micropillar array with a high aspect ratio
(~4.1) indicates that the polymer melt has a very strong ability to fill micropores during
UPP. Therefore, multilevel templates can be set up for the fabrication of hierarchical array
structures. In Figure 3a, a secondary template with nanoscale pores is added below
the primary template with micron-scale pores. When ultrasonic loading is initiated, the
polymer pellets are plasticized and melted, rapidly filling the micropores of the two-stage
templates under ultrasonic vibration. After pressure holding, the sample is demolded, and
the residual templates are removed to obtain the micro/nanoscale hierarchical arrays.

Figure 3c,d show the hierarchical micropillar arrays prepared by combining the D100-
array-LC template (primary template) with the 390 nm-AAO template (secondary template,
Figure 3b). It can be found that the top of the column with an intact array structure is
covered with a nanowire array. The results indicate that under the continuous action of
the horn and ultrasonic vibration, the polypropylene melt can continue to fill the ordered
nanopore array of the secondary template after completely filling the micropores of the
primary template, which adequately demonstrates that UPP has superb micro- and nano-
pore filling ability. Obviously, the formed nanowires are severely agglomerated. The
residual bending stresses of the polypropylene nanowires after solidification at room
temperature were released upon dissolution of the AAO template [24], and the pore
margin of the 390 nm-AAO template was much smaller relative to the pore diameter, thus
leading to the bending of the high aspect ratio nanowires and the formation of severe
agglomerates in various localized regions. Figure 3f,g show the hierarchical micropillar
arrays prepared by combining the D100-array-LC template with the 250 nm-AAO template
(Figure 3e). Although nanowire agglomeration still exists, it is slight as the pore margin of
the 250 nm-AAO template is comparable to the pore diameter.

Figure 3h–j show the hierarchical micropillar arrays prepared by combining the D50-
array-LCM template with the 250 nm-AAO template. The nanowire array (diameter
250 nm, height about 5 µm, and aspect ratio up to 20) covers the top of the cone-column.
In the center region, the nanowires are well defined with slight agglomeration, while in
the edge region, dumping and severe agglomeration of nanowires are present. Since the
micropores of the D50-array-LCM template were small and dense, and the microporous
cutting depth of 200 µm was large relative to the pore diameter, tiny localized warping
deformations inevitably occurred in the micropore array after laser cutting. This warping
deformation resulted in gaps between the lower surface of the micropore array and the
upper surface of the bottom mold or secondary template. During single-stage cone-column
array preparation, the polypropylene melt filled the gaps under ultrasonic vibration; thus,
tiny flashes were formed at the edge of the cone-column top, which can be clearly observed
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in Figure 2i. While hierarchical micropillar arrays were being prepared, the polypropylene
melt not only filled the gaps but also filled the ordered nanopore array underneath the
gaps. The solidified flashes were pulled and compressed to shape under the constraints
of the micropores of the primary template during demolding. As a result, the nanowires
formed on the flash surface deformed along with the flash, leading to dumping and severe
agglomeration of the nanowires in the edge region. The formation of nanowires on the
flash surface caused by machining defects of the template exactly demonstrates the superb
micro- and nano-pore filling ability of the polymer melt in UPP.
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Figure 3. The preparation of micro-nanoscale hierarchical micropillar arrays. (a) The schematic
illustration of preparing hierarchical arrays. (b) The surface morphology of the 390 nm-AAO template.
(c) The φ110 µm and φ390 nm hierarchical arrays. (d) A close-up view of the selected area in (c).
(e) The surface morphology of the 250 nm-AAO template. (f) The φ110 µm and φ250 nm hierarchical
arrays. (g) A close-up view of the selected area in (f). (h) The φ64-33 µm and φ250 nm hierarchical
arrays. (i,j) are close-up views of the selected area in (h,i), respectively.

In this section, φ110 µm and φ390 nm, φ110 µm and φ250 nm, and φ64-33 µm and
φ250 nm hierarchical micropillar arrays were successfully fabricated, which verifies the
capability of UPP to fabricate micro/nanoscale hierarchical surface microstructures with
high aspect ratios.
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3.4. Comparison with Other Methods for Fabricating Micropillar Arrays

To demonstrate the superiority of UPP, the previous work on the fabrication of hi-
erarchical micropillar arrays by the template method and the results thereof have been
summarized in Table S1. Microstructure scale, aspect ratio, forming time, and preheating
temperature of raw material are the key indexes for evaluating the merits and drawbacks of
a forming method. The microstructure scale and aspect ratio reflect the forming capability
of the method, while the forming time and preheating temperature of the raw material
directly affect the production cost. Therefore, the above indexes are extracted from Table S1
for comparison, as shown in Figure 4. Among the previous results in Table S1, the aspect
ratio of primary structure (micron-scale) of the hierarchical micropillar arrays prepared in
this work is within the top 25% (Figure 4a), while the aspect ratio of secondary structure
(nanoscale) is the highest, up to 20 (Figure 4b). The sum of the aspect ratios of primary and
secondary structures in this work is 24.1, which is only 2.8 smaller than that of the highest
(nanoimprinting, No.5). However, UPP has the shortest forming time (only 5.3 s; Figure 4c)
and does not need to heat the raw material (at room temperature; Figure 4d), whereas
nanoimprinting (No.5) requires a forming time of 20 min and heating the raw material
up to 175 ◦C. In other aspects, some methods (No.1, No.3, No.4, No.7, No.8, and No.10)
need two-step preparation of the primary and secondary structures, some methods (No.3,
No.4, and No.6–10) are limited to the light-cured materials, and some methods (No.4, No.5,
No.8, No.11, No.14, No.15, and No.17–19) require a vacuum environment or preheating
of the mold, while UPP can form multilayer structures in one step at room temperature
without preheating the mold. Therefore, UPP has obvious superiority in mass production
of polymer surface microstructures due to its superb forming capability of microstructures
and nanostructures, simple process, short production cycle, and low cost.
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Ultrasonic molding technology, which utilizes ultrasonic vibration as the main en-
ergy source to plasticize thermoplastic polymers, has become a promising microstructure
replication technology with the advantages of short forming timed, simple equipment,
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and low cost. Table 1 summarizes the results of the previous work on the preparation of
single-stage or hierarchical micropillar arrays by ultrasonic molding technology. Among
the previous results, the aspect ratios of the micropillar arrays prepared in this work are
the highest and far ahead, regardless of the micronscale or nanoscale. In addition, UPP
has the shortest ultrasonic duration. As shown in Table 1, only two previous works have
successfully fabricated nanoscale micropillar arrays, and even less, only one previous work
has successfully fabricated micro/nanoscale hierarchical micropillar arrays, but the aspect
ratios of the primary and secondary structures are only 1.2 and 1.3, respectively. There-
fore, ultrasonic molding technology is almost blank in the preparation of single-stage or
hierarchical micropillar arrays with high aspect ratios, whereas UPP achieves a significant
breakthrough in this aspect, fast-tracking the development and application of ultrasonic
molding technology.

Table 1. The results of the previous work in the preparation of micropillar arrays by ultrasonic
molding technology.

No. Technique Structural
Levels

Primary
Structure/Micron-

Scale
Secondary Structure

/Nanoscale Ultrasonic
Duration
Time (s)

Mold
Tempera-
ture (◦C)

Raw Material Mold/Template Reference
Width/

Diameter
(µm)

Aspect
Ratio

Width/
Diameter

(nm)
Aspect
Ratio

1
Ultrasonic-
assisted hot
embossing

Single-
stage 250 0.4 / / 2

Room
tempera-

ture

Polymethyl
methacrylate

(PMMA)

304 stainless steel
mold [38]

2 Ultrasonic
embossing

Single-
stage 100 2.7 / / 1

Room
tempera-

ture

Polyethylene
terephthalate

(PET)

6061 aluminum
mold [39]

3
Ultrasonic

hot
embossing

Single-
stage 280 0.5 / / Not

reported
Room

tempera-
ture

High-density
polyethylene

(HDPE)
Aluminum mold [40]

4
Ultrasonic
micromold-

ing
Single-
stage 68.5 0.8 / / 2.5

Room
tempera-

ture

Polymethyl
methacrylate

(PMMA)

Nickel
micro-mold [22]

5

Micro
ultrasonic
powder
molding
(micro-
UPM)

Single-
stage 108.4 1.7 / / 4.5

Room
tempera-

ture

Ultra-high-
molecule
weight

polyethylene
(UHMWPE)

Printed circuit
board (PCB) [41]

6
Ultrasonic

micro-
moulding

Single-
stage 409 2.1 / / 4 90 Polypropylene

(PP) Metal mold [42]

7

Ultrasonic
plasticiza-

tion
microinjec-

tion
molding

(UPMIM)

Single-
stage 174.5 2.7 / / 2 90 Polypropylene

(PP)
316 stainless steel

mold [43]

8 Ultrasonic
loading

Single-
stage / / 200 5 0.7

Room
tempera-

ture

Polyvinylidene
fluoride
(PVDF)

AAO template [24]

9 Ultrasonic
forming Hierarchical 20.9 1.2 600 1.3 3

Room
tempera-

ture

Polyethylene
(PE)

Nickel
nano–micro

mold
[23]

10

Ultrasonic
plasticizing
and pressing

(UPP)

Hierarchical 48.5 4.1 250 20 0.3
Room

tempera-
ture

Polypropylene
(PP)

(i) 304 stainless
steel template

(primary
structure).
(ii) AAO
template

(secondary
structure).

This
work

3.5. Wettability

As shown in Figure 5a–f, the WCA of the polypropylene original surface is 85.9◦,
while the WCAs of the φ110 µm column array and φ64-33 µm cone-column array are
147.6◦ and 153.0◦, which are 71.83% and 78.11% higher than the WCA of the original
surface, respectively. Compared with the corresponding single-stage micropillar arrays,
the WCAs of φ110 µm and φ390 nm, φ110 µm and φ250 nm, and φ64-33 µm and φ250
nm hierarchical micropillar arrays are further improved due to the presence of nanowire
arrays, which are 154.5◦, 152.1◦, and 157.1◦, respectively. According to the Cassie–Baxter
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model [44], when air in the gaps between the microstructures prevents the droplets from
filling the surface microstructure, the WCA is expressed by the following formula:

cos θCB = f (1 + cos θY)− 1 (1)

where θCB is the WCA, θY is the intrinsic WCA on a structure-free surface, and f is the
fraction of the solid surface in contact with the liquid. The dense micropillars and nanowires
effectively increased the water–air contact area between the droplets and the solid surface
and changed the contact state, resulting in a significant decrease in the f value. Therefore,
the WCAs of the micropillar arrays were improved to different degrees.
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Figure 5. Wettability of the micropillar arrays. (a–f) The WCAs of the polypropylene original surface
and five prepared micropillar arrays, respectively. (g–l) The states and corresponding moments of
the oil droplet immersing into the original surface and five prepared micropillar arrays, respectively.
(m) The trends of the WCA and oil droplet complete immersion time for different micropillar arrays.



Processes 2024, 12, 856 12 of 15

Figure 5g–l show three states and the corresponding moments during the immersion
of oil droplets into the original surface and five micropillar arrays prepared in this work,
respectively, including the states of beginning contact, a certain moment during the period,
and complete immersion. It can be noticed that it was difficult for the oil droplet to com-
pletely immerse into the polypropylene original surface, and the time required for the state
at the moment t3 was 10,433 ms (Figure 5g). However, for the prepared micropillar arrays,
it was easy to achieve complete immersion of the oil droplet, and the time required for
φ110 µm and φ250 hierarchical micropillar arrays was the shortest, only 283 ms (Figure 5l).
As shown in Figure 5m, the trends of the WCA and the oil droplet complete immersion
time are exactly opposite. The results indicate that the presence of prepared micropillar
arrays ensures complete immersion of the oil, and the larger the contact angle, the faster
the immersion rate. In conclusion, the surface microstructures prepared in this work have
superhydrophobic and superoleophilic properties.

4. Conclusions

(1) UPP makes full use of ultrasonic vibration, avoids violent friction between the
raw material and the template microstructure, and is therefore particularly suitable for
reproducing surface microstructures with high aspect ratios from templates.

(2) Micron-scale single-stage micropillar arrays with an aspect ratio of 4.1 and micro-
nanoscale hierarchical micropillar arrays with an aspect ratio of 24.1 were successfully
prepared, verifying the feasibility and forming capability of UPP.

(3) Compared with other template methods for fabricating polymer surface microstruc-
tures, UPP possesses the advantages of superb forming capability of micro- and nano-
structures, simple process, short production cycle and high cost-effectiveness. Therefore, it
has potential uses in both research and application.

(4) UPP has achieved a significant breakthrough in ultrasonic molding technology in
the fabrication of micropillar arrays with high aspect ratios.

(5) The prepared PP micropillar arrays have superhydrophobic and superoleophilic
properties.
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