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Abstract: In the present study, we report the solid-state isolation and structural characterization of
novel iron(III) complexes of the veterinary antibiotic monensin. Monensic acid (MonH × H2O) forms
a dinuclear complex of composition with FeCl3 [FeCl(Mon)2]2 (1), while its interaction with FeSO4

leads to the isolation of a triangular oxo-ferric coordination species [Fe3O(Mon × H2O)6(H2O)2(OH)]
(2). During the procedure resulting in 2, oxidation of the Fe(II) ions by atmospheric oxygen was
observed. In the presence of organic bases, both complexation reactions proceeded to successfully
deprotonate the carboxylic function of the ligand. Iron(III) complexes 1 and 2 were characterized by
IR, EPR, NMR, and Mössbauer spectroscopies as well as with thermal (TG-DTA/MS) and elemental
analyses. In addition, the structures of the two coordination compounds were modelled and selected
calculated parameters were compared with the experimental results. The biological assay revealed
the enhanced antibacterial potential of the newly obtained complexes against the Gram-positive
aerobic microorganisms Bacillus cereus and Bacillus subtilis.

Keywords: polyether ionophore; antibacterial iron(III) complexes; antiferromagnetism; DFT modelling

1. Introduction

Iron ions play a significant role in almost all living organisms [1]. They are vital
for transporting oxygen, activating various substrates, and assisting in electron transfer
reactions. Most of these processes occur due to the versatile coordination ability of both
Fe(II) and Fe(III). The chemistry and biochemistry of ferric complexes are well known and
have been subject to intensive reviewing over the years [2–5]. Iron(III) can form a wide
variety of structural arrangements ranging from mono- to polynuclear coordination species
with ligands involving diverse donor atoms and exhibiting different denticity. The liter-
ature overview reveals that a number of iron(III) complexes contain carboxylate ligands
and exist as di- or trinuclear coordination species. In the first category, the carboxylate
group participates as a terminal ligand in the formation of diamond-core Fe2(µ2-O)2 com-
plexes with hydroxide/alkoxide bridges or acts as a (µ-η1:η1)-link in both symmetric and
asymmetric di-iron species [6–16]. Although rare, acetate complexes of various metal ions
containing µ2-aqua or µ2-alcohol linkers are also known [17–25]. The trinuclear iron(III)
carboxylates can be found mainly as oxo-ferric complexes adopting the typical triangular
acetate structure [26–29]. In the above-mentioned constructs, three types of carboxylate
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coordination modes with respect to the isolated iron centre can be realised (Figure 1),
excluding the pure metal–ligand ionic bond: monodentate, bidentate, and bridging [30,31].
Which configuration will prevail in the corresponding coordination species depends on
many factors such as the overall ligand structure (i.e., the presence of other functional
groups), the reaction conditions, the solvent effect, the metal salt counterion, etc.
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In addition to the rich and diverse coordination chemistry of iron that makes it
suitable for a large variety of functions within biological systems [32], its metabolism was
found to be crucial also for the life cycle of cancer cells, triggering ferroptosis—a recently
described form of regulated cell death caused by iron-dependent lipid peroxidation [33].
The ferroptosis is driven by various mechanisms, including the following:

(i) glutathione level reduction and decreased activity of glutathione peroxidase, which
results in the deposition of harmful lipid-reactive oxygen species (L-ROS) from polyun-
saturated fatty acids in the presence of high concentrations of iron ions, thus promot-
ing cell death [34];

(ii) overexpression of transferrin receptor 1 (TFR1) and decrease in ferritin levels, since
the upregulation of TFR1 is detected in many malformations such as glioblastoma,
leukaemia, breast cancer, ovarian cancer, hepatic cancer, thyroid cancer, and colorectal
cancer [35];

(iii) Fenton reaction that strongly depends on the intracellular iron concentration and can
be a possible mechanism of ROS generation.

Ferroptosis has been suggested to be an endogenous anticancer mechanism providing
new opportunities in the treatment of drug-resistant tumours. In this sense, any natural
compound that can induce such regulated cell death can be treated as a potential anti-
cancer agent [36,37]. Recently, it was shown that some members of the natural carboxylic
polyether ionophores—salinomycin and ironomycin—accumulate in lysosomes, sequester
the lysosomal iron, and produce ROS in this organelle via Fenton reaction [38–40].

To gain deeper insight into the possible chemical interactions between polyether ionophores
and Fe(II)/Fe(III), we initiated targeted research on the coordination ability of monensin and
salinomycin (HL) to bind iron. Monensic acid (MonH, Figure S1) was selected as the most
widely applied antibiotic in veterinary medicine, and salinomycinic acid (SalH) was deemed
as a promising anticancer agent. Our first findings led to the isolation and characterization of
iron(III) monensinate and salinomycinate of composition [Fe3(µ3–O)L3(OH)4] [41]. Then, under
completely different reaction conditions, two new Fe(III) coordination compounds of monensin
were obtained with the involvement of the antibiotic carboxylate function in the complex formation.
The reported iron(III) complexes of monensin can be described as dinuclear chloro-containing (1)
and trinuclear oxo-ferric (2) coordination species. The experimental data reveal that the antibiotic
ligand serves in a pure monodentate/bidentate or in a bridged bidentate coordination mode, with
the involvement of a terminal alcohol group in the bidentate ones. Employing the experimental
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and theoretical chemistry tools, we were able to derive reliable structures of these new iron(III)
monensinates, combining various spectroscopies and the computational DFT method.

2. Results and Discussion
2.1. General Remarks

In the presence of organic bases (Et4NOH or Et3N), monensic acid effectively depro-
tonates and acts as a carboxylate monoanion in complexation reactions with metal ions of
different oxidation states [41–45]. Monensinate reaction with FeCl3 or FeSO4 leads to the
formation of new complexes which exhibit spectral properties characteristic of di- (1) and
trinuclear (2) coordination species of iron(III), respectively. In addition, the formation of 1 is
accompanied by co-precipitation of the mono-complex 1a (Figure S2). The complete set of
experimental data is significantly different from that previously reported for iron(III) monensi-
nate and salinomycinate [41], a fact indicating that we have prepared new ferric coordination
compounds of the polyether ionophore monensin. The isolated solids 1 and 2 are amorphous
without any sign of crystallinity, making their precise characterization difficult. The research
methodology for structure elucidation described below is based on a series of spectroscopic
techniques along with an appropriate computational chemistry protocol.

2.2. Physicochemical Properties of Complexes 1 and 2
2.2.1. Vibrational and Thermal Analysis

The IR spectra of 1 and 2 (Figure 2) reveal the deprotonation of monensin during
its reaction with iron ions. The band of MonH × H2O at 1710 cm−1 assigned to the
carboxylic group is replaced by two new bands at 1592 and 1419 cm−1 in the spectrum
of 1, attributed to the corresponding asymmetric and symmetric stretching vibrations
of the carboxylate function. The multicomponent band at 1592 cm−1 was fitted with
three Lorentzians (inset in Figure 1) thus assuming different coordination modes of the
carboxylate moiety in the solid sample of complex 1 [46]. The areas of the sub-bands (1) at
1594 cm−1 (FWHM = 66 cm−1) and (2) at 1554 cm−1 (FWHM = 46 cm−1) are almost equal
(ca. 45% for each component), whereas the area of sub-band (3) is noticeably smaller. It is
supposed that 1 comprises two main types of carboxylates whose ligation varies to some
extent due to the different values of ∆ = νasym − νsym, 175, and 135 cm−1, respectively.
The weak band at 1643 cm−1 (FWHM = 75 cm−1, ∆ = 224 cm−1) is attributed to the presence
of monensinate bound in another type of complex species. The latter probably exists as
an impurity in the solid sample rather than as a constituent of the intrinsic structure of 1.
As will be described further, this assumption is supported by the magnetic studies used for
structural characterization of 1.
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The spectrum of 2 also consists of two bands at 1527 and 1417 cm−1, but the significantly
smaller value of ∆ = 110 cm−1 points to a bridging coordination mode of the carboxylate
moiety. Complex 2 exhibits intense characteristic bands below 1000 cm−1 which are absent
in 1. These vibrations are assigned to the formation of Fe-OH (δFeOH = 1047 cm−1) and
Fe-O (νFeO = 430 cm−1) bonds, respectively. The bands in the range 4000–3000 cm−1, related
to asymmetric and symmetric stretching vibrations of OH-bonds in the water molecule
(3530–3460 cm−1), and νOH (3336 cm−1) in MonH × H2O, broaden in the spectra of 1 and 2
(3450–3470 cm−1) due to the OH-group’s engagement in various intramolecular interactions.

No intense endothermic peaks below 185 ◦C were observed in the TG-DTA/TG-MS
curves of complex 1 (Figure S3a), ruling out the presence of coordinated water molecule(s).
In contrast, the endothermic peak at 104 ◦C in 2 refers to a two-step water loss, which is an
indication of different types of water molecules present in the studied sample (Figure S3b).

Based on the IR and thermal data, combined with microanalysis results, it can be con-
cluded that (i) monensin is bound as a monoanion in the structures of 1 and 2; (ii) the molar
metal-to-antibiotic ratio is 1:2 in both complexes; (iii) species 1 contains additional chloride
ions, whereas a hydroxide anion and water ligands participate in the composition of 2.

2.2.2. Magnetic Studies

The EPR spectra of complexes 1–2 are registered in the temperature range from 77 K
(100 K) to 295 K (Figure 3). A general characteristic of the spectra at r. t. is the broad
signal with g = 2.02, attributable to iron(III) ions, confirming the oxidation of Fe(II) under
atmospheric conditions during the preparation procedure of 2.
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The peak-to-peak linewidth and intensity of the central signal (g = 2.02) in 1–2 show
a well-defined tendency towards signal broadening with temperature decrease. Such a
temperature dependence of the linewidth relates to an antiferromagnetic spin interaction
of the metal centres, which becomes stronger at low temperatures.

The relatively broad signal with g = 2.02 observed for 1 is attributed to magnetically
coupled Fe(III) ions [47]. It is accompanied by several extra signals which can be seen even
at room temperature with effective g-factor values ranging from 28.64 to 1.61, labelled on
Figure 3a. As the temperature decreases, the spectrum of 1 undergoes a transformation
in which the less pronounced set of signals turns narrower at 100 K and becomes the
main feature of the low temperature spectrum. On the other hand, the temperature
behaviour of the signal with g = 2.02 is reversed. The result is that at 100 K its intensity is
negligible compared with the intensities of the narrower lines set. Such a central field signal
broadening can be attributed to the presence of closely spaced iron ions bound by a suitable
ligand. Based on the composition data, we assume that chloride anions or hydroxyl groups
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of the monensinate may play the role of such a linker between two metal centres to witness
the observed EPR behaviour of 1.

The set of lines that dominates the low-temperature spectrum of sample 1 refers to
the fine structure of Fe3+ ions and its origin can be explained by allowed transitions with
∆ms = 1, although the existence of forbidden transition lines cannot be excluded either.
These signals are ascribed to isolated Fe(III) ions placed in an axial symmetry field [48]
and their presence can be attributed to the formation of the mono-complex 1a, whose
composition and structure will be discussed later. We could not eliminate 1a despite our
numerous attempts to purify the dinuclear complex. The presence of the assumed mono-
species 1a does not affect the overall elemental composition of 1. The results are consistent
with the IR-data, where the third weak band attributable to the asymmetric stretching of
COO− is assigned to the formation of a second type of coordination species present in a
minor quantity.

For sample 2 the signal at g = 2.02 is the main spectral characteristic over the entire
temperature range. The g-factor value remains constant in the whole temperature span
(Figure 3b). The negative Curie–Weiss constant (−608 ± 12 K) and the signal broadening
at low temperatures (95 mT at 295 K and 142 mT at 77 K) indicate the occurrence of
exchange-coupled iron(III) ions.

To obtain additional information on the binding mode of monensin in 1–2, we also
performed NMR analysis, which might be strongly affected by the presence of paramagnetic
ions, but in some cases can contribute to a deeper understanding of the properties of the
metal complexes. We were unable to adjust the NMR settings and record any spectra of
complex 2 using conventional NMR techniques, which may serve as indirect evidence that
the studied monensinate sample contains paramagnetic iron(III) cations.

To our surprise, we recorded r. t. NMR spectra of 1 in CDCl3 to observe a negligible
shift of the 13C signals compared with those of the uncoordinated monensic acid (Table S1)
at low sample concentration, while augmenting the concentration resulted in a significant
signal broadening. We hypothesized that a possible dissociation of the dinuclear iron(III)
complex may occur, inflicting structure breakdown under the solvent action [49]. To
confirm this, we also measured the EPR spectrum of the same solution at 120 K (Figure 4).
Experimental results reveal that there are relatively narrow signals (ca. 15–20 mT) with
g = 4.33 and 2.01, which can be attributed to isolated Fe3+ ions placed in a low and in an
octahedral symmetry, respectively [50]. The hump detected at 240 mT (as part of a broad
signal with g = 2.02) is attributed to the presence of exchange-coupled Fe(III) ions. EPR data
recorded both in solution and in the solid state confirm that 1 comprises different types
of coordination species. At the current stage of research, we cannot explain the negligible
effect of Fe(III) on monensin NMR signals, but it may be related to the lability/inertness
of the coordination species formed—a phenomenon that deserves further investigation,
which is beyond the scope of the present study.
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2.2.3. Mössbauer Studies

Monensin, as a representative of natural polyether ionophorous antibiotics, contains
only O-donor atoms, so we suppose that the iron ions involved in the composition of com-
plexes 1 and 2 will retain the high-spin configuration. Our hypothesis is confirmed by the
subsequent Mössbauer studies performed at both room and liquid nitrogen temperatures.

The Mössbauer spectrum of 1 at 293 K consists of two asymmetric quadrupole signals
that can be assigned to a minimum of two different types of iron ions. Consistent with the
EPR data suggesting the presence of di- and mono-species, we decomposed the observed
signals into three components by the least-squares fitting procedure (Figure 5a). Calcu-
lations reveal that two of the doublets (in 1:1 ratio, sub-spectra (1) and (2)) exhibit very
close isomer shifts (IS, δ = ca. 0.4 mm/s) and quadrupole splittings (QS, ∆ = ca. 0.7 mm/s)
(Table 1). The results are consistent with the presence of high-spin iron(III) ions placed in a
nearly identical octahedral environment [51] and corroborate previously reported data for
ferric dimers containing two OH-bridges [52,53]. The minor sub-spectrum (3) differs from
the rest, especially in the IS value. The doublet is assigned to the presence of mono-complex
1a and its low intensity agrees well with the IR and EPR data recorded. It can be concluded
that Fe(III) in 1a is placed in a ligand environment similar to that of 1, as no significant
change in its QS value is observed.
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Table 1. Mössbauer parameters for solid samples 1 and 2 at 293 K (and 77 K in parentheses).

Complex Component δ, mm/s ∆, mm/s Γ, mm/s A, % M, %

1
Db1 0.43 (0.60) 0.75 (0.75) 0.45 (0.45) 47 (48) 0.49 (1.48)
Db2 0.41 (0.61) 0.74 (0.79) 0.57 (0.52) 45 (47) 0.37 (1.29)
Db3 0.21 (0.40) 0.82 (0.75) 0.40 (0.40) 8 (5) 0.09 (0.19)

2
Db1 0.37 (0.57) 0.63 (0.62) 0.32 (0.31) 66 (64) 6.96 (8.41)
Db2 0.39 (0.58) 0.96 (1.00) 0.42 (0.38) 34 (36) 2.99 (3.91)

The Mössbauer spectrum of 2 at 293 K (Figure 5b) can be fitted in two doublets with
similar IS values and 2:1 area, revealing the presence of three high-spin iron(III) ions bound
in an octahedral crystal field. The QS values show that one of the metal centres is placed in
a less symmetric environment than the other two. When this is compared with complex 1,
and relying on Mössbauer/EPR studies performed, it can be assumed that coordination
species 2 probably belongs to the triangular iron(III) complexes of the “acetate” type, where
the carboxylate groups of the antibiotic are the “main characters” in the structure formed.
The formation of mixed-valence Fe(II)-Fe(III) coordination species in the case of complex 2
is ruled out due to the absence of Mössbauer signals with high IS-values (>1.2 mm/s), thus
directly confirming the full oxidation of Fe(II) ions under atmospheric conditions [54,55].
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The increase in the isomer shift of both complexes at liquid nitrogen temperature
is due to the second-order Doppler effect [56] (Figure S4). The quadrupole splitting, as
expected for high-spin iron(III), does not exhibit an important temperature dependence.
The average linewidth of all doublets (ca. 0.43 mm/s at 293 K and ca. 0.41 mm/s at 77 K)
confirms the amorphous nature of the studied complex species.

2.2.4. Proposed Structures of Complexes 1–2

Based on the collected experimental data, we suggest that the isolated complex 1
represents a dinuclear iron(III) complex of monensin. Taking into account its composition
(Fe3+:Cl−:Mon− = 1:1:2) and the observed spectral results, viable architectures can be
constructed as follows:

(i) two monensinates are bound to each iron(III) ion in a bidentate manner through their
terminal carboxylate and hydroxyl functions, and two chloride anions link the metal
centres (Figure 6a);

(ii) two bidentate monensinate ligands bridge the iron ions via tail hydroxyl groups and
each chloride anion is terminally bound to the metal cation (Figure 6b);

(iii) the presence of a carboxylate linker as a structural motif in 1 is excluded due to the
higher ∆-value(s) detected in the IR-spectra of the solid complex.
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Figure 6. Proposed structure of complex 1 as dinuclear chloro-bridged (a) or hydroxyl-bridged
(b) species. The monensinate skeleton is represented schematically by the dashed line connecting the
terminal ligating groups.

The formation of either construct (Figure 6) can explain the observed magnetic be-
haviour of 1, but to determine its most reliable structure, we applied a computational
approach as described in Section 3.3.

Using the structures proposed above, we also assume that the isolation of 1 in solid
state is accompanied by the presence of another type of coordination species, where the
monensinate anion is bound in a similar fashion. This compound is deemed to be the
mono-complex 1a of composition [FeCl(Mon)2] (Figure S2) which subsists in equilibrium
with the dinuclear parent complex [FeCl(Mon)2]2. Its co-precipitation cannot be controlled,
but obviously its formation corroborates the observed experimental EPR and Mössbauer
data, especially at low temperatures.

The spectral and microanalysis results reveal that complex 2 most likely belongs to
the group of the trinuclear oxo-ferric-monocarboxylates with composition [Fe3(µ3-O)(Mon
× H2O)6(H2O)2(OH)] (Figure 7). We infer that each pair of ionophores serve as bridges
between each pair of metal centres through the carboxylate function in a similar way to
the known structure of ferric acetate. Binding of a hydroxide anion ensures the overall
neutral character of the species formed. The magnetic data disclose the antiferromagnetic
properties of 2, which may arise in an indirect manner, i.e., through an oxo-anion placed
into the core of a trinuclear iron(III) cluster.
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Figure 7. Proposed structure of the triangular oxo-complex 2 (R represents the polyether cavity
hosting a water molecule).

To elucidate the architecture of the first coordination sphere of species 1–2, we con-
ducted an additional molecular modelling. As will be seen, the computed structural
parameters are consistent with those observed experimentally, thus confirming the plausi-
bility of the hypothesized constructs.

2.3. Theoretical Studies
2.3.1. Molecular Modelling of 1

To understand the intrinsic properties of complex 1, we built four dinuclear constructs
with Ci point group symmetry as shown in Figure 8, where the monensinate binding was
modelled by four acetates (representing its “head” carboxylate functions) and four ethanol
molecules (as avatars of the “tail” segment hydroxyl groups). The chloride position was
either bridging (1A) or terminal (1B–D). Structure 1B comprises chloride anions which are
perpendicular to the Fe2O6-chromophore and occupy the axial positions in the primary
coordination shell. In the other two constructs the inorganic ions lie in the plane of the
diamond-core, but the carboxylate groups are parallel (1C) and antiparallel (1D) to each other.

An indication of the preferred topology of 1 can be derived from the comparison
between the calculated IR spectra for 1A–D and the experimental one. A specific feature
of the experimental spectrum is the splitting of the asymmetric C=O vibration into two
bands with frequencies 1594 and 1554 cm−1 (Figure 2), which are a good match for the cor-
responding computed unscaled bands for 1B–D (Table 2). In contrast, no splitting is found
in the calculated vibrational spectrum of 1A—just a narrow band at 1613 cm−1. This is
a sign that the dichloro-bridged structure 1A does not correspond to the experimentally
observed vibrational behaviour of complex 1.

Table 2. Frequencies of asymmetric stretches of the carboxylate function in monensin and similarity
factors—SF (the ratio of the experimental to the calculated value for each pair of results).

Complex
Band Position, cm−1

Exp. Calc. SF

1A − 1613 −

1B (sub-band 1) 1594 1647 0.97
1B (sub-band 2) 1554 1578 0.98

1C (sub-band 1) 1594 1626 0.98
1C (sub-band 2) 1554 1604 0.97

1D (sub-band 1) 1594 1655 0.96
1D (sub-band 2) 1554 1607 0.97

2 1527 1649 0.93
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In order to evaluate the impact of the spin state on the EPR properties of target
complex 1, the possible states for the two high-spin Fe(III) ions (S5/2) are taken into account,
allowing for the complex to have either a ferromagnetic high spin (HS, St = 10/2) or an
antiferromagnetic singlet (AFMS, St = 0) coupling (Scheme S1a). For 1A (chloride-bridged)
and 1B (hydroxyl-bridged with axial chlorides) constructs the HS state is slightly more
stable. The temperature decrease would lead to a population increase in the HS state,
leading to an increased intensity of the experimental EPR signal. In the remaining models
with hydroxyl oxygen linking (1C–D, equatorially placed chlorides), the calculated energy
difference favours the low spin state at 293 K. At lower temperatures, the population of
the LS state should increase and the intensity of the EPR signal should decrease with a
tendency to disappear (EPR-silent state). In line with the experimental EPR data obtained
(decrease in the signal at g = 2.02) we can conclude that complex 1 can be described as an
alcohol-bridged dimer with terminally ligated chloride anions 1C–D [57].

The comparison between the anticipated and observed properties of all modelled
structures discloses that those with equatorial chlorides are the most likely. The calculated
Boltzmann distribution curves show 99.80% at 293 K and 100% at 77 K in favour of 1D over
1C. Thus, it can be summarized that the alcohol-bridged dimer with antiparallel orientation
of the carboxylates (1D) is the most feasible model matching the structure of complex 1.

2.3.2. Molecular Design of 2

As a starting construct to design the primary coordination shell of complex 2, the
crystal structure of ferric acetate [29] was used by replacing one of the water molecules with
a hydroxide anion (Figure 9). The model consists of three high-spin iron ions which can
interact with each other in different ways. We performed a full geometry optimization of
the possible multiplicities—high spin (HS, St = 15/2) and antiferromagnetic sextet (AFMSx,
St = 5/2); the spin alignments are presented in Scheme S1b. The modelled structure belongs
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to the C2v symmetry point group, where two of the iron ions are equivalent with respect to
the principal symmetry axis and the corresponding plane containing it. Considering the
energy dependence of the spin-flip position (Table 3), the predominantly populated AFMSx
is the one in which the spins flip on the iron lying on C2 (ca. 123 kcal/mol). The state
population at 293 and 77 K is calculated to be 82.9% of AFMSx (17.1% of HS) at 293 K and
increases to 99.8% at 77 K.
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Table 3. Enthalpy difference and calculated g-factors for the states of the proposed construct of
complex 2.

Multiplicity ∆H, kcal/mol, 293 K g-Factor, 0 K

HS 0.91 2.005
AFMSx 0.00 2.004

AFMSx-ooa * 122.71 2.087
* Spin-flip is performed on the iron ion which does not lie on the principal axis.

To gain a deeper insight into the intimate properties of complex 2, an additional
g-factor calculation was performed (Table 3), which matches well with the experimental
findings (Figure 3b). The calculated value of the asymmetric C=O vibration (Table 2) is also
in good agreement with the observed one.

2.4. Antibacterial Activity

The biological activity of MonH × H2O and complexes 1–2 is evaluated in terms of
their minimum inhibitory concentration (MIC), at which the tested compounds effectively
inhibit the visible growth of the target Gram-positive microorganisms. In the currently
applied protocol conditions, B. cereus (BC) appears to be more sensitive to monensic acid
compared with the B. subtilis strain (BS) (Table 4), while the parent salts FeCl3 × 6H2O
and FeSO4 × 7H2O are ineffective below 3.6–3.7 mM against both bacterial strains and the
same holds for the solvent used (methanol). The studied iron(III) complexes have four- (1)
and six-fold (2) increased antibacterial efficacy against B. subtilis, which may be due to the
presence of four and six antibiotic ligands in the composition of species 1–2, respectively.
On the other hand, the new coordination species are eight (1) and twelve (2) times more
potent in the case of B. cereus—an activity that cannot be explained in terms of a simple
additive effect of metal cations and ligands, linked together in the complex structures.
The observed enhanced bioactivity calls for further dedicated investigation of the efficacy
of the newly obtained iron(III) monensinates against different target bacterial strains/cell
lines to explore their potential as suitable bioactive metal-based drugs.
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Table 4. MIC of the polyether ionophore and its complexes 1–2.

Bacteria
Compound MW, g/mol

BC BS

µg/mL µM µg/mL µM

MonH × H2O 688.90 3.91 5.67 15.63 22.69
Complex 1 2862.08 1.95 0.68 15.63 5.46
Complex 2 4363.90 1.95 0.47 15.63 3.58

3. Experimental Section
3.1. Materials and Methods

Sodium monensinate (MonNa) was generously provided by Biovet Ltd. (Huvepharma,
Peshtera, Bulgaria) in a chemically pure form and was used without further purifica-
tion. Monensic acid monohydrate (MonH × H2O) was prepared by treating MonNa with
HCl [58]. FeCl3 × 6H2O, FeSO4 × 7H2O, Et4NOH, Et3N, acetonitrile (MeCN), methanol
(MeOH) p.a. grade, and CDCl3 were delivered by local suppliers. Deionized water was
used in all experiments when necessary.

The following approaches and devices were utilized in the present study: infrared
spectroscopy (IR) on a Nicolet 6700 FT-IR spectrometer (Thermo Scientific, Madison, WI,
USA); thermogravimetry (TG-DTA, TG-MS) on a Setaram Labsys Evo 1600 (Caluire-et-
Cuire, France); electron paramagnetic resonance (EPR) on a Bruker BioSpin EMXplus10/12
EPR spectrometer (Karlsruhe, Germany); nuclear magnetic resonance (NMR) on a Bruker
NEO 600 spectrometer (Karlsruhe, Germany); 57Fe Mössbauer measurements on a Wissel
spectrometer (Wissenschaftliche Elektronik GmbH, Starnberg, Germany); microanalysis
on a Vario MACRO cube Elementar analysensysteme Gmbh (Stuttgart, Germany) (C, H)
and Perkin-Elmer SCIEX-ELAN DRC-e ICP-MS (Massachusetts, USA) (Fe). Details of
the technical parameters of the spectrometers and the corresponding sample preparation
procedures are described in [41,59].

3.2. Synthesis of Complexes 1–2

Complex 1: To a solution of MonH × H2O (0.5 mmol, 344.45 mg in 15 mL MeCN),
Et4NOH (0.5 mmol, 180 µL, 40% in H2O) was added. The reaction mixture was stirred for
15 min to ensure the deprotonation of the antibiotic and FeCl3 × 6H2O (0.17 mmol, 45.00 mg
in 5 MeCN) was gradually added to spontaneously form an ochre solid phase. The pre-
cipitate was filtered off, washed with MeCN, and dried in a desiccator. [Fe2Cl2(Mon)4]:
C144H244Cl2Fe2O44, MW 2862.08 g/mol. Calc. H, 8.89; C, 60.43; Cl, 2.48; Fe, 3.90%. Found:
H, 8.19; C, 60.64; Cl, 2.16; Fe, 3.07%. Yield: 153.50 mg, 63%.

Complex 2: To a solution containing MonH × H2O (0.5 mmol, 344.45 mg in 20 mL
MeCN/MeOH) and Et3N (1.0 mmol, 139.5 µL), solid FeSO4 × 7H2O (0.5 mmol, 139 mg)
was added. The reaction mixture was stirred for 30 min until the iron salt was completely
dissolved to turn the colourless solution into a yellow mixture. Subsequent addition
of water afforded the formation of dark green precipitates which changed colour to tile
red/rusty brown within 10–15 min, indicating Fe(II) oxidation. The solid phase was filtered
off, washed with water, and dried in a desiccator. [Fe3O(Mon × H2O)6(H2O)2(OH)]:
C216H383Fe3O76, MW 4363.90 g/mol. Calc. H, 8.85; C, 59.45; Fe, 3.84%. Found: H, 9.68; C,
59.01; Fe, 3.94%. Yield: 327.35 mg, 90%.

3.3. Computational Protocol

The quantum chemical calculations were performed according to a previously pub-
lished protocol [41]. Briefly, the geometries of all constructs were optimized with Becke’s
three-parameter hybrid-exchange functional combined with the Lee-Yang-Parr correlation
functional [60], and with Grimme D3 correction [61] for the dispersion interactions and the
6–31G(d) basis set. Vibrational frequencies analysis was performed to verify the minima of
all structures. The optimization and the vibrational spectra calculations were carried out
with the software package Gaussian 16 [62]. The magnetic properties and EPR parameters
for each EPR-active spin state were computed using ORCA 5.0.3 [63] with the BHandHLYP
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functional [64–66] which has a higher percentage of exact Hartree–Fock exchange, the latter
being of great importance for the proper estimation of the spin exchange interactions in the
studied systems. The TZVP basis set of Ahlrichs and co-workers [67,68] was implemented
for the ligands and the CP(PPP) basis set for the iron ions [69]. All calculations were
performed in vacuo.

3.4. Antibacterial Assay

The double-layer agar hole diffusion method [70] was applied to evaluate the effect of
the compounds of interest towards Gram-positive microorganisms. Two aerobic bacterial
strains were used in the present study—B. subtilis (NBIMCC 1709) and B. cereus (NBIMCC
1085), supplied by the National Bank for Industrial Microorganisms and Cell Cultures
(NBIMCC, Bulgaria). The antibacterial efficiency of MonH × H2O, complexes 1–2, and
parent iron salts was assessed according to the protocol described in [41], replacing DMSO
with MeOH as a solvent where necessary.

4. Conclusions

Two new iron(III) monensinates were synthesized and characterized via a variety of
experimental methods, supplemented by molecular modelling. Common features of the
obtained octahedral complexes are that (i) the monensinate ligands are bound to the iron
ions via their carboxylate termini, and (ii) the ratio Fe:ligand is 1:2. However, the pattern
of coordination differs. With the Fe(III) salt, an antiferromagnetic dinuclear complex is
formed with metal ions also exchange-coupled by hydroxyl groups of the ligand, whereas
with the Fe(II) salt a trinuclear oxo-ferric complex results, in which the iron ions, being
fully oxidized by the atmospheric oxygen to Fe(III), are linked solely by the carboxylate
ligand functions to form an antiferromagnetic sextet. The structure of the complexes
was decoded by means of comparison between the computed characteristics of models
corresponding to the elemental analysis data and the results measured with the employed
experimental approaches. The antibacterial activity tests reveal that the complexes exhibit
equal (against B. subtilis) or higher (against B. cereus) bioactivity, which indicates that the
newly synthesized complexes may find a useful implementation as medication in the
veterinary practice.
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complex 1 and (b) complex 2; Figure S4: Mössbauer spectra at 77 K: (a) complex 1, (b) complex 2;
Scheme S1. Electron configurations of the iron ions in (a) complex 1 and (b) complex 2.
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