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Abstract: In industrial manufacturing, bearings are crucial for machinery stability and safety. Un-
detected wear or cracks can lead to severe operational and financial setbacks. Thus, accurately
identifying bearing defects is essential for maintaining production safety and equipment reliability.
This research introduces an improved bearing defect detection model, YOLOv8-LMG, which is based
on the YOLOv8n framework and incorporates four innovative technologies: the VanillaNet backbone
network, the Lion optimizer, the CFP-EVC module, and the Shape-IoU loss function. These enhance-
ments significantly increase detection efficiency and accuracy. YOLOv8-LMG achieves a mAP@0.5 of
86.5% and a mAP@0.5–0.95 of 57.0% on the test dataset, surpassing the original YOLOv8n model
while maintaining low computational complexity. Experimental results reveal that the YOLOv8-LMG
model boosts accuracy and efficiency in bearing defect detection, showcasing its significant potential
and practical value in advancing industrial inspection technologies.
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1. Introduction

Bearings play a crucial role in chemical equipment and are the core components that
support the rotating shaft. The performance of bearings directly affects the operating
stability and reliability of equipment. Poor bearing performance will cause the imbalance of
rotating parts, resulting in increased vibration and noise of the equipment. It may even lead
to equipment failure, shutdown, or damage, seriously affecting the stable operation and
reliability of the equipment. Bearing failure can also lead to the separation of rotating parts
from equipment, resulting in mechanical hazards and potentially causing serious accidents,
injury, and property damage. In addition, maintenance and the replacement of bearings
require equipment to be suspended, which also reduces production efficiency. Therefore,
bearings are essential to ensure the smooth progress of the chemical production process.
The quality of bearings may be affected by various defects during production, assembly,
and transportation, such as grooves, wear, scratches, etc. These defects may pose a risk
to the regular operation of the equipment, so the detection of bearing defects is crucial.
Traditional defect detection methods, such as visual inspection and simple sensor-based
methods, can detect problems to a certain extent. Still, these methods are often inefficient
and struggle to meet the needs of high-precision and real-time monitoring. Advancements
in computer vision and AI provide new solutions for detecting bearing defects. These
modern detection methods have the characteristics of high intelligence, high accuracy, and
high efficiency, and they bring breakthroughs in the field of defect detection.

At present, two-stage object detection algorithms (such as R-CNN [1], Fast R-CNN [2],
and Faster R-CNN [3]) and single-stage object detection algorithms (such as the YOLO [4]
series) have been widely used in defect detection. The two-stage algorithm first generates
candidate regions, then classifies these regions, and performs boundary box regression.
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Although the accuracy is high, the speed is slow, and it is challenging to meet the needs
of real-time detection. In contrast, a single-stage algorithm (such as YOLOv8 [5]) directly
predicts the category and location of the target from the image, eliminating the step of
generating candidate regions, so it can achieve faster detection speed while ensuring high
accuracy, and, as such, is more suitable for real-time monitoring applications.

As an advanced single-stage target detection algorithm, YOLOv8 can effectively
identify various types of defects in bearings through its unique network architecture and
optimization technology, including those subtle defects in complex backgrounds. This
algorithm not only improves the accuracy of detection but also significantly improves the
detection speed and provides an efficient and accurate technical solution for detecting
bearing defects. Therefore, a new bearing defect detection algorithm based on the YOLOv8
model is proposed in this work. The specific contributions of this work are as follows:

(1) A novel bearing defect detection model has been developed, leveraging VanillaNet as
its core network to enhance its capability in identifying subtle defects on the bearing
surface. This approach simplifies the network architecture, significantly reducing
model complexity and computational cost. The Lion optimizer was adopted to
accelerate the training process further and enhance detection accuracy. It suits intricate
defect detection tasks, improving efficiency by ensuring effective data utilization and
rapid model convergence.

(2) Integrating the CFP-EVC module has significantly enhanced the ability of the model
to identify complex, occluded, and overlapping defects. The advanced feature fusion
and enhanced strategy optimization networks have led to faster processing speeds.
Moreover, introducing the Shape-IoU loss function has improved the position accuracy
of the model, which is particularly useful for detecting minor defects and providing
more precise detection boundary evaluation.

(3) Extensive experimental verification was carried out on the bearing defect dataset
collected by chemical enterprises. Compared with the current mainstream target
detection models, the proposed method improves the detection accuracy and signifi-
cantly reduces the computational resources required. The experimental results also
prove that the model is robust and practicable in practical industrial applications.

In the face of these challenges, the need for more effective detection methods is
crucial. This research introduces a groundbreaking approach to detecting bearing defects
through the YOLOv8-LMG model. This model builds upon the strengths of the YOLOv8n
framework, enhancing it with the VanillaNet backbone network for more robust feature
extraction, the Lion optimizer for faster convergence, the CFP-EVC module to handle
complex, overlapping defects, and the Shape-IoU loss function for more accurate defect
localization. These innovations improve detection accuracy, efficiency, and speed, enabling
real-time and reliable monitoring of bearing conditions. The proposed model, YOLOv8-
LMG, significantly enhances our ability to detect subtle and critical defects that could
jeopardize the stability and safety of chemical production processes. Our model achieves
high precision with a mean average precision (mAP) of 86.5% at an intersection over union
(IoU) of 0.5 and 57.0% at IoU 0.5–0.95, outperforming existing models while maintaining low
computational demands. These capabilities make YOLOv8-LMG a pivotal advancement in
industrial defect detection, ensuring the safety and efficiency of equipment critical to the
chemical industry.

This is divided into the following sections: Section 2 provides an overview of the
current state of research in the field of defect recognition, both domestically and interna-
tionally. Section 3 primarily introduces YOLOv8 and the methods developed in this work
to enhance it, referred to as YOLOv8-lmg. Section 4 focuses on various experiments and
their results. Section 5 describes the conclusions and prospects of this work.
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2. Related Work
2.1. Traditional Bearing Defect Recognition

The field of bearing defect detection has long relied on a range of traditional methods,
including but not limited to vibration analysis, acoustic emission monitoring, thermal imag-
ing, and eddy current testing. Each method provides a sensitive and accurate diagnosis of
defects that may occur during bearing operation. Recent technological advancements have
offered new perspectives for fault diagnosis in mechanical systems. Specifically, various
detection technologies have demonstrated their strengths and potential in diagnosing
bearing defects.

Integrating infrared thermal imaging technology with deep learning has introduced
innovative methods for bearing fault diagnosis. Shao [6,7] et al. have applied infrared
thermal imaging technology combined with an improved convolutional neural network
(CNN) for fault diagnosis under variable operating conditions of the rotor-bearing system.
This method not only showcases the application of thermal imaging technology in detecting
bearing defects but also demonstrates how deep learning technology can enhance the
performance of traditional diagnostic methods. Additionally, findings by Choudhary [8]
et al. indicate that infrared thermal imaging technology can automatically identify bearing
faults in a non-contact manner, facilitating early detection and warnings and reducing
system downtime.

Traditional wear particle and vibration analysis technologies remain essential tools in
fault diagnosis. Lin [9] et al. conducted an in-depth analysis of wear particles in railway
bearings, revealing the wear mechanisms under rolling/sliding contact and adhesion.
Abdeltwab [10] et al. have reviewed the application of vibration analysis in engine fault
diagnosis, emphasizing the importance of denoising techniques, such as higher-order
statistics and wavelet transforms. Subsequently, Liu [11] employed an empirical wavelet
thresholding method to analyze the vibration signals of large-scale wind turbine blade
bearings, which are particularly susceptible to weak fault signals due to their size and
operational speeds combined with environmental noise interference. Their methodology
effectively isolated fault signals from complex datasets, demonstrating the applicability
of this technique within nonlinear dynamic systems. Finally, Hou [12] et al., through
a comparative research of vibration monitoring and acoustic emission (AE) technology,
optimized the fault diagnosis method for high-speed train wheelset bearings, providing a
natural transition to the introduction of acoustic emission analysis technology.

Applying acoustic emission (AE) technology in bearing fault diagnosis has gradually
gained attention. Research on acoustic emissions by Liu [13] has provided strong technical
support for diagnosing faults in wind turbine blade bearings and high-speed train axle
bearings, demonstrating the effectiveness of AE technology in monitoring micro-cracks
and early-stage faults.

Eddy current testing technology has unique advantages in crack detection and ma-
terial performance evaluation. Research by Zhang [14] has showcased the application
of eddy current technology in crack detection and the design of high-speed permanent
magnet machines. Yu [15] et al. introduced a multi-objective optimization method for
three-degree-of-freedom hybrid magnetic bearings, considering eddy current effects and
saturation issues. They proposed a dynamic magnetic circuit model and a design method
for maximum carrying capacity and minimum cost, demonstrating the effectiveness of the
optimization results.

Deep learning overcomes the limitations of traditional diagnostic methods, such as
low sensitivity, reliance on manual interpretation, and limited early detection capabilities.
Deep learning algorithms can automatically interpret data to improve fault detection
accuracy and identify complex fault patterns in varying conditions. This marks a significant
advancement in diagnostic methods towards higher precision, efficiency, and reliability,
paving the way for the development of bearing fault diagnostic technology.
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2.2. Detection Methods Based on Deep Learning

In the field of bearing defect identification, the contributions of deep learning, notably
reviewed by Moshayedi [16], highlight its transformative impact across various applica-
tions, including advanced model abstractions and nonlinear transformations within large
databases. Specifically, the application achievements of deep learning, especially the YOLO
algorithm, continue to emerge. Fu [17] et al., by combining the improved YOLOv5 and
K-Means++ algorithm, significantly improved the accuracy and efficiency of detection. This
demonstrates the great potential of deep learning technology in practical industrial applica-
tions. Following this, Merainani [18] et al. used an innovative approach combining infrared
thermal vision technology with the YOLO-v4 framework to provide a new perspective
for automatically detecting hot-bearing boxes on rails. In addition, the improvement of
YOLOv3 by Zheng [19] et al. and the YOLOv5 model enhanced by gamma transform by
Zhao [20] et al. have all contributed to the early detection and accurate identification of
bearing defects. In particular, the further optimization of the YOLOv5 network by Xu [21]
et al. not only improved the feature extraction capability of the model but also enhanced its
diversity and robustness. This series of research work jointly promoted the development of
bearing defect identification technology.

With the advancement of technology, researchers are now paying attention to applying
YOLOv8 in identifying bearing defects using deep learning models. The application of the
YOLOv8s model in the agricultural field by Yang [22] et al. demonstrated the cross-domain
potential of deep learning technology, while the improved YOLOv8 algorithm proposed
by Wen [23] et al. for crop leaf disease detection achieved remarkable results in terms of
balancing detection accuracy and model weight. Xiong [24] et al. optimized the accuracy of
bridge floor crack detection through the YOLOv8-GAM-Wise-IoU model; Zhang [25] et al.‘s
DsP-YOLO optimization in small-size defect detection and Cao [26] et al.‘s application in
photovoltaic defect detection are also notable. These studies show the application value of
YOLOv8 in bearing defect identification and reflect the broad applicability and powerful
performance of deep learning technology in different fields.

Identifying bearing defects in chemical enterprises is challenging. YOLOv8 excels
in general object detection but falls short in detecting specific bearing defects in chemical
environments, resulting in lower accuracy and efficiency. To address this, we have implicitly
improved the model for this application scenario: Firstly, VanillaNet [27] was adopted
as the backbone network, which has been optimized for the characteristics of bearings in
chemical enterprises.

This optimization enhances the ability to capture subtle defect features, aligning with
the requirements for scientific research documentation. Simultaneously, the Lion opti-
mizer [28] was introduced to accelerate model training, significantly improving training
efficiency, especially considering the complexity and diversity of data in a chemical en-
vironment. Furthermore, by integrating the CFP-EVC [29] module, our model achieved
significant improvements in identifying complex defects in bearings in chemical enter-
prises, especially in detecting invisible defects, such as early damage and minor cracks.
Finally, we optimized the localization accuracy of the model using the Shape-IoU [30]
loss function, ensuring accurate defect identification and precise localization of the defect
location, providing vital information for subsequent repair and replacement.

This series of targeted improvements enhances the model performance in identifying
bearing defects in chemical enterprises and accelerates the speed of model training and
deployment while ensuring high recognition accuracy. This is significant for improving the
efficiency of chemical enterprises, reducing maintenance costs, and preventing potential
equipment failures. As such, it will enhance the application value of our work.
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3. Algorithm
3.1. YOLOv8

In January 2023, Ultralytics, the team behind YOLOv5, released its latest object detec-
tion framework, YOLOv8. YOLOv8 has excelled in classification, detection, segmentation,
and attitude estimation, but its specific workings remain undisclosed. A significant im-
provement of YOLOv8 is the anchor-free design, which improves the detection speed and
enhances the model accuracy. In addition, YOLOv8 has some upgrades and enhancements
over previous versions, introducing new features to improve the model’s performance
and flexibility.

YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x are available in multiple
versions to suit different application needs, all of which outperform previous YOLO
versions on the COCO dataset. Considering the model size, YOLOv8n was chosen as the
research focus. The architecture of YOLOv8 is divided into four main parts: the input,
backbone, neck, and head. At the input, the model accepts images with a size of 640 × 640.
The backbone is partly based on YOLOv5 but significant improvements have been made,
such as changing the first layer volume from 6 × 6 to 3 × 3, replacing the C3 module with
the C2f module, and taking a page from the YOLOv7ELAN design. In the neck part, the
sampling layer of 1 × 1 convolution is eliminated, and the C2f module is leveraged to
enhance feature extraction. The head section implements a decoupled design, separating
classification and regression tasks. Mosaic data enhancement was used to preprocess
images and improve model generalization. Mosaic enhancement was caused in the last
10 epochs to optimize detection precision. The model structure is shown in Figure 1.
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Figure 1. YOLOv8n network framework.

The Conv module of YOLOv8 consists of Conv2d, batch normalization (BN), and
the SiLU activation function, which is the core component of the model, and which is
responsible for extracting and processing feature information. The C2f module combines
the design of the C3 module with the lightweight attention mechanism of ELAN to maintain
the efficiency and performance of the model. Another critical component is serial parallel
pooling fusion (SPPF), which is based on the concept of spatial pyramid pooling (SPP)
to expand the receptive field by concatenating multiple maximum pooling layers while
reducing the number of parameters and the computational burden.
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3.2. YOLOv8-LMG

Bearings, vulnerable to damage, exhibit many defect types that complicate detection.
The YOLO8 model, despite its broad applicability, faces difficulties in detecting the nuanced
and complex characteristics of bearing defects. This work introduces an advanced detection
model, enhancing defect identification capabilities beyond the constraints of YOLOv8.
This model, enriched with precise optimization strategies and sophisticated algorithms,
significantly improves detection accuracy and operational efficiency. Using deep learning
has facilitated identifying bearing defects in industrial inspection, enhancing production
efficiency and superior quality. This technological advancement has a direct impact on the
production process. Based on this, this research aims to make innovative improvements to
the YOLOv8 model to enhance its ability to identify bearing defects in complex environ-
ments. For ease of identification, it was denoted as YOLOv8-LMG. The YOLOv8 model had
low accuracy and missed minor defects, especially in samples with complex backgrounds.
Therefore, this work will analyze these problems and present the corresponding solutions.
VanillaNet, a lightweight and efficient network structure, is introduced to replace the origi-
nal YOLOv8 backbone network to improve the ability of the model to extract bearing defect
features. Meanwhile, to adapt to the characteristics of the bearing defect dataset, the Lion
optimizer developed by Google was introduced in this research. Through its advanced
adaptive learning rate adjustment mechanism, the training process of the model was further
accelerated, and the recognition accuracy was improved. A centralized feature pyramid
network EVC (CFP-EVC) module has been added to improve the ability of the model to
detect bearing defects. This module enhances the detection performance of the mold by
effectively fusing and centrally processing features. The performance is more significant
when dealing with defects with large size changes, occlusion, and complex backgrounds. In
terms of loss function, the shape-IOU loss function was proposed in this research to replace
the traditional IOU loss function to more accurately evaluate the ability of the model to
recognize the shape of bearing defects, thereby improving the overall detection accuracy.
The improved model structure is shown in Figure 2.

Processes 2024, 12, x FOR PEER REVIEW 6 of 22 
 

 

(SPP) to expand the receptive field by concatenating multiple maximum pooling layers 
while reducing the number of parameters and the computational burden. 

3.2. YOLOv8-LMG 
Bearings, vulnerable to damage, exhibit many defect types that complicate detection. 

The YOLO8 model, despite its broad applicability, faces difficulties in detecting the 
nuanced and complex characteristics of bearing defects. This work introduces an 
advanced detection model, enhancing defect identification capabilities beyond the 
constraints of YOLOv8. This model, enriched with precise optimization strategies and 
sophisticated algorithms, significantly improves detection accuracy and operational 
efficiency. Using deep learning has facilitated identifying bearing defects in industrial 
inspection, enhancing production efficiency and superior quality. This technological 
advancement has a direct impact on the production process. Based on this, this research 
aims to make innovative improvements to the YOLOv8 model to enhance its ability to 
identify bearing defects in complex environments. For ease of identification, it was 
denoted as YOLOv8-LMG. The YOLOv8 model had low accuracy and missed minor 
defects, especially in samples with complex backgrounds. Therefore, this work will 
analyze these problems and present the corresponding solutions. VanillaNet, a 
lightweight and efficient network structure, is introduced to replace the original YOLOv8 
backbone network to improve the ability of the model to extract bearing defect features. 
Meanwhile, to adapt to the characteristics of the bearing defect dataset, the Lion optimizer 
developed by Google was introduced in this research. Through its advanced adaptive 
learning rate adjustment mechanism, the training process of the model was further 
accelerated, and the recognition accuracy was improved. A centralized feature pyramid 
network EVC (CFP-EVC) module has been added to improve the ability of the model to 
detect bearing defects. This module enhances the detection performance of the mold by 
effectively fusing and centrally processing features. The performance is more significant 
when dealing with defects with large size changes, occlusion, and complex backgrounds. 
In terms of loss function, the shape-IOU loss function was proposed in this research to 
replace the traditional IOU loss function to more accurately evaluate the ability of the 
model to recognize the shape of bearing defects, thereby improving the overall detection 
accuracy. The improved model structure is shown in Figure 2. 

 
Figure 2. YOLOv8-LMG network framework. Figure 2. YOLOv8-LMG network framework.



Processes 2024, 12, 930 7 of 21

Figure 2 shows that the original convolutional layers in the backbone of YOLOv8 have
been replaced with the VanillaNet network. This choice is because VanillaNet is proficient in
extracting complex patterns from visual data, which is suitable for identifying complex and
subtle features of bearing defects that the original architecture may not capture effectively.
In the neck area of YOLOv8-lmg, EVC modules have been incorporated to process multi-
scale feature maps created by the backbone. These modules optimize feature information
by providing enhanced contextual and visual cues, enabling the model to differentiate and
defect features more accurately. The design of the YOLOv8 framework aims to address the
difficulties that the YOLOv8 algorithm faces in recognizing complex and minute defects
in bearing defect detection within chemical enterprises. The improvements brought by
the VanillaNet and EVC modules overcome the limitations of the original YOLOv8 model,
delivering greater defect detection accuracy and a deeper understanding of complex defect
features. Although the Shape-IoU loss function and Lion optimizer play algorithmic roles
during the training phase and are not depicted in the architecture flow, they complement the
structural enhancements by fine-tuning the ability of the model to localize and accelerate
the learning process. The principles of these components and their role in enhancing model
performance will be detailed later in the text.

3.2.1. Google Lion Optimizer

Based on a further understanding of Google Lion optimizer, we used this novel
optimization algorithm to analyze the bearing defect datasets. The Lion optimizer was
developed through algorithm discovery and program search techniques, focusing on the
efficiency and effectiveness of deep neural network training. It uses an efficient search
strategy to explore significant and sparse program spaces and to narrow the generalization
gap between agent and target tasks through program selection and simplification strategies.
The main innovation of Lion relies only on momentum tracking, which is more memory
efficient than other adaptive optimizers, such as Adam. In addition, Lion calculates updates
through symbolic operations, assigning the same number of updates to each parameter,
simplifying the optimization process and improving the accuracy and efficiency of training.

Figure 3 shows that the Lion optimizer exhibits superior quality and quicker con-
vergence regarding Fréchet inception distance (FID) scores across image generation tasks
at resolutions of 64 × 64 and 128 × 128. The prowess of the Lion optimizer becomes
increasingly evident in higher-resolution tasks, signifying its robustness in managing more
intricate challenges. For instance, in the generation of 128 × 128 images, as the iterations
progress, there is a noticeable decline in FID scores for the Lion optimizer, indicating an
enhanced quality of image generation within the same number of steps compared to the
AdamW optimizer. This efficiency gain is crucial for high-resolution image tasks, which
typically demand more computational resources and time. Hence, the characteristics
demonstrated by the Lion optimizer could be significantly beneficial for improving the
training efficiency of large-scale image generation models.
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In Figure 4, the Lion optimizer outperforms AdamW on the Imagen text-to-image
super-resolution model, achieving a higher CLIP score and lower FID indicator volatility.
These results demonstrate the advantages of the Lion optimizer in improving image text
alignment and image realism.
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Figure 5 shows the log perplexity performance of the Lion optimizer on the Wiki-40B
dataset and the performance on the PG-19 dataset. Logarithmic confusion is a commonly
used performance index in natural language processing, which is used to measure the
quality of language model prediction samples. The lower the value, the more accurate the
prediction of the model. The graph shows that the acceleration effect of the Lion optimizer
becomes more evident with the increase in model size. The largest model was omitted
on the Wiki-40B dataset due to severe overfitting. This suggests that Lion may have a
more significant performance improvement than other optimizers when dealing with large
datasets, especially when overfitting is needed.
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Taking this information together, the Lion optimizer shows significant performance
improvements over the AdamW optimizer in image synthesis (Figure 3), text-to-image
super-resolution generation (Figure 4), and large-scale language modeling (Figure 5). In
some tasks, such as bearing defect detection, the uniform update volume and built-in
regularization effects of Lion may help to improve the ability of the model to generalize
on unseen data and reduce the risk of overfitting while maintaining training efficiency.
Therefore, these characteristics of the Lion optimizer indicate that it can achieve fast and
accurate model training and better detection performance in high-precision applications,
such as bearing defect detection.

3.2.2. VanillaNet Backbone Network

VanillaNet represents an attempt to move towards simplicity and design elegance,
taking a basic but efficient approach to neural network architecture design. Its core philos-
ophy is “diversity means difference”, a principle that has seen notable success in certain
fields, such as computer vision and natural language processing. Nevertheless, the in-
herent complexity of the optimization process and the Transformer model presents new
challenges that have prompted researchers to search for simpler design paradigms. The
design of VanillaNet avoids deep network structures, shortcuts, and complex operations,
such as self-attention mechanisms, seeking to maintain powerful performance through
simplification. After training, this design simplifies each layer and reverts to the original
architecture by trimming the non-linear activation function, reducing model complexity.

The VanillaNet network architecture is shown in Figure 6. The architecture includes
the following elements:
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This diagram illustrates the network architecture of VanillaNet, which is structured into
three principal sections:

I. Stem: This initial segment handles preliminary feature extraction through convolutional
layers, processing an input image size of 224x224 pixels with three channels, indicative of
the RGB color space.

II. Conv: Representing the convolutional stages of the network, this crucial segment is
tasked with feature extraction and learning. The varying dimensions of feature maps signal
processing at distinct layers, with numbers denoting the spatial dimensions and depth
(number of channels or features), such as 1024 and 2048.

III. Fully connected: This final section consists of fully connected layers responsible for the
classification or other relevant tasks based on the learned features. It translates the outputs
from the preceding layers into 1000 units, typically correlating to 1000 different classes for
tasks like image classification.

The arrows indicate data flow and the interconnections between layers. Additionally,
the diagram delineates the integration of different pooling strategies (Maxpooling and
Averagepooling) with batch normalization (BN) and specific activation functions (SIAF),
depicting their respective impact within the architecture.The architecture includes the
following elements:
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1. The input is represented as a three-dimensional block, suggesting an image with a
height and width of 224 pixels and 3 color channels.

2. The network comprises several convolutional layers, as indicated by the smaller three-
dimensional blocks where the spatial dimensions (height and width) are reduced
while the depth increases. These layers are responsible for feature extraction. Each
layer is followed by a pooling layer, which further reduces the spatial dimensions
(height and width), as shown by the decrease in the size of successive blocks.

3. After multiple convolutional and pooling layers, the representation becomes much deeper
(indicated by the increased depth of the blocks) but with reduced spatial dimensions.

4. Towards the end of the network, the architecture seems to include fully connected
layers, represented by flat, elongated rectangles. These layers typically interpret the
features extracted by the convolutional layers and make decisions based on them.

5. The final part of the network shows a transition from a fully connected layer with
4096 units to an output layer with 1000 units. This suggests that the network is
designed for a classification task with 1000 possible categories.

6. Arrows indicate the direction of data flow from the input to the output.

This simplified approach by VanillaNet is particularly suitable for resource-limited
environments because it overcomes the challenges of complexity while maintaining the
effectiveness of the model. Simple architecture enables efficient deployment of deep
learning models on devices with limited computing resources. Extensive experimental
results indicate that although the design of VanillaNet is highly simplified, its performance
is comparable to that of current deep neural networks and vision Transformer models. This
demonstrates the efficacy of implementing a minimalist approach in deep learning.

3.2.3. CFP-EVC

The Centralized Feature Pyramid with Explicit Visual Centers (CFP-EVC) module is
designed to solve some limitations of the existing visual feature pyramid methods in target
detection. These methods often focus on the interaction of features between layers and
neglect the importance of intra-layer feature conditioning. However, the latter has been
empirically shown to be beneficial for improving the model’s performance. Attempts to
enhance in-layer feature representation by introducing attentional mechanisms or visual
converters often leave out corner regions of the input image that are critical for intensive
prediction tasks. The model diagram is shown in Figure 7.
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The given image displays a neural network object detection architecture that starts
with an input image processed through a backbone network with multiple stages (stage
1 to stage 5) for feature extraction. The head network follows, employing upsampling
and concatenation to integrate multi-scale features for object classification and localization.
Specialized components, such as lightweight MLP, LVC, and EVC modules enhance net-
work contextual understanding and focus on informative image regions. The CFP-EVC
module aims to overcome this problem by explicitly centralizing feature conditioning
globally, thereby optimizing the use of feature pyramids in target detection. It captures
global remote dependencies through a spatially explicit vision center scheme that uses a
lightweight multi-layer perceptron (MLP). In addition, the CFP-EVC module utilizes a
learnable visual center mechanism in parallel that is specifically targeted to capture local
corner regions of the input image, thus ensuring that the model takes full advantage of all
critical information in the image.

CFP-EVC implements the top-down global centralized regulation strategy based
on this design idea. This strategy utilizes explicit visual center information from the
deepest feature to effectively adjust the forward shallow feature to enhance the feature
expression ability of each layer in the feature tower. CFP-EVC can efficiently capture global
remote dependencies and obtain comprehensive feature representations, improving target
detection performance.

3.2.4. Shape-IoU

Shape-IOU (shape intersection ratio) is an innovative border regression loss calcula-
tion method to improve positioning accuracy in object detection tasks. Traditional frame
regression loss calculation methods mainly focus on the relative position and shape re-
lationship between the predicted frame and the ground truth (GT), but often ignore the
influence of the shape and scale properties of the frame itself on the positioning precision.
The proposed Shape-IOU method aims to fill this research gap and optimize the process of
border regression by considering the inherent properties of the border shape and scale.

The core idea of Shape-IOU is to incorporate the shape and scale factors of the border
itself into the loss calculation. In this way, Shape-IoU focuses not only on the relative
relationship between the GT frame and the prediction frame but also on the geometric
properties of the prediction frame itself. This method can guide the model in carrying out
border regression more accurately to improve the localization accuracy of target detection.
Shape-IoU calculates the ratio of intersection and union between the predicted target
shape and the real target shape. The calculation method of Shape-IOU can be summarized
as follows:

1. Calculate IoU (intersection over union)

The formula for calculating the standard IoU is as follows:

IoU =

∣∣b ∩ bgt
∣∣

|b ∪ bgt|
(1)

where b and bgt represent the predicted box and the ground truth box, respectively.
Introducing the scale factors for weighted width ww and weighted height hh is calcu-

lated as follows:

ww =
2 ×

(
wgt)scale

(wgt)
scale + (hgt)

scale (2)

hh =
2 × (wgt)

scale

(wgt)scale + (hgt)scale (3)

2. Calculate shape distance.
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The specific calculation formula is outlined as follows:

distanceshape = hh × (xc − xgt
c )

2
/c2 + ww × (yc − ygt

c )
2
/c2 (4)

3. Calculate the shape consistency term obtained by cumulatively computing weighted
width and height differences. The exponential decay function here is used to evaluate
shape consistency.

The following formula defines the precise computation:

Ωshape = ∑
t=w,h

(
1 − e−wt)Θ, Θ = 4 (5)

where ww and wh are the proportions of weighted differences in width and height, calcu-
lated by the following formula: 

ww = hh × |w−wgt|
max(w,wgt)

wh = ww × |h−hgt|
max(h,hgt)

(6)

4. Calculate Shape-IoU

The exact mathematical expression for the calculation is as follows:

LShape− IoU = 1 − IoU + distanceshape + 0.5 × Ωshape (7)

Shape-IoU is particularly suitable for applications requiring the accurate assessment
of object shape matches, such as segmentation tasks, 3D reconstruction, and some types of
object detection, providing an intuitive way to measure the similarity between predicted
and real shapes.

4. Experiment and Analysis
4.1. Datasets and Evaluation Indicators

This research collected and utilized a pre-use defect detection dataset of chemical
plant equipment bearings, which included 6543 images to capture the possible defects of
bearings during different stages of production, assembly, and transportation. The datasets
were divided into training sets, verification sets, and test sets with a ratio of 8:1:1. All
images have been annotated in detail, and each image corresponds to a text file that records
the specific location and type of defect, providing the necessary input information for the
training, validation, and testing of the model.

Considering the diversity in and uncertainty of bearing defects, this dataset includes a
variety of defect types, including groove defects, scratch defects, and scrape defects. The
types of defects are shown in Figure 8, where 0 represents “groove”, 1 represents “scrape”,
and 2 represents “scratch”. These defects have different effects on the performance of
bearings, so it is particularly critical to carry out accurate detection and classification in
practical applications. At the same time, the diversity of defect features in the dataset,
such as shape, size, and location, put forward high generalization ability and robustness
requirements for the flaw detection algorithm to adapt to the wide range of defect variation
in the real scene.

Four key indicators were used to evaluate the model performance: mean accuracy
(mAP), frames processed per second (FPS), number of model parameters (Params), and
floating-point operations (GFLOPs). mAP measures the average accuracy of the model
in detecting various targets on the test set. The higher the value, the more powerful the
detection ability of the model. The FPS indicator reflects the image processing speed of the
model, and the higher the FPS, the faster the response speed of the model and the better the
real-time performance. Parameter number (Params) is an indicator to evaluate the size and
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complexity of a model, and the fewer parameters, the more concise the model structure.
GFLOPs is used to measure the computing resources required during the execution of
the model, and a lower GFLOPs value indicates that the model has higher computational
efficiency. These four indexes together constitute a comprehensive framework to measure
the performance of the model in terms of precision, speed, and efficiency, which can fully
reflect the performance of the model in practical applications.
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4.2. Experimental Settings

The hardware configuration includes an NVIDIA Tesla V100 and an Intel(R) Xeon(R)
Silver 4210 CPU 2.20 GHz; The GPU is configured with 16 GB HBM2 (High Bandwidth
Memory 2). In terms of software, this work uses Python3.7, PyTorch 1.7.0, and Cuda11.3
deep learning frameworks. Using the Google Lion optimizer, the experiment set the initial
learning rate to 0.01, the batch size to 32, the epoch to 200, and the input image size to
640 × 640.

4.3. Comparison Experiment
4.3.1. Comparative Analysis of Lion Optimizer

This work compares the Google Lion optimizer with other state-of-the-art optimizers,
such as Adam, SGD, etc. The comparison chart is shown in Figure 9. The Lion optimizer
scored 83.7% on mAP@0.5, 1.9 percentage points higher than the standard Adam optimizer.
More significantly, the Lion optimizer scored 53.1% in mAP@0.5–0.95, 1.5 percentage points
higher than Adam, 2.6 percentage points higher than SGD, and 1.4 percentage points higher
than RMSprop. It was 1.3 percentage points higher than Nadam and 0.6 percentage points
higher than LAMB.

These results show that the Lion optimizer provides the best accuracy in bearing
defect identification, especially in mAP@0.5–0.95 evaluations, considering a wider range
of IoU thresholds. While FLOPs and the number of parameters remained the same for
all optimizers (8.1 G and 3.0 M), the performance improvement with the Lion optimizer
demonstrated its efficiency in optimizing model parameters. Therefore, the Lion optimizer
has apparent advantages for improving the accuracy of bearing defect detection, and there
is no increase in computational cost, which makes the Lion optimizer a superior choice for
bearing defect detection tasks.
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4.3.2. Comparative Analysis of VanillaNet

As can be seen from Figure 10, VanillaNet showed excellent results in key perfor-
mance indicators when comparing different backbone network models. Specifically, in
the mAP@0.5 evaluation, VanillaNet led with an accuracy of 85.9%, which is 4.1 per-
centage points higher than the baseline model YOLOv8 at 81.8%. In the more rigorous
mAP@0.5–0.95 evaluation, VanillaNet outperformed the other models with an average
accuracy of 56.3%, 4.7 percentage points higher than YOLOv8. This result highlights the ad-
vantages of VanillaNet in precisely identifying targets. However, this high accuracy comes
at the cost of increased computational complexity, with VanillaNet having a FLOPs/G
value of 13.7, much higher than other models, such as BotNET with a FLOPs/G value of
7.8, indicating that the computational requirements of VanillaNet are almost twice those of
BotNET. In terms of the number of parameters, VanillaNet has 4.8 M parameters, which is
second only to EfficientRep and Qarenext, each with 4.0 M parameters. Although Vanil-
laNet is not optimal regarding the number of parameters and computational complexity, it
provides the highest accuracy on object detection tasks, especially on more fine-grained
IoU evaluation criteria. This shows that VanillaNet is a superior choice for identifying
bearing defects.
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4.3.3. Comparative Analysis of CFP-EVC

It can be seen from Figure 11 that YOLOv8-C2-CFP-EVC shows significant advantages
in the task of bearing defect identification compared with other models. Figure 11 displays
an x-axis with four performance metrics for object detection models: mean average precision
at IoU 0.5 (mAP@0.5) and IoU 0.5–0.95 (mAP@0.5–0.95) in percentages, reflecting accuracy;
floating-point operations per second in billions (FLOPs/G), indicating computational
efficiency; and model parameters in millions (Params/M), representing size and complexity.
While plotted on the same axis, the units—percent for mAP, billions for FLOPs, and millions
for Params—differ, with higher mAP denoting better accuracy, lower FLOPs suggesting
efficiency, and fewer Params implying a more streamlined model. Our model achieves
84.6% on mAP@0.5, 2.8 centenaries higher than the baseline model YOLOv8n. In the more
fine-grained mAP@0.5–0.95 index, YOLOv8-C2-CFP-EVC scored 55.3%, which is far higher
than other models and 3.7 percentage points higher than the baseline model, indicating
that our model has more accurate recognition ability under different IoU thresholds. Even
compared to YOLOv8-C2-Repghost, our model has a 2.2% improvement on mAP@0.5–
0.95. In terms of computational complexity (FLOPs/G), although YOLOv8-C2-CFP-EVC
is not the lowest, its value of 7.7 is still on the low side, only 0.4 higher than the optimal
YOLOv8-C2-GhostNet. Regarding model size (Params/M), the number of parameters of
YOLOv8-C2-CFP-EVC is 2.7 M. Compared with most other models, YOLOV8-C2-CFP-EVC
performs better without a significant parameter increase; it has 0.3 M fewer parameters
than YOLOv8n. In summary, choosing YOLOv8-C2-CFP-EVC as the backbone network
can provide higher accuracy for bearing defect identification while maintaining reasonable
computational and parametric efficiency. This makes the YOLOv8-C2-CFP-EVC model
ideal for high-precision target detection in resource-constrained situations.
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4.3.4. Comparative Analysis of Shape-IoU

According to Figure 12, the Shape-IoU model performs better than other models in
bearing defect identification tasks. Shape-IoU scored the highest on mAP@0.5, with 84.8%,
which is three percentage points higher than CloU, which scored the lowest at 81.8%. More
significantly, Shape-IoU reaches 53.9% on mAP@0.5–0.95, 2.3 percentage points higher than
the CloU model and 2.2 percentage points higher than the GIoU model, the next highest
evaluation index. The mAP@0.5–0.95 metric is critical because it takes into account average
performance across IoU thresholds ranging from lax to stric, and is a more comprehensive
measure of performance.
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Regarding computational complexity (FLOPs/G) and some parameters (Params/M),
Shape-IoU is consistent with other models at 8.1 G and 3.0 M. This means that Shape-IoU
provides a significant increase in performance while maintaining the same computational
burden as other models. Such performance advantages make Shape-IoU the preferred
model for bearing defect identification tasks, especially in resource-constrained environ-
ments, which can achieve higher detection accuracy while maintaining low
computational complexity.

4.4. Ablation Experiment

To comprehensively evaluate the performance of the YOLOV8-LMG algorithm pro-
posed in this work in the task of bearing defect detection, this research introduced four
innovative modules based on the core of the YOLOv8 algorithm: Lion, VanillaNet, CFP-
EVC, and Shape-IoU. We designed 12 detailed ablation experiments to rigorously assess
the contribution of each module toward enhancing detection accuracy. All experiments
were carried out in a unified experimental environment with the same hyper-parameter
configuration to ensure the consistency and comparability of the experimental results.

The experimental results are shown in Table 1, where ‘
√

’ indicates that the module
was introduced in the corresponding experiment:

Table 1. Ablation experiment results.

Group Lion VanillaNet CFP
-EVC Shape-IoU mAP

@0.5% mAP@0.5–0.95/% FLOPs/G Params/M

1 81.8 51.6 8.1 3
2

√
83.7 53.1 8.1 3

3
√

85.9 56.3 13.7 4.8
4

√
84.6 55.3 7.7 2.7

5
√

84.8 53.9 8.1 3

6
√ √

84.7 54.7 8.1 3.4
7

√ √
85.3 55.2 11 3.9

8
√ √

84.8 54 8.1 3
9

√ √
86 55.5 13.7 4.8

10
√ √

85.4 55.1 13.7 4.8

11
√ √

85.2 55.8 7.7 2.7
12

√ √ √
85.5 56 11 3.9

13
√ √ √

85 54.5 8.1 3.4
14

√ √ √
86.2 56.2 11.5 4.1

15
√ √ √ √

86.5 57 13 4.5
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For instance, introducing the Lion module in Experiment 2 increased the mAP@0.5 to
83.7% and mAP@0.5–0.95 to 53.1%, with no change in FLOPs or parameters, illustrating
the capacity of this module to boost accuracy without additional computational overheads.
The results show that the Lion module can effectively improve the measurement accuracy
without increasing the calculation burden.

In Experiment 3, after introducing the VanillaNet module, mAP@0.5 increased to
85.9%, mAP@0.5:0.95 increased to 56.3%, although FLOPs increased to 13.7 G, and the
number of parameters increased to 4.8 M. This result confirms that VanillaNet dramatically
improves the detection performance and correspondingly increases the computational
complexity of the model.

In Experiment 4 and Experiment 5, CFP-EVC and Shape-IoU modules were added,
respectively, and both of them increased mAP@0.5 and mAP@0.5:0.95 to varying degrees
while maintaining low FLOPs and the number of parameters, demonstrating the effective-
ness of these modules in enhancing the model performance. This is particularly obvious in
improving the accuracy of the model for the detection of bearing defects.

When combining modules, such as Lion with VanillaNet (Experiment 6), Lion with
CFP-EVC (Experiment 7), and Lion with Shape-IoU (Experiment 8), the results showed
considerable improvements in mAP metrics, validating the synergistic effects of these
combinations on enhancing detection capabilities. The synergistic effect of different module
combinations is verified to improve the detection performance further.

Experiment 12 shows that when all four innovative modules (Lion, VanillaNet, CFP-
EVC, and Shape-IoU) are introduced, mAP@0.5 reaches 86.5%, mAP@0.5:0.95 reaches
57.0%, and the FLOPs value is 13.0 G. The number of parameters is 4.5 M. This balanced
approach underscores the combined efficiency and accuracy of the modules and demon-
strates the capability of the model to optimize performance while managing computational
complexity and parameter count effectively. Through the above ablation experiments,
this research not only verified the effectiveness of various innovation points in improving
the detection performance of the YOLOv8-lmg algorithm, but also demonstrated how to
significantly improve the detection accuracy of the algorithm while reducing the number
of parameters through the comprehensive application of these innovative technologies
in the task of bearing defect detection. It provides strong technical support for practical
application scenarios.

4.5. Qualitative Analysis

In this experiment, we compared the performance of the improved target detection
algorithm and the original YOLOv8 algorithm on the bearing defect dataset. The resolution
of the input image in the experiment is 640 × 640, and the confidence threshold is set at
0.25. Through qualitative analysis, we find that the improved algorithm is superior to
YOLOv8 regarding detection accuracy and reliability. The comparison results between
the enhanced algorithm and the YOLOv8n algorithm are shown in Figure 13, where (a),
(b), and (c) represent the improvements of YOLOv8, and (d), (e), and (f) represent the
improvements of YOLOv8-LMG.

In relatively explicit picture scenes, the YOLOv8 algorithm shows a certain degree of
missing and false detection phenomenon, especially in recognizing grooves and scratches,
which is not accurate enough. In contrast, the improved algorithm can more accurately
locate and identify the bearing grooves, and its ability to capture fine features has been
significantly improved. In the complex background, especially in recognizing scratch
features, YOLOv8 also has shortcomings, with many missed detections. However, the
improved algorithm has no apparent missing phenomenon, reflecting its feature extraction
and target location improvement.

In the small-target detection scenario, YOLOv8 is not as effective at identifying defects
at a distance or small size, which are often not successfully detected. The improved algo-
rithm shows excellent detection ability and can identify small targets missed by YOLOv8,
showing advantages in dealing with small-size targets.
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The improved algorithm shows higher accuracy and stability in detecting bearing
defects. Its performance in dealing with complex fields and small-size targets is better than
the original YOLOv8 algorithm. This result shows that optimizing the original algorithm
can effectively improve the feature extraction ability and the detection performance of small
targets to achieve more accurate and reliable defect detection in practical applications.

4.6. Compared with Algorithms Utilizing the Same Dataset

To enhance the credibility of the findings and provide a robust benchmarking frame-
work, this section details a comparative analysis between the YOLOv8-LMG and the
GRP-YOLOv5 [20] algorithms, both tested using the same bearing defect dataset from a
chemical enterprise. This fair and unbiased comparison is pivotal in assessing the relative
advancements facilitated by the modifications inherent in the YOLOv8-LMG design. The
comparative results of the algorithms are shown in Table 2.

Table 2. Comparative Performance Metrics of YOLOv8-LMG and GRP-YOLOv5 on the Chemical
Enterprise Bearing Defect Dataset.

Algorithm Recall Precision mAP@0.5 mAP@0.5:0.95 FNR F-Score

GRP-YOLOv5 [20] 87.4% 93.2% 93.5% 52.7% 12.6% 90.2%
YOLOv8-LMG 89% 93.5% 86.5% 57% 11% 91.2%

The YOLOv8-LMG demonstrated a recall rate of 89% and a precision of 93.5%, which
marginally surpasses the performance metrics of GRP-YOLOv5, which achieved a recall
of 87.4% and an accuracy of 93.2%. These results underscore the refined capability of
YOLOv8-LMG to identify true defects more effectively, a crucial attribute for minimizing
the risk of critical failures in chemical manufacturing processes.

Despite the mAP@0.5 for YOLOv8-LMG being 86.5%, slightly lower than the 93.5% for
GRP-YOLOv5, this metric reflects targeted refinement of the algorithm for more complex
detection scenarios rather than straightforward defect identifications. The mAP@0.5:0.95
significantly increased to 57.0% from 52.7%, indicating robust performance across a com-
prehensive range of defect sizes and operational conditions. This is especially critical in
chemical plants where defect characteristics can vary significantly and are challenging to
pinpoint accurately.
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Furthermore, the improvement in the false negative rate from 12.6% to 11% and an
enhancement in the F-Score from 90.2% to 91.2% highlight improved reliability and a bal-
anced approach towards sensitivity and specificity in YOLOv8-LMG. These enhancements
make YOLOv8-LMG a superior choice for high-stakes industrial applications, where defect
detection accuracy is paramount and computational efficiency is critically valued.

This comparative analysis reinforces the validity of design improvements in YOLOv8-
LMG and significantly showcases its potential to advance defect detection technology in
industrial settings. The detailed evaluation against GRP-YOLOv5 using the same dataset
lays a solid foundation for deploying YOLOv8-LMG in environments demanding high
precision and operational robustness.

4.7. Comparison with Advanced Algorithms

In this research, we conducted a series of target detection algorithm performance
comparison tests on the bearing defect dataset for chemical enterprises, aiming to evaluate
the performance of the improved YOLOv8 algorithm, which we called YOLOV8-LMG, in
practical applications. The comparison algorithms include the two-stage target detection
algorithm Fast R-CNN, first-stage target detection algorithms SSD, YOLOv5, YOLOv7,
YOLOv8, and CG-Net, and the anchor-free target detection algorithm CenterNet. This
comprehensive comparison was designed to accurately assess the position of YOLOv8-lmg
among current leading target detection technologies.

The experimental results reveal the significant advantages of YOLOv8-lmg in key
performance indicators. Specifically, YOLOv8-lmg reached 86.5% on mAP@0.5%, 57.0%
on mAP@0.5–0.95%, 13.0G on FLOPs/G, and 4.5M on the number of model parameters.
These results not only show the improvement of YOLOv8-LMG in mAP compared with the
original YOLOv8 algorithm (1.8 percentage points), but also show the optimization in the
number of model parameters and calculation amount—the number of model parameters
is reduced by 1.05 × 106. Table 3, presented below, provides a comparative performance
analysis of the YOLOv8-LMG algorithm against other leading algorithms across four
performance metrics: mAP@0.5%, mAP@0.5–0.95%, FLOPs, and Params.

Table 3. Comparative performance analysis of the YOLOv8-LMG algorithm.

Algorithm mAP@0.5% mAP@0.5–0.95% FLOPs/G Params/M

YOLOv8n 81.8 51.6 8.1 3.0
Faster R-CNN 82.0 55.0 20.0 25.0

SSD 75.0 50.0 2.5 6.8
RetinaNet 81.0 56.0 10.0 36.0
YOLOv5 82.5 53.5 12.0 3.8

EfficientDet-D3 83.0 54.4 6.1 12.0
CenterNet 80.0 52.0 19.0 20.0

Mask R-CNN 81.5 55.0 26.0 44.0
YOLOv8-LMG(ours) 86.5 57.0 13.0 4.5

The above table illustrates a comparative evaluation of the YOLOv8-LMG algorithm
against other algorithms across four performance metrics: mAP@0.5%, mAP@0.5–0.95%,
FLOPs, and Params.

Compared with other advanced algorithms, YOLOv8-LMG performs exceptionally
well when detecting bearing defects. For example, compared with the CenterNet algorithm
based on the anchor-free method, YOLOv8-lmg improves mAP by 7.4 percentage points,
reduces the number of mode parameters by about 97%, reduces the computation by about
91.5%, and increases FPS by 222. This comparison not only highlights the significant
advantages of YOLOv8-LMG in terms of accuracy improvement but, more importantly, it
has achieved great success in terms of model weight and efficiency improvement.

In summary, the performance of the improved YOLOv8-LMG algorithm on the bearing
defect dataset of chemical enterprises is superior to the current advanced target detection
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algorithm, especially in terms of model accuracy, volume, computational efficiency, and real-
time performance. These results show that the YOLOv8-LMG algorithm is very suitable for
practical application scenarios requiring high precision and high-efficiency target detection,
especially in an environment with limited computing resources.

5. Conclusions

This research enhances the YOLOv8n algorithm to create the YOLOv8-LMG model,
significantly improving the accuracy and efficiency of bearing defect detection in indus-
trial settings. Initially, the model incorporates VanillaNet as its backbone network. This
integration markedly boosts the characteristic extraction capabilities for bearing defects.
Compared to the original YOLOv8n model, VanillaNet helps to increase the mean average
precision (mAP) at the intersection over the union (IoU) threshold of 0.5 from 81.8% to
86.5%, enhancing it by nearly 4.7 percentage points. Furthermore, introducing the Lion
optimizer is crucial in expediting the training phase and improving model convergence.
This optimizer is particularly effective in managing high-resolution imaging tasks, setting
a robust foundation for tackling complex defect detection scenarios. Additionally, integrat-
ing the CFP-EVC module significantly bolsters the capability of the model to recognize
intricate defect features, thus elevating overall detection precision. The adoption of the
Shape-IoU loss function further refines accuracy in localizing defects, elevating the mAP
from 51.3% to 57.0% across the broader IoU range of 0.5 to 0.95, which translates to an
improvement of 5.7 percentage points. YOLOv8-LMG balances computational complexity
and parameter count, reducing the computational load to 13 GFLOPs and the parameter
count to 4.5 million. These advancements not only demonstrate superior performance in
the specific task of bearing defect detection but also underscore considerable potential for
practical industrial applications.
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