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Abstract: Aqueous two-phase extraction (APTE) stands out as an environmentally friendly technique
for the separation of metal ions. The separation of Re (VII) and Mo (VI) in an aqueous solution was
investigated using a novel aqueous two-phase system (ATPS) consisting of isodecanol polyoxyethy-
lene ether (E-1006), ammonium sulfate, and water. A phase diagram of this system was developed,
and the effects of pH, temperature, extraction time, the concentrations of E-1006 and (NH4)2SO4, and
metal ions on the separation of Re (VII) and Mo (VI) were examined. The results show that at pH 7.0,
Mo (VI) had almost transformed into the (NH4)2SO4-rich phase, while Re (VI) was extracted into the
E-1006-rich phase. The increase in temperature induces a transition of Mo (VI) to the salt-rich phase,
which is unfavorable for the extraction of Re (VII). The increase in the concentrations of E-1006 and
(NH4)2SO4 has a positive effect on the separation of rhenium and molybdenum. Overall, the ATPS
consisting of 200 g/L of E-1006, 200 g/L of (NH4)2SO4, and water yields an extraction efficiency of
97.2% for Re and a high separation factor of 2700 for Re (VII) and Mo (VI) from a mixture of 0.1 g/L
of Re (VII) and 5 g/L of Mo (VI) at pH 7.0 and 323.15 K. Separation studies of the simulated leaching
solution show that the extraction efficiency for Re (VI) is 99.1% and the separation factor of Re (VII)
and Mo (VI) is 5100.

Keywords: aqueous two-phase system; phase equilibrium; rhenium-molybdenum separation; E-1006

1. Introduction

Molybdenum has excellent electrical and thermal conductivity and a melting point
of up to 2620 ◦C [1], and it can be used as an important alloy additive [2], significantly
improving the toughness and high-temperature strength of a material. Rhenium is an ultra-
high-melting-point metal with a melting point of up to 3180 ◦C. Rhenium also has excellent
stability, high-temperature elasticity, and ductility. The production of high-performance
alloys, nanomaterials, and catalysts cannot be achieved without the addition of rhenium.
In addition, molybdenum and rhenium are important raw materials for aerospace and
national development [3].

Due to the similar ionic radii of Re4+ and Mo4+, rhenium usually exists in the form
of analogs in sulfide deposits such as molybdenite and copper ores. The rhenium content
in molybdenite is relatively high and has a certain economic recovery value. Therefore,
the separation and enrichment of molybdenum and rhenium in the leaching solution
of molybdenite after ammonia leaching treatment is the key to obtaining rhenium and
molybdenum resources. Currently, there are many methods for separating rhenium and
molybdenum from a leaching solution, such as solvent extraction [4,5], ion exchange [6–8],
and membrane separation [9–11]. Due to its advantages in terms of easily operable equip-
ment and high selectivity, solvent extraction technology [2,5,12] stands out as the most
widely used tool for this application. Commonly used extractants in the hydrometallurgical
industry with respect to rhenium and molybdenum include organophosphorus extractants,
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as well as amine extractants, such as TBP, P204, Cyanex 27 [13], TOA, N263, etc. Aifei
Yi et al. [4] studied the extraction and separation of rhenium and molybdenum from the
alkaline leaching solution of a waste-based high-temperature alloy using N263 as the ex-
tractant, and the extraction efficiency for Re reached 99% when O/A was 1/30 and under
the first extraction condition. In the extraction of rhenium from acid chloride solutions
using Cyanex 923, the extraction efficiency for Re can reach 99.2% [14]. Alamine 336 and
TBP were used to synergistically extract perrhenate from an industrial leaching solution, in
which the leaching solution was an acidic leaching solution of sulfuric acid and ammonium
persulfate, and the separation efficiency for perrhenate reached more than 99.90% after
a four-stage countercurrent extraction [15]. Solvent extraction has achieved good results
in the separation and enrichment of rhenium and molybdenum. However, the tradition-
ally used solvent extraction solution leads to the loss of organic solvents, environmental
pollution, and adverse effects on human health.

Aqueous two-phase extraction (ATPE) is a promising alternative to hydrometallurgical
processes for the selective extraction of metals since it does not involve organic solvents
and is simple to perform. In ATPE, the differences in solute partition coefficients between
the two phases caused by salting-out, intermolecular spatial hindrance, and external
environments are used to achieve the selective separation of solutes. The hydrophobicity
of polymers formed by an aqueous two-phase system (ATPS) enhances the interaction of
the alkali component with the polymer phase. In the same way, the salting-out effect can
further distinguish the phases, which may favor the distribution of the solute to the phase
of greater affinity [16]. This method has been successfully studied for the extraction of
Mo [17], the separation of molybdenum and vanadium [18], and the separation of other
ions [19]. Li Ruisi et al. [20] used an ATPS consisting of the nonionic surfactant Triton X-100
and Na2SO4 to investigate the extraction separation effect of tungsten and molybdenum in
an aqueous solution when no extractant was added, and the separation factor of tungsten
and molybdenum was up to 328 at a pH 2.0, 343.15 K, and a mass fraction of sodium
tartrate as a complexing agent of 3%. Daniela da Silveira Leited et al. [21] investigated the
selective extraction of copper and cobalt from spent lithium-ion batteries via ATPS, and the
optimal conditions resulted in a separation coefficient of 3.22 × 102 for copper and cobalt.
However, little work has been reported for the separation of rhenium and molybdenum
via ATPS.

A novel ATPS consisting of isodecanol polyoxyethylene ether (E-1006), ammonium
sulfate, and water was constructed and applied for the separation of Re (VII) and Mo (VI).
The effects of pH, temperature, extraction time, E-1006 concentration, ammonium sulfate
concentration, and metal ion concentrations on the separation of Re (VII) and Mo (VI) were
investigated to explore the optimal process conditions for the separation of Re (VII) and
Mo (VI) from acidic solutions. This research can guide the separation of Re and Mo in
the industry.

2. Materials and Methods
2.1. Materials and Apparatus

The commercial nonionic surfactant (C2H4O)nC10H22O (E-1006), with an average
hydroxyl value of 132 (130–134), and ammonium perrhenate (NH4ReO4) with a purity of
0.99 (mass fraction, same as below) were purchased from Shanghai McLean Technology
Biochemistry Co., Ltd. (Shanghai, China). The chemical structure of E-1006 is shown in
Figure 1. Ammonium sulfate ((NH4)2SO4) with a purity of 0.99 and ammonia solution
(NH4 OH) with a purity of 0.25–0.28 were supplied by China National Pharmaceutical
Group Chemical Reagent Co., Ltd. (Shanghai, China). Ammonium molybdate tetrahy-
drate ((NH4)6Mo7O24·4H2O) with a purity > 0.99 and sulfuric acid (H2SO4) with a purity
of 0.95–0.97 were provided by Chengdu Kelong Chemical Co., Ltd. (Chengdu, China).
Either NH4OH and H2SO4 were used to adjust the pH of aqueous solutions. The inor-
ganic chemicals used were of analytical grade. All the water used in the experiment was
deionized water.
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Figure 1. E-1006 chemical structural formula.

An analytical balance (AUY220, SHIMADZU, Kyoto, Japan) was used for weight-
ing the reagents. The pH and conductivity measurements were carried out with a pH
meter (PHS-3C, Shanghai Leici Instrument Co., Ltd., Shanghai, China) and a conduc-
tometer (DDS-307, Shanghai Leici Instrument Co., Ltd., Shanghai, China), respectively.
A constant-temperature-heating magnetic stirrer (DF-101S, Gongyi Chuangyuan Instru-
ment Manufacturing Co., Ltd., Zhengzhou, China) was used to stir the mixture of Re-Mo
solution and ATPS. Then, phase separation was achieved via heating separation in a digital-
display-equipped constant-temperature water bath pot (WB100-6, Qun’an Instrument Co.,
Ltd., Huzho, China). The concentrations of Re (VII) and Mo (VI) were quantified using
Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES, ThermoFisher USA,
Inc., Waltham, MA, USA, U.S.ICAP 6300 Radial, for which the RF power was 1300 W; the
flux of auxiliary air was 0.2 L·min−1; the flux of carrying air was 0.7 L·min−1; the pump
speed was 1.0 r·min−1; and the method of observing plasma was automatic). Fourier
transform infrared spectrometry (FTIR, PerkinElmmer company, Waltham, MA, USA) was
employed to analyze the changes in the chemical structure and functional groups of E-1006.
The change in particle size of the E-1006-rich phase was determined using the Nano ZS90
dynamic light-scattering instrument (DLS, Malvern Instruments, Malvern, UK).

2.2. Experimental Methods
2.2.1. Phase Diagram of the ATPS

Liquid–liquid equilibrium data were obtained for an ATPS consisting of different
concentrations of aqueous solutions of E-1006 and (NH4)2SO4. The bimodal curve, which
divides a region of component concentrations that will form two immiscible aqueous
phases, was obtained using the gravimetric method. At a certain temperature, a 40 g
solution mixture was vigorously stirred in a magnetic stirrer for 30 min and then deposited
in a thermostatic bath with a graduated test tube for 10 h. Samples of the top and bottom
phases were collected to determine the mass fractions of E-1006 and (NH4)2SO4.

The concentration of (NH4)2SO4 was determined by measuring conductivity within
a linear range of (NH4)2SO4 concentrations; further, we obtained the mass fraction of
(NH4)2SO4, for which the conductivity of the salt solutions was independent of the polymer
composition. The mass fraction of water was calculated based on the water lost from the
oven-dried specimen, and then the mass fraction of E-1006 was obtained. Utilizing the
obtained data, a phase diagram was constructed, with the mass fraction of (NH4)2SO4 on
the horizontal axis and the mass fraction of E-1006 on the vertical axis.

2.2.2. Re-Mo Separation

The separation of Re (VII) and Mo (VI) in ATPS was investigated as a function of
pH (1.0 to 7.0), temperature (303.15 K to 333.15 K), concentrations of E-1006 (cE-1006) and
(NH4)2SO4 (c(NH4)SO4) (50 g/L to 200 g/L), Re (VII) concentration (cRe) (0.01 g/L to 0.1 g/L),
and Mo (VI) concentration (cMo) (2 g/L to 10 g/L). Stock solutions of (NH4)2SO4, Re
(VII), and Mo (VI) were prepared using ammonium sulfate, ammonium perrhenate, and
ammonium molybdate tetrahydrate, respectively.

For the extraction experiment, volumes of (NH4)2SO4, Re (VII), and Mo (VI) stock
solutions were mixed, adding a certain amount of deionized water and E-1006 to achieve a
total volume of 40 mL. The pH of the solution was adjusted by adding the required amount
of sulfuric acid and ammonia solution. At a certain temperature, the beaker containing the
solution mixture was vigorously stirred in a magnetic stirrer for 20 min and placed in a
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thermostatic bath with a graduated test tube for 2 h. The scheme of the Re-Mo separation is
shown in Figure 2. The volumes of the top and bottom phases were recorded, and samples
of the (NH4)2SO4-rich phase were collected. The samples were diluted for measuring the
cRe and cMo via ICP-OES.
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The concentration of metal ions in the E-1006-rich phase, the distribution coefficient
(D) and extraction efficiency (E) in the E-1006 phase, and the separation factor (S) of the
aqueous two-phase extraction process are defined as follows:

c1 =
m − V2c2

V1
(1)

D =
c1

c2
(2)

E =
c1V1

m
× 100% (3)

SRe/Mo =
DMo
DRe

(4)

where c1 and c2 represent the concentrations of metal ions in the E-1006-rich aqueous phase
and the (NH4)2SO4-rich aqueous phase, respectively. V1 and V2 are the respective volumes
of the E-1006-rich aqueous phase and the (NH4)2SO4-rich aqueous phase. m represents the
mass of metal ions added to the system.

3. Results and Discussion
3.1. Phase Diagrams

The ternary mixtures of surfactant, salt, and water, upon reaching thermodynamic equi-
librium, cause exclusion among the components, resulting in the formation of two phases.
Phase diagrams can explain the solute separation behavior of ATPS during the extraction
process. A phase diagram of the ATPS formed by E-1006 and (NH4)2SO4 at 313.15 K is
shown in Figure 3. The good water solubility of E-1006 is mainly dependent on the hydro-
gen atoms in the water molecules connecting with the C–O–C groups on E-1006 to form
hydrogen bonds and rapidly fuse with water [22]. The salting-out action of (NH4)2SO4
breaks the above hydrogen bonds, leading to the dehydration of E-1006 [23]. In an ATPS,
the content of E-1006 and (NH4)2SO4 increases, that of the binodal curve is closer to the
x-axis, and the tie-line length is longer, indicating a stronger ability for phase separation.

Temperature is an important factor affecting phase separation in ATPSs [24]. In this study,
we investigated the phase equilibria of the ATPS in question at temperatures of 303.15 K,
313.15 K, and 323.15 K. The results are shown in Figure 4 and Supplementary, where it is
shown that an increase in the temperature promotes an increase in larger biphasic regions [25].
This phenomenon can be explained by the enhanced irregular thermal motion of the molecules,
the breakage of the hydrogen bonds between E-1006 and water molecules, and the decrease
in the solubility of E-1006 in water, leading to an increase in the content of E-1006 in the upper
phase and an increase in the content of salt in the lower phase. The area of the biphasic region
increased, indicating that the increase in temperature promotes phase separation.
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3.2. The Separation of Re (VII) and Mo (VI)
3.2.1. Effect of pH

The morphology of Re (VII) and Mo (VI) present in solution varies considerably at
different pH levels, as does the water solubility of the ions. The distribution of Re (VII) and
Mo (VI) in this system is significantly influenced by pH. The separation of Re (VII) and
Mo (VI) was studied at different pH levels using an ATPS consisting of 100 g/L of E-1006
and 100 g/L of (NH4)2SO4, and the feed consisted of 0.1 g/L of Re (VII) and 5 g/L of Mo
(VI). The temperature was maintained at 313.15 K. Figure 5 shows the variation in ERe, EMo,
and the SRe/Mo with respect to pH from 1.0 to 7.0. One can see that the ERe increases from
71.44% to 83.60% as the pH increases from 1.0 to 2.0. A further increase in pH to 7.0 results
in a slight increase in ERe. On the other hand, the EMo reaches a maximum at pH 2.0, and
most of the Mo (VI) is distributed in the (NH4)2SO4-rich phase at pH 7.0. The SRe/Mo is
very low at higher acidity levels, but it experiences a great increase as pH rises, reaching a
maximum value of 129.67 at pH 7.0.

Accompanied by the formation of the ATPS, the system was divided into a hydropho-
bic phase, where E-1006 is located, and a hydrophilic phase, where (NH4)2SO4 is located.
The Fourier Transform Infrared Spectroscopy (FTIR) analysis results (Figure 6) show that
the characteristic absorption peak at a wavenumber of 1100 cm−1 corresponds to the
ether bond (C–O–C) in the molecular structure of E-1006 [26]. The position of this peak
is 1100 cm−1 in pure E-1006 and 1099 cm−1 in E-1006 at pH 7.0. There is no obvious shift,
which suggests that the addition of ammonia does not significantly affect the vibration of
the ether bond. Noteworthily, the absorption peak of the ether bond is 1091 cm−1 after the
separation of Re (VII) and Mo (VI). The slight redshift of the characteristic peak of C–O–C
after extraction suggests the presence of a specific force between the E-1006 molecule and Re
(VII) during the extraction process. The characteristic absorption peaks at 2860–3000 cm−1

were attributed to the C–H bond [27]. The significant change in the C–H characteristic
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absorption peaks after the extraction of Re (VII) can be attributed to the alteration of the
environment surrounding the C–H bond in the E-1006 molecule, resulting in a shift in its
vibrational state. In addition, the broad peak at 3000–3800 cm−1 represents the absorption
peak of the hydroxyl group (–OH) [28]. The curves in Figure 6a,b demonstrate that the
weak absorption peaks in this region for pure E-1006 and E-1006 at pH 7.0 correspond to
the presence of hydroxyl groups in the molecular structure of E-1006. Corresponding to
the period after the extraction of Re (VII), the curve in Figure 6c shows that the absorption
peak of –OH in the E-1006-rich phase is significantly enhanced and encompasses lower
wavenumbers. This indicates the presence of a hydrogen-bonding network, possibly due
to the presence of specific water molecules in the E-1006-rich phase after the extraction.
Meanwhile, the curve in Figure 6c shows a significant enhancement of the –OH bending
vibrational peak at ~1600 cm−1 compared with that in Figure 6a,b, which also supports
this conclusion.
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According to the distribution diagram of Re (VII) [14], Re (VII) primarily exists as
ReO4

− with strong hydrophobicity [29] in the pH range of 0–13. The forms of Mo (VI),
along with the calculated ratios of charge, mass, and charge density at different pH levels,
are shown in Table 1 [30]. |z| denotes the absolute value of ion charge, n is the atomic
number of an ion, and M is molar mass. |z|/M is charge density. At pH ≥ 7.0, Mo exists
mainly in the form of MoO4

2−, which has a relatively large value of charge density, that is,
0.0125, and a higher hydrophilicity. Importantly, at pH 7.0, the hydrophobicity of ReO4

− is
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responsible for the extraction into the E-1006 phase, and MoO4
2− remains in the salt-rich

phase due to its hydrophilicity, realizing an efficient separation of Re (VII) and Mo (VI).

Table 1. The ratio of charge, mass, and charge density of Mo (VI) at different pH levels.

pH <1.8 <2.5 <4 <5 <7 >7

Species MoO2
2+ H2Mo7O24

4− HMo7O24
5− Mo7O24

6− Mo2O7
2− MoO4

2−

|z|/n 0.6667 0.1212 0.1562 0.1935 0.2222 0.4000
|z|/M 0.01562 0.003774 0.004726 0.005682 0.006579 0.01250

Therefore, the initial pH of the solution should be adjusted to 7.0 first for the APTE of
Re (VII) and Mo (VI). The pH in the subsequent experiments was set to 7.0.

3.2.2. Effect of Temperature

In the exploration of ATPS phase equilibrium, temperature is closely related to phase
separation. The effect of temperature, ranging from 303.15 to 333.15 K, on the ERe, EMo, and
SRe/Mo is shown in Figure 7.
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Both ERe and EMo decrease with temperature. The ERe is favored at low temperatures,
as demonstrated by the ERe at 298.15 K that is close to 87%. The increase in temperature
promotes the transfer of the more-hydrophilic MoO4

2− to the (NH4)2SO4-rich phase. The
SRe/Mo shows a tendency to increase and then decrease, with a peak value of 139.37 at
323.15 K [31].

3.2.3. Effect of cE-1006

cE-1006 affects the number of micelles formed in an ATPS and plays a crucial role in the
separation effect of metal ions. To study the effect of cE-1006 on the separation of Re (VII)
and Mo (VI), ATPSs composed of different concentrations of E-1006 in the range of 50 g/L
to 200 g/L were prepared and mixed with 100 g/L of (NH4)2SO4 at pH 7.0 and 313.15 K, as
depicted in Figure 8.

With the increase in cE-1006 from 50 g/L to 200 g/L, the ERe increases from 60.71% to
93.66%, and the SRe/Mo increases from 25.03 to 514.24, which can be attributed to the greater
number of micelles colliding with each other, prompting more ReO4

− to be solubilized into
the micelles of the E-1006 phase [30]. The increase in micelles makes the E-1006 phase more
hydrophobic and promotes the transformation of MoO4

2− into the salt-rich phase [32].
While an increase in cE-1006 generally favors the separation of Re (VII) and Mo (VI), it is
essential to consider the drawbacks of excessive concentrations. High concentrations can
lead to emulsification of the solution, posing challenges for subsequent treatment processes.
The suitable cE-1006 was determined to be 200 g/L, taking into account the favorable SRe/Mo
and the economic cost of the agent.



Separations 2024, 11, 142 8 of 13

Separations 2024, 11, x FOR PEER REVIEW 8 of 14 
 

 

300 310 320 330
0

20

40

60

80

100

E(
%

)

T(K)

 ERe

 EMo

0

30

60

90

120

150

 SRe/Mo 

S

 
Figure 7. Effect of temperature on the 𝐸 , 𝐸 , and 𝑆 / . 

3.2.3. Effect of 𝑐E-1006 
cE-1006 affects the number of micelles formed in an ATPS and plays a crucial role in 

the separation effect of metal ions. To study the effect of cE-1006 on the separation of Re 
(VII) and Mo (VI), ATPSs composed of different concentrations of E-1006 in the range of 
50 g/L to 200 g/L were prepared and mixed with 100 g/L of (NH4)2SO4 at pH 7.0 and 313.15 
K, as depicted in Figure 8. 

50 80 100 120 150 180 200
0

20

40

60

80

100

E 
(%

)

cE-1006(g/L) 

 ERe

 EMo 

0

100

200

300

400

500

600

 SRe/Mo

S

 
Figure 8. Effect of cE-1006 on the ERe, EMo, and SRe/Mo. 

With the increase in cE-1006 from 50 g/L to 200 g/L, the ERe increases from 60.71% to 
93.66%, and the SRe/Mo  increases from 25.03 to 514.24, which can be attributed to the 
greater number of micelles colliding with each other, prompting more ReO4− to be solu-
bilized into the micelles of the E-1006 phase [30]. The increase in micelles makes the E-
1006 phase more hydrophobic and promotes the transformation of MoO42− into the salt-
rich phase [32]. While an increase in cE-1006 generally favors the separation of Re (VII) and 
Mo (VI), it is essential to consider the drawbacks of excessive concentrations. High con-
centrations can lead to emulsification of the solution, posing challenges for subsequent 
treatment processes. The suitable cE-1006 was determined to be 200 g/L, taking into ac-
count the favorable SRe/Mo and the economic cost of the agent. 

The changes in particle size and zeta potential of the E-1006-rich phase were analyzed 
using dynamic light scattering (DLS) to speculate on the possible mechanism of the tran-
sition of Re (VII) into the E-1006-rich phase [33,34]. Figure 9 shows a micelle size analysis 
of the E-1006 phase, where the two lines are the micelle sizes in the aqueous solution of E-
1006 and the aqueous solution of the E-1006 phase after Re (VII) extraction, respectively. 
The particles of the E-1006 micellar phase after Re (VII) extraction are larger. Table 2 shows 
the potential change of the E-1006 phase. Sample 1 is the E-1006 aqueous solution, sample 

Figure 8. Effect of cE-1006 on the ERe, EMo, and SRe/Mo.

The changes in particle size and zeta potential of the E-1006-rich phase were analyzed
using dynamic light scattering (DLS) to speculate on the possible mechanism of the transi-
tion of Re (VII) into the E-1006-rich phase [33,34]. Figure 9 shows a micelle size analysis of
the E-1006 phase, where the two lines are the micelle sizes in the aqueous solution of E-1006
and the aqueous solution of the E-1006 phase after Re (VII) extraction, respectively. The
particles of the E-1006 micellar phase after Re (VII) extraction are larger. Table 2 shows the
potential change of the E-1006 phase. Sample 1 is the E-1006 aqueous solution, sample 2
is the E-1006 aqueous solution at pH 7.0, and sample 3 is the E-1006 aqueous solution
after Re-Mo separation at pH 7.0. The average zeta potential of the E-1006 micellar phase
(0.110 mV) is slightly positive at pH 7.0 and becomes negative (−1.23 mV) after Re (VII)
extraction, which can be attributed to ReO4

− diffusing into the hydrophobic environment
inside the E-1006 micelles due to its strong hydrophobicity [14,20].
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Figure 9. Particle size analysis of micelles in the E-1006 phase.

Table 2. Potential changes in the micellar phase of E-1006.

Sample Number Zeta Potential (mV)

1 −0.642
2 0.110
3 −1.230

3.2.4. Effect of c(NH4)SO4

Under specific conditions involving the addition of inorganic salts, the E-1006 aqueous
solution undergoes phase separation [35]. However, at low salt concentrations, the exper-
imental system fails to form distinct phases. On the premise of ensuring the formation of
different phases, the addition of (NH4)2SO4 was explored, ranging from 50 g/L to 200 g/L.
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Figure 10 presents the effect of c(NH4)SO4 on the separation of Re (VII) and Mo (VI), indicating
that c(NH4)SO4 has an important influence on the separation of Re (VII) and Mo (VI).
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As shown in Figure 10, as the amount of c(NH4)SO4 increases from 50 g/L to 200 g/L, the
ERe increases from 75.92% to 93.39%, and the SRe/Mo rises from 49.35 to 655.90. (NH4)2SO4
is a kosmotropic salt, and its free energy of hydration is large ( in terms of the absolute
value) [32]. Its salting-out ability is strong and becomes stronger with an increasing concen-
tration, which results in a decreasing free water concentration, creating a more chaotropic
polymolybdate anion dehydrate and increasing the number of micellar aggregates [36].
The difference in hydrophilicity between the two phases is larger, promoting the transi-
tion of ReO4

− to the E-1006-rich phase, while MoO4
2− is more prone to transition to the

(NH4)2SO4-rich phase. The selection of 200 g/L c(NH4)SO4 is a suitable condition for the
effective separation of Re (VII) and Mo (VI).

3.2.5. Effect of cRe and cMo

The effects of cRe, ranging from 0.01 g/L to 0.1 g/L, and cMo, ranging from 2 g/L to
10 g/L, on the separation of Re (VII) and Mo (VI) were investigated. To specifically assess
the influence of the initial cMo, the cRe was maintained at 0.1 g/L, while for studying the
impact of the initial cRe, cMo was held constant at 5 g/L. The obtained results are shown in
Figure 11 and Figure 12, respectively.
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Figure 11 shows that an increase in cRe  has a negligible effect on ERe , while ERe 
tends to decrease. SRe/Mo decreases as cRe increases. Figure 12 shows the effect of the ini-
tial cMo on the separation of Re (VII) and Mo (VI). It is clear that cMo has a negligible effect 
on EMo, but ERe increases with an increasing Mo (VI) concentration. At pH 7.0, MoO42− is 
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Figure 11 shows that an increase in cRe has a negligible effect on ERe, while ERe tends
to decrease. SRe/Mo decreases as cRe increases. Figure 12 shows the effect of the initial cMo
on the separation of Re (VII) and Mo (VI). It is clear that cMo has a negligible effect on EMo,
but ERe increases with an increasing Mo (VI) concentration. At pH 7.0, MoO4

2− is highly
hydrophilic, and the increase in the Mo (VI) concentration has a promoting effect on the
transition of ReO4

− to the hydrophobic phase.
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3.2.6. Effect of Extraction Time

The extraction time greatly affects the extraction and separation of ions. In this section,
the results of the separation of Re (VII) and Mo (VI) in the ATPS are investigated at an
extraction time ranging from 15 min to 10 h. The results are shown in Figure 13.
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As can be seen in Figure 13, the extraction efficiencies and the separation factor of Re
(VII) and Mo (VI) in the E-1006-rich phase increase significantly in the range of 15 min to
2 h and increase very little from 2 h to 10 h. The Re (VII) transitions to the E-1006-rich phase,
and Mo (VI) transitions to the (NH4)2SO4-rich phase. The extraction tends to equilibrate at
2 h, and the separation factor of rhenium and molybdenum tends to stabilize. Thus, 2 h is
suitable for separation.

3.3. Separation of Re (VII) and Mo (VI) under Suitable Conditions

Based on the insights gained from the factors affecting the separation of Re (VII) and
Mo (VI), the separation result of the solution containing 0.1 g/L of Re (VII) and 5 g/L of
Mo (VI) under suitable conditions is outlined in Table 3. It indicated that ERe reached 97.2%,
and the SRe/Mo was 2700.

Table 3. Suitable conditions for separation behavior.

cE-1006/
g L−1

c(NH4)2SO4/
g L−1 pH Temperature/

K ERe/% EMo/% SRe/Mo

200 200 7.0 323.15 97.2 (±0.4) 1.3 (±0.1) 2700 (±200)
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The leaching solution used is from a molybdenum mine. cRe is 90–100 mg/L, cMo is
62–65 g/L, and the amount of free ammonia is 80–100 g/L. After the whole leaching solution
was diluted tenfold, the separation of Re (VII) and Mo (VI) in a simulated solution with 0.01 g/L
of Re (VII), 6 g/L of Mo (VI), and 8 g/L of free ammonia was investigated under the suitable
conditions. As shown in Table 4, ERe reached 99.1%, and the SRe/Mo was 5100, confirming the
efficient separation of Re (VII) and Mo (VI). In comparison to the methods proposed in Salehi
et al.’s study [12] and Aifei Yi et al.’s study [4], this method not only has a high extraction
efficiency but also a much higher separation factor than those in the cited studies.

Table 4. Separation results for Re (VII) and Mo (VI) in simulated leaching solution.

cE-1006/
g L−1

c(NH4)2SO4/
g L−1 pH Temperature/

K ERe/% EMo/% SRe/Mo

200 200 7.0 323.15 99.1 (±0.1) 2.1 (±0.2) 5100 (±400)

4. Conclusions

(1) A phase equilibrium diagram of the ATPS, composed of E-1006, (NH4)2SO4, and
water, was developed.

(2) The effects of pH, temperature, concentrations of ATPS components, and metal ions
on the separation of Re (VII) and Mo (VI) were investigated. The results show that
pH plays an important role in the separation of Re (VII) and Mo (VI). At pH 7.0, Mo
(VI) almost transitioned into the (NH4)2SO4-rich phase, while Re (VII) was extracted
into the E-1006-rich phase, and the separation factor of Re (VII) and Mo (VI) reached a
maximum of 129.67. The extraction efficiency of Re (VII) is higher at low temperatures.
The increase in temperature promotes the transition of Mo (VI) to the salt-rich phase,
and the separation factor of Re (VII) and Mo (VI) reaches a maximum of 139.37 at
323.15 K. The separation of Re (VII) and Mo (VI) is favored by increasing the concentra-
tions of E-1006 and (NH4)2SO4. An increase in the Re (VII) concentration decreases the
extraction efficiency of Re (VII). An increase in the Mo (VII) concentration promotes
the extraction of Re (VII) and Re-Mo separation.

(3) The suitable conditions for the separation of Re (VII) and Mo (VI) were achieved using
an ATPS composed of 200 g/L of E-1006, 200 g/L of (NH4)2SO4, and water at a pH 7.0
heated to 323.15 K for 2 h. A mixed solution of 0.1 g/L of Re (VII) and 5 g/L of Mo
(VI) was separated by the ATPS. The extraction efficiency of Re (VII) reached 97.2%,
and the separation factor of Re (VII) and Mo (VI) reached 2700. A diluted simulated
leaching solution consisting of 0.1 g/L of Re and 5 g/L of Mo was separated using the
ATPS. The extraction efficiency of Re (VII) reached 99.1%, and the separation factor of
Re (VII) and Mo (VI) reached 5100.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/separations11050142/s1, Table S1. Phase equilibrium data for the
ATPS of E-1006 and (NH4)2SO4 at different temperature.
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