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Abstract: The intensity of the odor in food-grade paraffin waxes is a pivotal quality characteristic, with
odor panel ratings currently serving as the primary criterion for its assessment. This study presents an
innovative method for assessing odor intensity in food-grade paraffin waxes, employing headspace
gas chromatography with mass spectrometry (HS/GC-MS) and integrating total ion spectra with
advanced machine learning (ML) algorithms for enhanced detection and quantification. Optimization
was conducted using Box–Behnken design and response surface methodology, ensuring precision
with coefficients of variance below 9%. Analytical techniques, including hierarchical cluster analysis
(HCA) and principal component analysis (PCA), efficiently categorized samples by odor intensity. The
Gaussian support vector machine (SVM), random forest, partial least squares regression, and support
vector regression (SVR) algorithms were evaluated for their efficacy in odor grade classification and
quantification. Gaussian SVM emerged as superior in classification tasks, achieving 100% accuracy,
while Gaussian SVR excelled in quantifying odor levels, with a coefficient of determination (R2) of
0.9667 and a root mean square error (RMSE) of 6.789. This approach offers a fast, reliable, robust,
objective, and reproducible alternative to the current ASTM sensory panel assessments, leveraging
the analytical capabilities of HS-GC/MS and the predictive power of ML for quality control in the
petrochemical sector’s food-grade paraffin waxes.

Keywords: food-grade paraffin waxes; food packaging; odor intensity; headspace; gas chromatography–
mass spectrometry; total ion spectra; machine learning; Box–Behnken design

1. Introduction

Food-grade paraffin wax is a petroleum-derived product (PDP) used in a variety of
food products as both a preservation material and an additive. For example, it is employed
in the production of chewing gum and as a food preservative in cheeses, fruits, and
cakes [1–5]. Accordingly, to comply with the U.S. Food and Drug Administration (FDA)
standards under 21 CFR 172.886 for its use in food [6] and, 21 CFR 178.3710 for direct
food contact [7], paraffin wax for food applications is subjected to a high temperature and
pressure hydrogenation process that allows for the removal of both sulfur compounds and
aromatic compounds [1,8,9]. Therefore, to ensure food safety, companies responsible for
manufacturing and distributing food packaging and additives products must implement
quality control programs to ensure product safety and sanitary compliance.

In this context, the petrochemical industry had to adapt both good manufacturing
practice principles and legal requirements to implement food safety policies at paraffin
wax production facilities. To do this, it was necessary to implement a quality management
system, which was based on the American Society for Testing and Materials’ (ASTM
International) standardized methods [10]. Among food quality and food-package control
parameters, odor intensity is considered one of the most important factors to be evaluated.
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In this sense, the lack of an undesirable odor is an indicator of final product quality [11].
Therefore, its assessment is very general. For food-grade paraffin wax, the most common
method for determining the odor level is governed by the ASTM D1833—Standard Test
Method for Odor of Petroleum Waxes [12]—which consists of assessing the intensity of the
current odor in paraffin wax through a tasting panel of five experts. Then, the paraffin wax
odor is graded on a 5-point scale from 0 to 4, with 0 being odorless (“None”) and 4 being
the maximum odor level (“Very strong”). Disadvantages that this method can pose include
the need for human resources, problems during the comparisons of the panel testing results
among different laboratories or companies, lack of rapid response from sensory tests, and
possible health risks to the evaluator due to long-term exposure to undesirable volatile
organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) [13]. In this
sense, the proper automated and instrumental-based characterization of the global aromatic
profile responsible for the organoleptic properties of paraffin wax can facilitate production
operations and redirect them toward more effective processes.

Today, there are many analytical techniques used for odor quality control in the food
industry and other fields. Among those employed for the characterization of VOCs and
SVOCs, methods based on gas chromatography (GC), often combined with mass spectrom-
etry (MS), have been of excellent use due to their high sensitivity and reproducibility [14].
Regarding sample preparation, many options for extracting VOCs and SVOCs can be
coupled with the GC/MS system. Some of these options include thermal desorption (TD),
solid-phase microextraction (SPME), and headspace generation (HS) techniques, with the
last two being the most used [15,16]. In general, the information obtained by GC/MS, the
total ion chromatogram (TIC), has been employed to find target compounds that allow for
sample characterization [17]. However, this task is time-consuming and requires skilled
operators. While this task demands considerable time and expertise, advancements in
the GC–MS field have enabled its utilization as a screening or direct method through
total ion spectra (TIS). The TIS method involves summing the intensities for each mass-
to-charge (m/z) ratio across the full chromatographic range to generate a time-averaged
spectrum [18,19]. This approach serves as an alternative that addresses the challenges
linked with retention times and the application of GC/MS as a chemical sensor, functioning
similarly to an MS-based electronic nose [20–22]. Focusing on this last point, when used as a
chemical sensor, the GC/MS operates so that each fragment ion (represented by the m/z ra-
tio) functions as an individual sensor. The intensity of each ion corresponds to the sensor’s
signal. This approach enables the determination of the complete aromatic profile of each
sample, which is as distinctive as a fingerprint. Additionally, as TIS is time-independent, it
is more suitable for inter-laboratory comparison [22]. The development of GC/MS methods
involving the use of TIS results in the acquisition of a large amount of information, and it
has become imperative to use advanced machine learning (ML) techniques to transform
and manage these data into useful information [22–26]. Unsupervised and supervised
machine learning (ML) techniques frequently utilize data from global profiling or screening
methods, such as GC/MS with total ion spectra (TIS) and MS-based electronic noses. For
instance, unsupervised methods like cluster analysis (CA) and principal component analy-
sis (PCA) are commonly used for pattern recognition [19,24,26,27]. Conversely, supervised
techniques such as linear discriminant analysis (LDA), quadratic discriminant analysis
(QDA), k-nearest neighbors (kNNs), support vector machine (SVM), random forest (RF),
and partial least squares regression (PLSR) are employed for tasks including discrimination,
classification, and regression [24,27–32]. Moreover, the creation of supervised regression
and classification models, which are predictive in nature, can streamline data processing for
future samples, thereby simplifying these tasks in the petrochemical and agri-food sectors.

Regarding the application of analytical techniques to the characterization of paraffin
wax, Durret (1966) applied GC together with a flame ionization detector (FID), as well as
MS, to identify target compounds related to the paraffin smell, indicating that toluene is
mainly responsible for the undesirable odor [33]. In turn, Yuan et al. (2013) investigated
the presence of toluene and aromatic compounds in the volatile composition of paraffin
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wax by applying HS-SPME-GC/MS [34]. The results of the study indicated that toluene
was the component with the greatest influence on the odor, followed by other minor
components such as xylene and other benzene derivatives. Palu et al. (2014) applied
GC/MS to characterize de-oiled industrial paraffin wax [35]. On the other hand, in a recent
study conducted by our research group [36], we employed TD-GC/MS to identify and
quantify VOCs in paraffin waxes used in food processing. In this particular case, the focus
was on identifying the VOCs involved in the aroma of the paraffins, and thus, the TIS
strategy was not used. On the other hand, Wang et al. (2015) [37] pioneered the use of a
gas-sensor electronic nose for discriminating paraffin waxes based on their volatile profiles.
They combined this technique with principal component analysis (PCA) for dimensionality
reduction and data visualization. Additionally, kNNs, SVMs, and multilayer perceptrons
were employed to classify the different qualities of petroleum waxes. For their part,
Men et al. (2018) [13] extended the use of an electronic nose integrating a gas sensor
network with ML techniques such as SVM, RF, and extreme learning machine (ELM) to
enhance odor analysis systems for paraffin wax, yielding commendable outcomes. Their
work introduced an innovative screening method for the automatic assessment of odor
levels in paraffin products. Despite these excellent results, the reliance on gas sensor-
based systems introduces inherent limitations, including issues with sensor stability and
sensitivity. To overcome these challenges, there is an increasing interest in investigating
alternative technologies, such as HS–MS electronic noses or HS-GC/MS using the TIS
strategy, that offer greater sensitivity and robustness. These methods provide a more
detailed and comprehensive aroma profile of samples, making them particularly well-
suited for critical quality assessments, such as odor evaluation in paraffin waxes.

Therefore, after all the above, in this study the integration of TIS with HS-GC/MS was
explored to assess its efficacy as an electronic nose for capturing the global aroma profile of
food-grade paraffin waxes. This innovative approach aims to capture the comprehensive
aroma profile of food-grade paraffin waxes, addressing the limitations of traditional gas-
sensor electronic noses and the targeted analyte approach typically employed in GC/MS
with TIC. This approach has been successfully applied previously to other petroleum-
derived products [22]. By leveraging TIS, this research seeks to enhance the objectivity
and reproducibility of sensory analysis methodologies, offering a viable alternative to
the current ASTM standards used in the petrochemical industry. For this purpose, a
Box–Behnken design (BBD) using response surface methodology (RSM) was applied to
variables related to headspace generation. In the present investigation, GC/MS is used as a
multi-sensor device with all the advantages that this brings. Therefore, TIS was proposed
as a new robust approach to determine the optimal conditions required to best distinguish
and quantify odor levels in paraffin waxes. Furthermore, the final goal of this study is to
apply the developed method to paraffin wax samples with different odor levels, to detect
and distinguish the degree of odor intelligently and simply. To do so, TIS was combined
with several ML tools to establish the optimal algorithms to obtain better efficiency from
the results and information contained in the data. The best-performing models generated
were employed to be integrated into an interactive web application for sharing purposes.

2. Materials and Methods
2.1. Paraffin Wax Samples

In this study, paraffin wax samples provided by Compañia Española de Petroleos,
S.A.U., (CEPSA) San Roque refinery (Cadiz, Spain) were used. Specifically, two types
of paraffin waxes obtained from crude oil were studied: (a) 5 independent lots taken in
different years of fully refined (hydrogenated) with a food-grade certification, and (b) 5 in-
dependent lots taken in different years of non-hydrogenated, unfit for use in agri-food
products. The selection of these two types of paraffins was based on two key factors:
(1) during the training of expert sensory panels, practice mixtures are prepared using both
hydrogenated and non-hydrogenated paraffins to familiarize the panel with the character-
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istics of each type, and (2) paraffins that have undergone hydro-treatment processes, which
were not completed successfully, will exhibit an odor.

Odor Levels Preparation

Food-grade and non-hydrogenated paraffin wax samples were mixed and heated
at 100 ◦C in odorless sealed bottles at different percentages to obtain a range of samples
with different odor levels. Specifically, mixtures of food-grade paraffin wax with added
non-hydrogenated paraffin wax were prepared in ratios of 25%, 50%, and 75%. In addition,
food-grade paraffin (0%) and non-hydrogenated paraffin (100%) were also analyzed. In this
way, five different odor levels linked to the five base levels of the ASTM D1833 [12] standard
were established. Therefore, 0% corresponds to a grade 0 odor (“None”), 25% to a grade 1
(“Slight”), 50% to a grade 2 (“Moderate”), 75% to a grade 3 (“Strong”) and 100% to odor
level 4 (“Very Strong”). Each of the mixtures prepared was analyzed in triplicate. In this
way, a total number of samples equal to n = 75 (i.e., 5 lots × 5 percentages × 3 replicates)
was obtained. Before the analyses, the samples were sealed with aluminum foil and
subsequently stored in single odorless plastic containers according to their odor grade to
avoid cross-contamination.

To be analyzed, the paraffin waxes were labeled as follows: first, the percentage of
non-hydrogenated paraffin wax content over food-grade paraffin; this was followed by the
sample lot, i.e., A, B, C, D, or E; and finally, the replicate analysis of that sample, i.e., R1,
R2, or R3 was labeled. For example, the first replicate analysis for the sample from lot A
with 25% non-hydrogenated paraffin wax content would be labeled as 25%_A_R1 and the
second replicate analysis for the sample from lot B with 50% non-hydrogenated paraffin
wax content would be labeled as 50%_B_R2.

2.2. HS-GC/MS Acquisition

HS-GC/MS analyses were performed using an HS unit (AOC-6000; Shimadzu Sci-
entific Instruments, Kyoto, Japan) coupled with a GC/MS with a triple quadrupole (Q3)
(GC/MS TQ8040; Shimadzu Scientific Instruments, Kyoto, Japan), which comes integrated
with the workstation software, GCMSsolution Version 4.52, for Shimadzu’s GCMS-TQ se-
ries gas chromatography-mass spectrometers. No pretreatment was applied to the samples.
The optimized conditions for the generation of the headspace were as follows: 10 mL HS
vials (Agilent CrossLab, Santa Clara, CA, USA) containing the paraffin waxes (0.5825 g)
were placed directly into the oven of the autosampler for both heating (140 ◦C) and shaking
(250 rpm (5 s on and 2 s off)) for 5 min to generate the headspace (HS). The syringe was
kept 5 ◦C above the incubation temperature to avoid condensation. The HS conditions
presented here were optimized using a BBD with RSM. See Section 2.4. for selection and
description. The GC was equipped with a BPX5 capillary column (length 30 m; internal
diameter 0.25 mm; film thickness 0.25 µm; SGETM Analytical Science, Melrose Park, North
West Shelf, Australia). Helium (purity grade 5N) was the carrier gas with a column flow
rate of 0.94 mL/min and with an average linear velocity of 35.0 cm/s. The injection was
split in a 15:1 ratio. A 500 µL of the generated HS was injected into the injection port
(150 ◦C). The GC oven temperature program started at 40 ◦C (held for 5 min). Subsequently,
the temperature was increased by 3 ◦C per minute to 50 ◦C, followed by an increment to
270 ◦C at 40 ◦C/min (held for 2 min). The mass spectrometer ion source and interface
temperatures were 200 ◦C and 275 ◦C, respectively. In turn, the ionization mode used was
electron impact at 70 eV. Mass spectra were scanned between 50 and 600 mass-to-charge
ratios (m/z). The total time of the GC/MS program employed was 15.83 min.
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2.3. Optimization of Conditions

The different variables affecting the signal of the TIS are mainly related to the specific
conditions used to generate the HS of the VOCs and SVOCs. Based on the literature,
the factors that influence HS generation most are incubation temperature, incubation
time, agitation, and sample quantity [38]. In the present study, a BBD–RSM was applied
to optimize the incubation temperature, agitation, and sample quantity. On the other
hand, the incubation time was evaluated subsequently using a kinetic study based on a
univariant design.

2.3.1. Experimental Design

In the present work, this BBD with RSM methodology was used to obtain the most
suitable working conditions for the generation of HS in the paraffin wax samples. BBD is a
type of factorial design that is highly efficient for exploring quadratic response surfaces
and constructing second-order polynomial models without involving all the combinations
of the levels of each factor. This method strategically selects a set of points in the design
space to efficiently estimate the coefficients of the model, thus assessing the interaction
and quadratic effects of the variables involved. BBD is particularly advantageous when
the number of experiments needs to be minimized due to time or cost constraints. On the
other hand, RSM is a collection of mathematical and statistical techniques that are useful
for modeling and analyzing problems where several variables influence a response. RSM is
used to find an optimal response by fitting a regression model to the data obtained from
carefully designed experiments. This methodology aids in understanding the effects and
possible interactions among the design factors.

During the BBD-based optimization process, two types of variables were considered:
the factors or independent variables and the response variable or dependent variable. Re-
garding the independent variables, three factors were selected to carry out the optimization:
incubation temperature (◦C), agitation (rpm), and sample quantity (g). The incubation time
was maintained at 10 min during all the experiments. Considering the difference in unit,
level, and range between each factor, the levels were normalized from −1 to +1 to obtain a
uniform response. Thus, every factor has three levels: a lower level (−1), an intermediate
level (0), and an upper level (1). The independent variables and their levels are presented
in Table 1. The ranges evaluated for each factor were established based on the objective of
this study. In the case of incubation temperature, a minimum value of 100 ◦C was used
to ensure the complete melting of the sample and to extract both VOCs and SVOCs from
it. The range studied for the incubation temperature was from 100 to 140 ◦C. The speed
to be evaluated in the sample agitation was studied between 250 and 750 rpm. On the
other hand, small sample quantities to be studied were selected based on the research
group’s previous experience in using the technique with other PDPs and to avoid detector
saturation. The range used for the quantity of sample was from 0.2 to 0.6 g.

Table 1. Selected variables, their values, and the coded and uncoded levels used for the BBD.

Variable −1 0 1

X1: Temperature (◦C) 100 120 140
X2: Agitation (rpm) 250 500 750

X3: Sample quantity (g) 0.2 0.4 0.6

The complete design consisted of 18 experiments with 6 replicates at the center point.
All trials were conducted in random order. The determination of the optimal HS conditions
was performed by RSM. In this case, the target response to be maximized was the differences
between the odor grades of the paraffin wax samples. For this purpose, two types of
samples were used for the 18 BBD experiments: paraffin wax with a “Slight” odor grade
(25% non-hydrogenated paraffin wax content) and paraffin wax with a “Very Strong” odor
grade (100% non-hydrogenated paraffin wax content).
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The TIS normalized to the maximum signal (base peak) was obtained for each sample
and analyzed under the specific BBD conditions. Using this information, the Euclidean
distance between the paraffin wax sample with 25% non-hydrogenated content and the
paraffin wax sample with 100% non-hydrogenated content was calculated for each of the
experiments performed. The response variable was, therefore, the Euclidean distance
between the two samples. This dependent variable was used to develop a mathematical
model with a second-order polynomial function (Equation (1)):

Y = β0 +
k

∑
i=1

βixi +
k

∑
i=1

βiix2
ii +

k

∑
i<1

βijxixj + ϵ (1)

In this equation, Y represents the response; β0 is the model constant; x represents
each of the factors considered; βi is the coefficient of each main effect; βii is the coefficient
of the quadratic factors representing the curvature of the surface; βij is the coefficient
corresponding to the interactions between I and j; and, finally, ϵ represents the residual
value due to random error. The suitability of the model obtained was evaluated from
the resulting lack-of-fit value and the determination coefficient (R2), and its statistical
significance was measured using an analysis of variance (ANOVA).

2.3.2. Kinetic Study

The migration of VOCs and SVOCs in the HS takes a finite amount of time, which
is determined by the time required for molecular diffusion in the sample phase and the
transfer of the compounds to the gas phase.

Thus, to achieve the complete extraction of VOCs and SVOCs, thermodynamic equilib-
rium must be reached. Because the kinetic behavior of this process is difficult to mathemat-
ically model, it is necessary to conduct a study to evaluate the kinetics of the equilibrium
time. The kinetics of incubation time was evaluated using univariate design methodology,
setting the optimal conditions obtained for sample quantity, incubation temperature, and
agitation, and varying the incubation time. A total of five incubation times were tested:
5 min, 10 min, 15 min, 20 min, and 25 min. Times less than 5 min were not studied to ensure
complete sample fusion and the creation of a repeatable and reproducible HS. Furthermore,
times longer than 25 min were not investigated because the developed method must be
fast enough to be used in routine analysis. The kinetic study experiments were carried out
with a 25% non-hydrogenated content paraffin wax sample and a 100% non-hydrogenated
content paraffin wax sample. The same response variable used in the rest of the HS working
conditions optimization employing BBD–RSM was selected as the response variable to
be evaluated.

2.4. Data Analysis
2.4.1. Total Ion Spectra

The HS-GC/MS data were used following the procedure described by Sigman et al. (2008)
to obtain the TIS [18]. This procedure implies that the second-order chromatographic data
are collapsed along the retention time dimension, resulting in a profile of relative intensities
of ions in the total sample. Each of the obtained TIS was normalized using the base
peak normalization method, also known as normalization to the maximum signal. This
normalization involves dividing the intensity of each m/z ratio by the intensity of the base
peak of that sample. Finally, the normalized TIS data matrix was oriented so that each
row consisted of the intensity of a single sample in all variables, yielding a matrix Dmxn,
where m is the number of m/z values and n is the number of samples. In this case, the total
number of m/z was 501 (m/z 50–550) and the number of samples equaled 75.

2.4.2. Machine Learning Algorithms

Two unsupervised ML algorithms, namely hierarchical cluster analysis (HCA) and
PCA, were chosen for the current study to perform an exploratory study for finding
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patterns and grouping trends in the normalized dataset (D501×75), specifically to determine
if samples tend to cluster based on their odor levels. Furthermore, the use of various
supervised ML algorithms was reviewed and evaluated for the creation of predictive
models. Specifically, the Gaussian SVM and RF algorithms were investigated for the
construction of classification models that allow differentiating paraffin waxes according to
odor intensity. On the other hand, the PLSR, RF regression, and Gaussian SVR algorithms
were investigated for the construction of regression models that allow the assessment of the
odor level percentage in the paraffin wax samples. The classification models’ performance
was assessed using the metrics of accuracy and kappa. For its part, the coefficient of
determination (R2) and the root mean square error (RMSE) were the metrics evaluated in
the regression models. The normalized dataset (D501×75) was randomly split (split = 0.7)
into a training set and a test set for the development of the quantification and regression
models. Each algorithm’s training and hyperparameter optimization were performed using
the training set. Then, the created models were validated against the test set for their part.
To reduce model overfitting, all models were constructed using 5-fold cross-validation
(CV) during hyperparameter tuning and training. For the classification models, a total of
five a priori groups were established based on the odor ASTM D1388 category (“None”,
“Slight”, “Moderate”, “Strong”, and “Very Strong”), whereas for the regression, the prior
groups (“0%”, “25%”, “50%”, “75%”, and “100%”) were associated with the percentage of
non-hydrogenated paraffin wax over food-grade paraffin wax.

2.5. Software

GCMSsolution (GCMSsolution Version 4.52, Shimadzu Scientific Instruments, Kyoto,
Japan) workstation software was used to perform the HS-GC/MS analyses and extract
the data in a .cfd extension file. The raw data (3D data matrix in .TIC file extension) were
obtained employing the open-source software AMDIS (automated mass spectral deconvo-
lution and identification system; version 2.73; 25 April 2017) from the National Institute of
Standards and Technology (NIST). Such raw data were employed to create the TIS for each
sample. The 2D data matrix constructed with the TIS of the samples was saved in .xlsx
format. Statgraphics Centurion XVI.I (Statgraphics Technologies Inc., The Plains, VA, USA;
version 16.1.03) was used for the RSM-BBD development and the analysis of optimal HS
conditions. The data visualization and application of ML techniques were carried out using
the open-source programming language R (version 4.1.2, Boston, MA, USA) [39]. HCA
was performed using the hclust function of the stats package (version 4.1.2) [39]. Linkage
method selection for the HCA was established by computing the agglomerative coefficient
of different linkage methods (Average, Single, Complete, and Ward) using the agnes func-
tion of the cluster package (version 2.1.3) [40]. The HCA results were represented in a
dendrogram using the fviz_dend function of the factoextra package (version 1.0.7) [41]. The
ML models were developed using the trainControl and train functions of the caret package
(version 6.0-93) [42]. The metrics of the generated regression models were established with
the built-in functions in the MLmetrics package (version 1.1.1) [43]. The most important vari-
ables in the generation of the PLS and RF models were extracted with the varImp function of
the caret package (version 6.0-93) [42]. All the other graphs generated for data visualization
were built using the ggplot2 (version 3.3.6) [44] and the graphics (version 4.1.2) [39] packages.
The interactive web application was developed using the shiny package (version 1.7.2) [45].

3. Results and Discussions
3.1. Method Optimization
3.1.1. Box–Behnken Design with RSM

The HS factors that can significantly impact the efficiency with which VOCs and
SVOCs are transferred from a sample to the gas phase include a trio of critical variables:
the incubation temperature, agitation speed, and the quantity of the sample used. These
variables were meticulously explored across a range of settings: incubation temperature
(X1: 100, 120, and 140 ◦C), agitation (X2: 250, 500, and 750 rpm), and sample amount
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(X3: 0.2, 0.4, and 0.6 g). To ensure a standardized comparison, all analyses were conducted
with the incubation time uniformly set at 10 min. This rigorous examination facilitated
the evaluation of these variables’ influence on transfer efficiency to systematically study
the interactions between them. The BBD and the response, which is expressed as the
Euclidean distance between the normalized TIS of the paraffin wax with 25% content
in non-hydrogenated and the paraffin wax with 100% content in non-hydrogenated, are
shown in Table 2.

Table 2. Conditions of the BBD for the three variables, including experimental and predicted values.

Experiment

Factors Response

X1 X2 X3
Euclidean Distance

Experimental Predicted

1 −1 0 1 0.056794 0.0495423
2 1 −1 0 0.111667 0.103849
3 −1 −1 0 0.0546288 0.0542285
4 1 0 −1 0.0695383 0.07679
5 1 1 0 0.105074 0.105474
6 1 0 1 0.1244 0.124565
7 0 −1 −1 0.0580481 0.0586143
8 −1 1 0 0.0492514 0.0570693
9 0 −1 1 0.0918902 0.0995423

10 0 1 1 0.0831786 0.0826123
11 −1 0 −1 0.0539537 0.0537878
12 0 1 −1 0.0876625 0.0800104
13 0 0 0 0.0808236 0.0831342
14 0 0 0 0.0825085 0.0831342
15 0 0 0 0.0898495 0.0831342
16 0 0 0 0.0641407 0.0831342
17 0 0 0 0.0892545 0.0831342
18 0 0 0 0.0922287 0.0831342

A comprehensive ANOVA was performed to assess the effects of the factors and their
potential interactions on the experimental outcomes. The detailed results of the ANOVA
are shown in Table 3. This table presents a thorough breakdown of the coefficients for each
parameter within the second-order polynomial equation derived from the study, alongside
their statistical significance, quantified through p-value. Based on this significance, it can
be determined which factors and/or interactions have a more significant influence on the
response. Therefore, only factors and/or interactions with p-values less than 0.05 were
considered relevant to the response at the established significance level (95%). As can be
seen in Table 3, only the linear term for incubation temperature and sample quantity was
significant (p-value < 0.05). Incubation temperature is an important factor as it must be
sufficient to facilitate molecular diffusion and migration of VOCs and SVOCs into the gas
phase. In this case, incubation temperature positively affected the response (b1 = 0.0245).
This implies that the two groups were discriminated against more effectively as the incuba-
tion temperature increased. The sample quantity is another important factor in creating
an optimal HS, as it is directly related to the analyte concentration entering the gas phase.
The results obtained show that the sample quantity has a positive effect on the response
(b3 = 0.0109). This means that discrimination between the two groups was more successful
when the sample quantity was at the upper end of the study range.

The results obtained show that the sample quantity has a positive effect on the re-
sponse (b3 = 0.0109). This means that discrimination between the two groups was more
successful when the sample quantity was at the upper end of the study range. For a
visual representation of the effects and their combinations, the standardized Pareto chart
is displayed in Figure 1. The effect of each factor or interaction of factors is represented
graphically by bars arranged in decreasing order of effect on the response. Based on the
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coefficients of the factors and interaction effects (Table 3), a quadratic polynomial regression
model can be obtained to predict the response variable as a function of the independent
variables (Equation (2)). The full equation can be reduced by considering only the sig-
nificant factors and interactions (p-value < 0.05). The reduced equation is represented in
Equation (3):

Y = 0.0831 + 0.0245·X1 + 0.00111·X2 + 0.0109 · X3 − 0.00350 · X1
2 − 0.000304·X1X2 +

0.0130 · X1X3 + 0.000522 · X2
2 − 0.00958 ·X2X 3 − 0.00346 · X3

2 (2)

Y = 0.0831 + 0.0245·X1 + 0.0109·X3 (3)

where Y is the Euclidean distance between the normalized TIS of the paraffin wax with
25% content in non-hydrogenated and the paraffin wax with 100% content in
non-hydrogenated and Xi (X1, incubation temperature; X2, agitation; X3, sample quantity).

Table 3. Analysis of variance (ANOVA) of the quadratic model adjusted to the discrimination of odor
grade in paraffin waxes, with degrees of freedom set at 1 across all experiments.

Variable Factor Sum of Squares Mean Square F-Value p-Value

Temperature X1 0.00480448 0.00480448 45.18 0.0011

Agitation X2 0.00000997329 0.00000997329 0.09 0.7718

Sample quantity X3 0.000947424 0.000947424 8.91 0.0306

Temperature: Temperature X1X1 0.0000534923 0.0000534923 0.50 0.5099

Temperature: Agitation X1X2 3.69418E−7 3.69418E−7 0.00 0.9553

Temperature: Sample quantity X1X3 0.000676543 0.000676543 6.36 0.0530

Agitation: Agitation X2X2 0.00000118999 0.00000118999 0.01 0.9199

Agitation: Sample quantity X2X3 0.000367222 0.000367222 3.45 0.1223

Sample quantity: Sample quantity X3X3 0.0000522889 0.0000522889 0.49 0.5145

A lack-of-fit test was carried out to assess whether the selected model was adequate to
describe the observed data or whether a more complex model was required. The results
showed that the p-value of the lack-of-fit (0.436) was greater than 0.05. Therefore, the
model was considered satisfactory for explaining the observed data at the 95% confidence
level. The comparison between experimental and predicted values, as shown in Figure S1
(Supplementary Materials), indicated a good agreement demonstrated by an R2 of 88.75%.
Therefore, the model was suitable for use in estimating the response for optimization.
According to the fitted model and using the RSM, a 3D surface plot was generated to
predict the relationship between the independent and dependent variables. Concretely,
Figure 1B illustrates the combined effects of incubation temperature and sample quantity
on the response variable. As can be seen in Figure 1B, maximization of the response variable
was found to be obtained at coordinate +1 (140 ◦C) for incubation temperature, that means
the maximum temperature allowed by the instrument. On the other hand, a value of
+0.9708 (0.5825 g) for the sample quantity. Therefore, the optimal final conditions were
an incubation temperature equal to 140 ◦C, sample quantity of 0.5825 g, and agitation at
250 rpm.
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represent the influence of sample quantity and temperature on the response variable.

3.1.2. Kinetic Study of the Optimal Conditions

The solid-gas equilibrium was evaluated using the optimal predefined conditions
(incubation temperature = 140 ◦C; sample quantity = 0.5825 g; agitation = 250 rpm) and
varying the incubation time from 5 to 25 min (in 5-min increments). Experiments were
carried out in triplicate for both the 25% non-hydrogenated paraffin wax and the 100%
non-hydrogenated paraffin wax, thus giving a total of 30 analyses. The response variable
was the same as the previously evaluated one, i.e., the Euclidean distance calculated from
the normalized TIS between the two samples. The graph in Figure 2 shows the evolution of
the mean (n = 3) of the response variable in each incubation time evaluated with its standard
deviation (s.d.). To determine the existence of a statistically significant difference between
the response variable values as a function of incubation time, an ANOVA was performed.
The results of this analysis indicated that there were no statistically significant differences
(p-value < 0.05) at a confidence level of 95%. In this way, to minimize the analysis time for
obtaining a rapid routine method, it was concluded that the optimal incubation time would
be set to 5 min.
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3.2. Repeatability and Intermediate Precision of the Method

The precision of the developed HS method was evaluated according to repeatability
and intermediate precision. Repeatability was calculated as the closeness between the
results of experiments performed on the same day under the same conditions. Intermediate
precision was calculated as the closeness between results on different days. Specifically,
to evaluate the repeatability, a total of 6 analyses were carried out and completed on the
same day under optimal conditions for each of the 2 samples (paraffin wax with a content
of 25% non-hydrogenated and paraffin wax with a content of 100% in non-hydrogenated).
A total of 24 samples were analyzed (12 samples of paraffin wax with 25% content in non-
hydrogenated and 12 samples of paraffin wax with 100% content in non-hydrogenated).
The Euclidean distance between the normalized TIS of the two samples in the repeatability
and intermediate precision experiments was calculated. The coefficient of variation (C.V.)
between Euclidean distances was used as the statistical measure to assess their similarity.
The C.V. for repeatability was 8.96% and 7.04% for intermediate precision. Since both values
were within acceptable limits (10%), the developed method was found to be reproducible
and to have an adequate intermediate precision.

3.3. Machine Learning Evaluation

Once the HS method was optimized, it was applied to discriminate and quantify the
degree of odor in paraffin wax samples. To extract the maximum information from the
normalized TIS, the first step was to study the clustering tendencies of the samples to
evaluate whether they occurred according to the odor level. Then, different supervised
ML algorithms were evaluated using the full dataset to obtain accurate and optimized
predictive models to discriminate (classifiers) and quantify (regression models) the odor
level of the samples.

3.3.1. Exploratory Study

The initial exploration of paraffin wax samples’ tendency to cluster based on their odor
grade involved employing HCA. Ward’s method was specifically chosen as the linkage
method, complemented by the utilization of Euclidean distance as the distance metric. The
selection of linkage method was chosen through a comparison of agglomerative coefficients
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derived from various methods, including Average, Complete, Simple, and Ward. A higher
agglomerative coefficient, nearing 1, suggests a more robust clustering structure. Remarkably,
among the methods evaluated, Ward’s method exhibited the highest agglomerative coefficient
at 0.98, indicating its superior ability to delineate distinct clusters effectively. The outcomes of
the HCA analysis were vividly presented through the dendrogram illustrated in Figure 3.
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Figure 3. Dendrogram obtained from the HCA using the Euclidean distance and Ward’s method.
The paraffin wax samples (n = 75) were colored in different blue tones according to their percentage
of odor.

A PCA was conducted to gain further insights into the spectral ranges influencing the
observed results. Figure 4A displays a scores plot for the first two principal components
(PC1 and PC2) across all samples (n = 75), while Figure 4B illustrates the loadings for PC1
and PC2. Together, PC1 and PC2 accounted for 59.1% and 22.7% of the data variance,
respectively, totaling a cumulative variance of 81.8%. These components were instrumen-
tal in differentiating the wax samples based on their odor intensity levels. Specifically,
Figure 4A shows PC1 differentiating samples with 0% and 25% non-hydrogenated paraffin
wax (negative loadings on PC1) from those with 50%, 75%, and 100% wax content (positive
loadings on PC1). Conversely, PC2 distinctly separated the 0% and 25% odor grade samples,
with the former showing negative loadings and the latter positive. A less distinct trend
was observed among the 50%, 75%, and 100% non-hydrogenated content samples. These
PCA results align with those from the hierarchical cluster analysis. The loadings plot in
Figure 4B indicates that the m/z range, particularly m/z 91, significantly contributed to the
separation on PC1, exhibiting a notable weight value of 0.66. This m/z is usually related
to aromatic alkylbenzenes. This would agree with previous studies by Durret (1966) and
Yun et al. (2013) [38,39], who identified that the odor in paraffin waxes derived mostly
from aromatic alkylbenzenes such as toluene. However, it should be noted that in TIS the
m/z contributions came from the total sum of intensities for each m/z. For this reason, the
origin of the responsible compounds cannot be precisely defined. On the other hand, it was
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observed that the m/z with the highest weight in PC2, at 0.54, is m/z 73. The information
obtained on the spectral signals can help to understand which ones are responsible for
grouping the samples according to their odor level.
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3.3.2. Classifiers
Gaussian SVM Classifier

First, the hyperparameters C and σ were optimized using the training set to create
an SVM classifier with a Gaussian kernel implementation. Here, we performed the opti-
mization using the grid search method with the exponential growth of both C and σ. In
this case, log2C and log2σ ranged from −10 to 10 in 0.5 intervals. Each combination of
parameter selections was evaluated using a 5-fold CV, and the smallest parameter value
with the highest 5-fold CV accuracy was selected as optimal. Figure S2 (Supplementary
Materials) shows the contour plots where the optimization of C and σ using the grid search
method is displayed. It can be observed that the value of the 5-fold CV accuracy increased
as log2C, and, thus, C, increased (Figure S2). The C parameter controls the number and
severity of margin (and hyperplane) violations allowed in the fitting process. Higher
values of C have smaller margins, so fewer observations are support vectors (SVs), and
the resulting classifier has less bias, but more variance. In this work, the optimal C value
was set to 128 (log2C = 7). Otherwise, the 5-fold CV accuracy grew as the log2σ value
increased and, consequently, as σ increased. The value of σ controls the kernel’s behavior
and increasing its value correspondingly increases the model’s flexibility. In this case, the
optimal value of σ was set to 724 (log2σ = 9.5). Additionally, the number of SVs used for
the optimized model was set to 42. After hyperparameter tuning, the model was trained
with the optimal values of C and σ obtained using the training set and applying a 5-fold
CV, yielding 94.4% 5-fold CV accuracy and 0.93 5-fold CV kappa. The performance of the
Gaussian kernel SVM classifier generated was evaluated and validated using the test set,
showing an accuracy of 100% and a kappa of 1 which confirmed the excellent performance
of the generated Gaussian SVM classifier in discriminating the paraffin waxes according to
their odor levels.

RF Classifier

The optimal hyperparameter values of mtry and ntree were first established using the
training set (D501×55) for building the RF model. The square root of the total number of
predictors was used as the optimal value of mtry and equals 22.38 (501 predictors). For
its part, the number of decision trees is not a critical hyperparameter, because adding a
large number of decision trees is not associated with the risk of overfitting. However, the
analyst must determine its value in advance to stabilize the error and minimize the loss
of computational resources. To determine the number of decision trees to use, the values
of ntree in this study were set from 2 to 100 with 2 tree intervals, and the highest stable
accuracy of 5-fold CV was taken as the endpoint.

The results are shown graphically in Figure S3 (Supplementary Materials), which
demonstrates that the accuracy rate tended to be stable in 16 decision trees and stayed up
to 54. From this number of decision trees, a slight increase and decrease in the 5-fold CV
accuracy were observed. The accuracy rate then stabilized again from 78 decision trees and
was maintained until 100. In this sense, the number of decision trees was set at 100 because
it is a large enough number to stabilize the error without a considerable computational
cost. Optimal values determined for mtry and the number of decision trees were then used
to train the RF model with the training set applying a 5-fold CV. The results from the RF
model during training showed a 5-fold CV accuracy of 87.1% and a 5-fold CV kappa of 0.84.
Additionally, the OOB estimate of the error rate was 23.64%. The model’s performance
was then evaluated and validated using the test set, obtaining an accuracy of 85.0% and a
kappa of 0.81. The RF model also presented a lower performance in terms of paraffin wax
discrimination as a function of odor intensity compared to that obtained by the Gaussian
SVM classifier. Specifically, attending to the confusion matrix obtained for the test set, the
model misclassifies, on the one hand, one “Moderate” odor sample into a “Very Strong”
odor, and, on the other hand, two “Very Strong” odor samples into “Moderate”.
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On multiple occasions, using a large number of predictors is not equivalent to higher
model performance, since the model may capture existing noise in the data and redundant
information. As such, the selection of a subset of variables to obtain a better fit with the
algorithm employed can be presented as a solution. Unlike the SVM algorithm, the RF
algorithm allows for the extraction of which predictors (i.e., m/z intensities) have a higher
relative importance in the classification of the samples. For this purpose, the varImp function
of the caret package was used to estimate the contribution of each variable to the model. In
the case of RF, this function calculates the prediction accuracy on the out-of-bag portion of
the data for each tree. Subsequently, the same is completed after permuting each predictor
variable. Finally, the difference between the two accuracies is averaged over all trees and
normalized by the standard error. Specifically, eight m/z (79, 92, 95, 97, 118, 157, 188,
221) were selected with relative importance higher than 70% (Supplementary Figure S4).
A one-way ANOVA was performed for each of the variables selected by the RF model on
the 5 types of odor samples, and all of them showed statistically significant differences at a
95% confidence level. Therefore, the fit of the RF algorithm when using the training and
test sets reduced to these eight m/z intensities was studied and evaluated. Here, the value
of mtry was set to 2828 and the number of decision trees to 100. The results showed an
accuracy of 94.36% and a kappa of 0.93 for the 5-fold CV set, with an OOB error rate of
7.27%. In addition, the model performance was evaluated using the test set reduced to the
selected variables, obtaining an accuracy of 95.0% and a kappa of 0.94. The improvement in
accuracy and kappa in both the 5-fold CV and test sets and, likewise, in the OOB error rate
is noteworthy. In this sense, for the discrimination of paraffin waxes according to their odor
grade, it would be necessary to use this RF-reduced model to obtain a precise classification.

The results obtained through the ANOVA and for the RF-reduced model indicate that
the intensities of these eight m/z could be used to generate a characteristic spectralprint
of the different odor degrees of paraffin waxes for the rapid and visual discrimination
between them. Figure 5 shows the spectralprints represented in bar charts using the mean
intensities values normalized to the maximum of the signal for each of the eight m/z.
According to the results, differences were observed in terms of intensity for these m/z
depending on the degree of odor. Paraffin waxes without odor (“None”) and with a “Slight”
odor presented their maximum intensity at m/z 97, while paraffin waxes with a “Moderate”,
“Strong” and “Very Strong” odor presented their maximum intensity at m/z 92. Between the
paraffin waxes of “None” odor and those of “Slight” odor, there were differences in the level
of intensity in the remaining 7 m/z (m/z 79, 92, 95, 118, 157, 188, and 221), highlighting
the m/z 92, 118, and 157, which presented intensities equal to or higher than 0.75 for the
“Slight” odor paraffin waxes and below 0.5 for the “None” odor paraffin waxes. On the
other hand, the “Moderate”, “Strong” and “Very Strong” odors differed from each other in
a decrease in the intensity of the remaining m/z (m/z 79, 95, 97, 118, 157, 188, and 221) as
the degree of odor in the paraffin wax increased.
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3.3.3. Regression Models

For this section, the results obtained from the developed models have been summa-
rized in Table 4.

Table 4. Results obtained for each regression model in the discrimination of odor grade in paraf-
fin waxes.

5-Fold CV Test Set

Model Hyperparameters RMSE R2 RMSE R2

PLSR No. components = 7 9.797 0.9330 9.227 0.9328

RF mtry = 167; No. trees = 100 10.37 0.9157 9.782 0.9327

RBF-SVR C = 1024; γ = 128; ε = 0.1 7.127 0.9579 6.789 0.9667

PLSR

The optimal number of components for the PLSR model was determined by a 5-fold
CV on the training set. The chart in Figure S5 (Supplementary Materials) illustrates the
progression of the RMSE relative to the number of components utilized. The optimal
component count for the PLSR model was determined to be 7, based on achieving the
lowest RMSE, which was 9.797. This setup also resulted in an R2 value of 0.9330 from a
5-fold cross-validation, as detailed in Table 4. These 7 components accounted for 99.40%
of the variance in predictors and 93.71% of the variance in response. The performance
of the generated model was evaluated using the test set, obtaining RMSE and R2 values
equal to 9.227 and 0.9328 (Table 4), respectively. Due to the PLSR algorithm’s nature, the
variables’ importance in the generated model can be determined. This information can be
used to facilitate the understanding of the results. To establish the relative importance of
the variables, the varImp function of the caret package was used. For PLSR, the measure of
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the importance of the variable is based on the weighted sums of the absolute regression
coefficients. A graphical representation of the relative importance of the predictors is shown
in Figure 6, which shows that m/z 91 had a relative importance of 100%, followed by m/z
92 with 61%. These results agreed with those observed in the PCA, where m/z 91 had a
higher weight in PC1 and with those obtained in the RF classifier, where m/z 92 had a
percentage of relative importance above 70%.
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RF Regression

For building regression models based on the RF algorithm, the value of mtry and the
number of decision trees need to be set. The parameter mtry in regression problems is
usually set to p/3, so in this case, it was established at a value of 167. For their part, to
determine the number of decision trees to use, the values of ntree were explored from 2 to
100 with 2 tree intervals using the training set, and the lowest stable RMSE value in the
5-fold CV was set as the endpoint. The results are shown graphically plotted in Figure S6
(Supplementary Materials), which demonstrates that the RMSE value tended to decrease as
the number of decision trees increased. Specifically, a stabilization trend of the RMSE over
a value below 10.50 was observed starting at 67 decision trees. From this point onwards,
the variation of RMSE was not remarkable, reaching an RMSE value equivalent to 10.37 at
100 decision trees. Therefore, the final number of decision trees was established at 100 in the
present study, considering that this value is widely employed in different RF applications
together with the fact that its application does not imply a high computational cost. With
these values of mtry and ntrees, the model was trained using a 5-fold CV and the training
set, obtaining RMSE and R2 of 10.37 and 0.9157 (Table 4). The model performance was
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established using the test set, achieving RMSE and R2 values of 9.782 and 0.9327 (Table 4),
respectively. The performance of the RF model obtained was similar to that of PLSR in
terms of the evaluation metrics used.

Analogous to the PLS algorithm, the RF algorithm enables the identification of the most
important variables in the construction of the model. To establish the relative importance of
the variables, the varImp function of the caret package was used. A graphical representation
of the relative importance of the predictors in the generated RF model is shown in Figure 7,
which shows that m/z 157 presented a relative importance equivalent to 100%, followed
by m/z 153 (70%) and 80 (69%). The selection of m/z 157 by the RF regression model
agreed with the results obtained with the RF classifier, where this variable was also selected
as important (relative importance higher than 70%). The variables selected by the RF
regression model also differ from those obtained by the PLSR model. This discrepancy
can be attributed to the fact that the significance of predictors is heavily dependent on the
underlying model used. Different ML algorithms may interpret and weigh the importance
of a predictor differently based on their internal mechanics and how they handle data. This
means that what may be considered an important variable in one model (e.g., RF) might
not be as crucial in another (e.g., PLSR), underscoring the idea that the relative importance
of variables is model-specific. In other words, models trained with different ML algorithms
may use a predictor differently.
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Gaussian SVR

A model based on the SVR algorithm was created using the Gaussian kernel im-
plementation. First, the hyperparameters C and σ were optimized. With exponentially
growing sequences of C and σ, a grid search approach was used, taking values of log2C
and log2σ from −10 to 10 every 0.5 units. Each combination of C and σ was performed
using a 5-fold CV, and the criterion of lowest RMSE was used to choose the best choice. In
addition, SVR has a third hyperparameter, ε, which regulates the learning rate and must
be adjusted by the analyst. In this case, ε was maintained constant at 0.1. In Figure S7
(Supplementary Materials), which displays the contour plots for determining the optimal
values of C and σ, it can be seen that the value of RMSE drops as log2C and log2σ increase.
Finally, employing a total of 53 SVs, the optimal combination was determined to be a C
value of 1024 (log2C = 10) and a value of 128 (log2σ = 7), resulting in an RMSE of 7.127 and
an R2 of 0.9579 (Table 4). The model was validated using the test set after it had been tuned
and trained, yielding RMSE and R2 values of 6.789 and 0.9667 (Table 4), respectively. Since
lower RMSE and higher R2 values were obtained for both the 5-fold CV and test sets, the
results obtained with the Gaussian SVR model are marginally better than those produced
with the PLSR and RF regression models. This suggests that this model performs more
accurately and efficiently when quantifying the proportion of odor in paraffin wax samples.

3.4. Web Application

From the obtained results, the Gaussian SVM and Gaussian SVR models presented a
higher performance for discriminating and quantifying the odor grade in paraffin waxes.
A Shiny App prototype (https://marta-barea.shinyapps.io/paraffin_odor_app/) has been
developed to share these models and to show the advantages of the use of supervised
ML techniques in the understanding of chemical information and automation of data
processing. To correctly use this app, users are required to analyze their paraffin wax
samples using the HS-GC/MS methodology described in this work. In turn, users must
obtain the TIS for each sample and normalize the data to the base peak (maximum signal).
Then, these data, in .csv/txt or .xlsx/xls format, will be uploaded to the app, where the
models will be to discriminate the samples according to the odor intensity and quantify
the percentage of odor. A test set has been introduced in the app to try it out. For this
purpose, simply click on the “Download” button, where the .xlsx file with the test data can
be downloaded. Once downloaded, the file can be uploaded in “File Input” by clicking
on the “Browser” button. The app will indicate that the file is successfully uploaded, and
the data will appear in the right region of the screen. Click on the “Submit” button for
the models to perform the predictions. The results of the intensity and odor percentage
estimation will be displayed afterward on the screen. This interactive web application has
been created to be simple and intuitive to use. However, it can be improved and adapted
to the needs and requirements of the users of the sector.

3.5. Discussions

The HS-GC/MS method, incorporating TIS and ML, presents significant advantages
over ASTM D1833, electronic noses with gas sensors, and traditional GC/MS using TIC,
particularly in the context of assessing odor levels in food-grade paraffin waxes. ASTM
D1833, which employs a sensory panel for odor evaluation, can introduce subjectivity
and variability due to its reliance on human sensory analysis. This traditional method
is not only labor-intensive but also prone to inconsistencies across different testers and
testing conditions. In stark contrast, HS-GC/MS with TIS and ML automates the process,
significantly enhancing objectivity, repeatability, and accuracy, thus minimizing human
intervention. Electronic noses equipped with gas sensors, although capable of detecting
VOCs via sensor responses, can suffer from sensor drift and a limited range of detectable
compounds. In comparison, HS-GC/MS with TIS and ML offers a more comprehensive
aromatic profile, enabling fast and reliable analysis of the sample (Table 5). The ML
component of this approach further facilitates the classification and quantification of
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complex odor profiles, a task that may prove challenging for electronic noses if the sensor
array lacks the necessary diversity or specificity. Additionally, traditional GC/MS with TIC,
while effective for analyzing known compounds, often fails to detect unknown volatiles
that contribute to odors. TIS, on the other hand, captures a complete ion profile across
the entire chromatographic run, providing a more exhaustive analysis. The integration
of ML enhances this method’s ability to detect and quantify both known and unknown
compounds, rendering HS-GC/MS with TIS and ML a versatile and powerful tool for
comprehensive odor analysis.

Table 5. HS-GC/MS with TIS and ML vs. other methods.

Method Merits Disadvantages Applications Analysis Time Solvents Used

HS-GC/MS with TIS
and ML

High accuracy,
comprehensive

analysis, automated
processing

Setup for ML
algorithms and

training
data required

Quality control in
industries like

food-grade materials
Short to medium None

(direct analysis)

ASTM D1833 Standardized, simple
implementation

Subjective, requires
human panel,
potential for
inconsistency

Quality assessment
in petroleum product

industries
Short to medium None

(sensory analysis)

Electronic Noses with
Gas Sensors

Quick, real-time
monitoring, portable

Sensor stability
issues, limited

compound
detection range

Broad applications
from food quality to

environmental
monitoring

Very short None (sensor-based)

GC/MS with TIC
Accurate for known

compounds,
reproducible

Limited detection of
unknowns, complex
setup and calibration

Detailed VOC
analysis in chemical

and environmen-
tal sciences

Medium to long Varies with sample
preparation

As can be seen in Table 5, the integration of HS-GC/MS with TIS and advanced ML
algorithms offers a compelling alternative for the automated, objective assessment of odor
levels in food-grade paraffin waxes, providing significant improvements over traditional
methods in terms of reliability, comprehensiveness, and efficiency.

4. Conclusions

The present research has successfully developed an automatic, effective, and objective
methodology based on HS-GC/MS to characterize and quantify the odor grade in paraffin
waxes. Specifically, both RSM–BBD and a univariate study have been applied for the
optimization of the HS working conditions, obtaining accurate and repeatable results. The
final method developed presents certain advantages based on the non-use of solvents and
the analysis time, making it eco-friendly and applicable to routine analysis in petrochemical
or agri-food laboratories using this material. On the other hand, the study of the relevant
literature revealed that, to the best of our knowledge, this is the first time that TIS informa-
tion has been employed as a strategy to characterize this parameter in paraffin wax. These
chemical data, combined with the appropriate ML tools, allow for reproducible and fast
processing of the results. Concretely, the unsupervised ML techniques, HCA and PCA,
revealed the existence of a certain grouping tendency of the studied samples according to
their odor level. Of the classification models generated, the one based on Gaussian SVM
obtained excellent results (test set: 100% accuracy and kappa 1) for the discrimination of
the odor level in the paraffin wax samples. On the other hand, of the regression algorithms
explored for odor-grade quantification, the Gaussian SVR-based model obtained a higher
performance (test set: 6.789 RMSE and 0.9667 R2). Furthermore, an interactive online
application has been developed to share these two models with industry researchers and
manufacturers as well as to make it simpler for this product to be controlled. These models
can be retrained as more samples are examined. In this way, by creating a constantly
updated database, the reality may be more precisely tuned to satisfy the quality control
criteria of this PDP.
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Future studies should focus on applying and evaluating this methodology across
a broader range of real sample matrices to guarantee reliable prediction results in other
samples. Moreover, expanding the database with real-time data from various sources will
enhance the models’ predictive capabilities.
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evolution of the 5-fold CV accuracy in the search for the optimal values of C and σ for the Gaussian
SVM classifier; Figure S3: Evolution of 5-fold CV accuracy as a function of the number of decision
trees; Figure S4: Graphical display of the 20 most important m/z and their relative importance in
the RF classifier; Figure S5: Evolution of RMSE as a function of the number of components using
5-fold CV; Figure S6: Evolution of 5-fold CV RMSE as a function of the number of decision trees;
Figure S7: 2D contour plot showing the evolution of the 5-fold CV RMSE in the search for the optimal
values of C and σ for the Gaussian SVR model.
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HS-GC/MS Headspace Gas Chromatography with Mass Spectrometry
ML Machine Learning
HS Headspace
GC Gas Chromatography
MS Mass Spectrometry
HCA Hierarchical Cluster Analysis
PCA Principal Component Analysis
SVM Support Vector Machine
SVR Support Vector Regression
RF Random Forest
PLSR Partial Least Squares Regression
BBD Box–Behnken Design
RSM Response Surface Methodology
VOCs Volatile Organic Compounds
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SVOCs Semi-Volatile Organic Compounds
TIS Total Ion Spectra
TIC Total Ion Chromatogram
SPME Solid-Phase Microextraction
TD Thermal Desorption
ASTM American Society for Testing and Materials
FDA Food and Drug Administration
ANOVA Analysis of Variance
CV Coefficient of Variation
ELM Extreme Learning Machine
m/z Mass-to-Charge Ratio
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