
Citation: Tzimopoulos, C.;

Papadopoulos, K.; Samarinas, N.;

Papadopoulos, B.; Evangelides, C.

Fuzzy Finite Elements Solution

Describing Recession Flow in

Unconfined Aquifers. Hydrology 2024,

11, 47. https://doi.org/10.3390/

hydrology11040047

Academic Editor: Roohollah Noori

Received: 1 March 2024

Revised: 25 March 2024

Accepted: 27 March 2024

Published: 30 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

hydrology

Article

Fuzzy Finite Elements Solution Describing Recession Flow in
Unconfined Aquifers
Christos Tzimopoulos 1, Kyriakos Papadopoulos 2 , Nikiforos Samarinas 1,* , Basil Papadopoulos 3

and Christos Evangelides 1

1 Department of Rural and Surveying Engineering, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece; evan@topo.auth.gr (C.E.)

2 Department of Mathematics, Kuwait University, Safat 13060, Kuwait; kyriakos.papadopoulos@ku.edu.kw
3 School of Engineering, Democritus University of Thrace, 67100 Xanthi, Greece
* Correspondence: smnikiforos@topo.auth.gr

Abstract: In this work, a novel fuzzy FEM (Finite Elements Method) numerical solution describing the
recession flow in unconfined aquifers is proposed. In general, recession flow and drainage problems
can be described by the nonlinear Boussinesq equation, while the introduced hydraulic parameters
(Conductivity K and Porosity S) present significant uncertainties for various reasons (e.g., spatial
distribution, human errors, etc.). Considering the general lack of in situ measurements for these
parameters as well as the certain spatial variability that they present in field scales, a fuzzy approach
was adopted to include the problem uncertainties and cover the disadvantage of ground truth missing
data. The overall problem is encountered with a new approximate fuzzy FEM numerical solution,
leading to a system of crisp boundary value problems. To prove the validity and efficiency of the new
fuzzy FEM, a comparative analysis between the proposed approach and other well-known and tested
approximations was carried out. According to the results, the proposed FEM numerical solution
agrees with Karadinumerical method for the crisp case and is in close agreement with the original
analytical solution proposed by Boussinesq in 1904 with the absolute reduced error to be 4.6‰.
Additionally, the possibility theory is applied, enabling the engineers and designers of irrigation,
drainage, and water resources projects to gain knowledge of hydraulic properties (e.g., water level,
outflow volume) and make the right decisions for rational and productive engineering studies.

Keywords: drain spacing; groundwater flow; fuzzy methodology; fuzzy logic

1. Introduction

Recession flow of unconfined aquifers and drainage problems, both overlying an
impermeable layer without precipitation, can be described by the nonlinear Boussinesq
equation:

∂h
∂t

=
K
S

∂

∂x

(
h

∂h
∂x

)
This equation is based on simplifying assumptions:
(a) Neglecting the effect of capillary rise above the water table;
(b) Accepting the Dupuit-Forchheimer approximation;
(c) the initial curve was formed after a certain time.
Boussinesq (1904) obtained an exact solution assuming an inverse incomplete beta

function as the initial condition for the groundwater table. In addition to the above
simplifications, he assumed that (a) the water level in the channel at x = 0 was equal to
zero and (b) that the boundary condition at x = L was that the flux q(L, t) = 0, that is in this
position there is an impermeable geological formation.

In case of drainage problem with drains overlying an impermeable layer and drain
spacing between 2L, due to symmetry in water level, there is the same boundary condi-
tion to x = L (q(L, t) = 0), and the Boussinesq solution could be valid. This equation was

Hydrology 2024, 11, 47. https://doi.org/10.3390/hydrology11040047 https://www.mdpi.com/journal/hydrology

https://doi.org/10.3390/hydrology11040047
https://doi.org/10.3390/hydrology11040047
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/hydrology
https://www.mdpi.com
https://orcid.org/0000-0003-1042-6016
https://orcid.org/0000-0002-1619-778X
https://orcid.org/0000-0001-6519-895X
https://orcid.org/0000-0001-9309-0620
https://doi.org/10.3390/hydrology11040047
https://www.mdpi.com/journal/hydrology
https://www.mdpi.com/article/10.3390/hydrology11040047?type=check_update&version=3


Hydrology 2024, 11, 47 2 of 24

presented by Boussinesq (1904) in the French journal ‘Journal de Mathématiques Pures et
Appliquées [1]. Polubarinova Kochina [2–4] published a solution to Boussinesq’s equation
using the method of small disturbances. Tolikas et al. (1984) [5] obtained an approximate
closed-form solution by applying similarity transformation and polynomial approximation.
Lockington (1997) [6] provided a simple approximate analytical solution using a weighted
residual method. This method was applied to both the recharging and discharging of
an unconfined aquifer due to a sudden change in the head at the origin. Moutsopoulos
(2010) [7] applied Adomian’s decomposition method and obtained a simple series solution
with a few terms, and performing a benchmark test showed the advantages of his solution.
Basha (2013) [8] used the traveling wave method to obtain a nonlinear solution of a simple
logarithmic form. The solution is adaptable to any flow situation that is recharged or
discharged and allows practical results in hydrology. Additionally, algebraic equations are
included for the velocity of the propagation front, wetting front position, and relationship
for aquifer parameters. Chor et al. (2013) [9] provided a series solution for the nonlinear
Boussinesq equation in terms of the Boltzmann transform in a semi-infinite domain. More
recently, Hayek (2019) [10] provided an approximate solution by introducing an empirical
function with four parameters. The parameters were obtained using a numerical fitting pro-
cedure with the add-in Solver tool in Microsoft Excel. Furthermore, analytical approaches
are based mainly on Caputo fractional derivatives explored by authors to provide solutions
to nonlinear partial differential equations. Specifically, Khan et al. (2019) [11] proposed
a hybrid methodology of Shehu transformation along with the Adomian decomposition
method, while Shah et al. (2019) [12] and Rashid et al. (2021) [13] provided solutions to
a system of nonlinear fractional Kortweg-de Vries partial differential equations based on
Caputo operator, Shehu decomposition method, and the Shehu iterative transform method.
Iqbal et al. (2022) [14] used a novel iterative transformation technique and homotopy pertur-
bation transformation technique to calculate. The fractional-order gas dynamics equation.
Tzimopoulos et al. (2021) [15] used a transformed method of Wiedeburg (1980) [16] to solve
the one-dimensional Boussinesq equation for both the recharging and discharging of a
homogeneous unconfined aquifer. Several other authors provide useful insight into the
solution and are valuable tools for testing the accuracy of numerical methods [17–23].

Due to the difficulty of finding exact analytical solutions to the physical problem,
many numerical solutions to the problem of the water response to recharge or discharge of
an aquifer have been developed in the past. Remson et al. (1971) [24] give detailed informa-
tion about the existing numerical methods for solving problems in subsurface hydrology.
Tzimopoulos and Terzides (1975) [25] investigated the case of water movement through
soils drained by parallel ditches. Numerical solutions are presented based on implicit com-
putational schemes of the Crank–Nicolson, Laasonen, and Douglas types. Experimental
data obtained by a Hele-Shaw model in the laboratory are in very good agreement with
the values computed numerically by these implicit schemes. Chávez et al. (2011) [26]
considered a problem of agricultural drainage described by the Boussinesq equation. They
implemented an implicit numerical scheme in which interpolation parameters were used,
that is γ and ω, for space and time, respectively. Two discretization schemes of the time
derivative were found: the mixed scheme and the head scheme. Both schemes were vali-
dated with one analytical solution. Bansal (2012) [27] and Bansal (2016) [28] investigated
the case of groundwater fluctuations in sloping aquifers induced by replenishment and
seepage from a stream. For this case, the Boussinesq equation has been discretized using
the Mac Cormack scheme. This scheme is a predictor–corrector scheme in which the pre-
dicted value of the head is obtained by replacing the spatial and temporal derivatives with
forward differences. The corrector scheme is obtained by replacing the spatial derivative
with a backward difference and the time derivative with a forward difference. Borana et al.
(2013) [29] employed a Crank–Nicolson finite-difference scheme to solve the Boussinesq
equation for the case of infiltration phenomenon in a porous medium. They concluded
that the Crank–Nicolson scheme is consistent with the physical phenomenon and stable
without any restrictions on the stability ratio. Bansal (2017) [30] investigated the case of
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the interaction of surface and groundwater in a stream-aquifer system. He derived a new
analytical solution and employed the Du Fort and Frankel scheme for the comparison. The
proposed scheme is an explicit finite-difference numerical scheme, proceeding in three time
levels. Nguyen (2018) [31] investigated the case of stratified heterogeneous porous media.
The model is a system of two equations: one for the water level in fissured porous blocks
and one for the water level in system cracks. The discretized schemes are explicit in both
cases. More recently, Samarinas et al. (2018, 2021) [32,33] developed the Crank–Nicolson
scheme in a fuzzy environment and solved the linearized fuzzy Boussinesq equation while
later proposing an efficient method to solve the fuzzy tridiagonal system of equations that
appeared in the numerical scheme [34].

An alternative numerical method based on the weak variational formulation of bound-
ary and initial value problems is the Finite Elements Method (FEM). It is a popular method
for numerically solving partial differential equations arising in engineering and mathe-
matical modeling, including traditional fields of structural analysis, heat transfer, fluid
flow, mass transport, and electromagnetic potential. The pioneers of this method are con-
sidered Courant (1943) [35], Argyris (1954) [36], and Turner et al. (1956) [37]. According
to Oden (1990) [38], “no other family of approximation methods has had a greater impact on
the theory and practice of numerical methods during the twentieth century”. Many numerical
solutions based on the FEM method and concerning hydraulic problems have been pre-
sented. Tzimopoulos and Terzides (1976) [39] studied a physical problem of a free surface
flow toward a ditch or a river. The solution to Boussinesq’s equation was made by the
application of the finite-element method. Galerkin’s method [40] was used, leading to a
system of nonlinear equations. Numerical results were compared with the exact solution of
Boussinesq and with other finite-difference approximations. Frangakis and Tzimopoulos
(1979) [41] investigated a numerical model based on Boussinesq’s equation describing the
unsteady groundwater flow on impervious sloping bedrock. The numerical model uses the
finite-element technique with Galerkin’s method. The stability and accuracy of the method
have been proved by the comparison of numerical results with the Crank–Nicolson scheme.
Tzimopoulos and Tolikas (1980) [42] investigated the problem of artificial groundwater
recharge in the case of an unconfined aquifer, described by the Boussinesq equation. The
problem was solved by analytical and numerical methods. The finite-element method was
used with square elements. Tber and Talibi (2007) [43] presented a numerical method of
FEM to automatically identify hydraulic conductivity in the seawater intrusion problem
when a sharp interface approach is used. Mohammadnejad and Khoei (2013) [44] pre-
sented a fully coupled numerical model developed for the modeling of hydraulic fracture
propagation in porous media, using the extended finite element method in conjunction
with the cohesive crack model. Yang et al. (2019) [45] proposed a novel computational
methodology to simulate the nonlinear hydro-mechanical process in saturated porous
media containing crossing fractures. The nonlinear hydro-mechanical coupled equations
are obtained using the Extended Finite Element Method (XFEM) discretization and solved
using the Newton-Raphson method. Aslan and Temel (2022) [46] described the 2D steady-
state seepage analysis of the dam body and its base is investigated using the Finite element
method (FEM) based on Galerkin’s method [40] and Ritz’s (1908) [47] approach. The body
and foundation soil are considered homogeneous isotropic and anisotropic materials, and
the effects of horizontal drainage length and the cutoff wall on seepage are investigated.

Since the aforementioned problem concerns differential equations, which present
particular problems regarding fuzzy logic, a significant number of research studies were
carried out in that field, especially regarding the fuzzy differentiation of functions. Ini-
tially, fuzzy differentiable functions were studied by Puri and Ralescu (1983) [48], who
generalized and extended Hukuhara’s fundamental study [49] (H-derivative) of a set of
values appearing in fuzzy sets. Kaleva (1987) [50] and Seikkala (1987) [51] developed a
theory on fuzzy differential equations. In the last years, several studies have been carried
out in the theoretical and applied research field on fuzzy differential equations with an
H-derivative [50,52–54]. Nevertheless, in many cases, this method has presented certain



Hydrology 2024, 11, 47 4 of 24

drawbacks since it has led to solutions with increasing support, along with increasing
time [55]. This proves that, in some cases, this solution is not a representative general-
ization of the classic case. To overcome this drawback, the generalized derivative gH
(gH-derivative) was introduced [56–58]. The gH-derivative will henceforth be used for a
more extensive degree of fuzzy functions than the Hukuhara derivative.

In general, fuzzy methodology has already been recognized as an innovative approach
to handling problem uncertainties with several works in different scientific fields [59–63]
but to our knowledge, a limited number of studies have been published recently concerning
fuzzy FEM models and are mainly in structural mechanics [31,64–67].

In the present article, two crucial hydraulic properties (Conductivity K and Porosity S)
on the Boussinesq equation are considered fuzzy, and the overall problem is encountered
with a new approximate fuzzy FEM numerical solution, leading to a system of crisp
boundary value problems. In the current work, two different physical problems of fuzzy,
unsteady nonlinear flow are examined: (a) the case of a drainage problem, with drains
overlying an impermeable layer without precipitation, and (b) the case of a semi-infinite
unconfined aquifer bordering a geological formation and overlying an impermeable layer.
In the first case, the initial water table is equal to h0. The water table is falling, and outflow
volume is flowing to the two drains. In the second case (considering the Boussinesq
solution [1]), the initial groundwater table had the form of an inverse incomplete beta
function, which in the current study has been approximated by polynomial approximation
presented in very close agreement with the initial form. The proposed FEM method has
proved to be in agreement with other numerical method by Karadi et al. 1968 [68] and
in close agreement with the Boussinesq analytical method [1]. In addition, this work
presents a specific novelty related to fuzzy FEM, as a limited number of studies have
been published recently concerning only structural mechanics. Additionally, in the current
work, the possibility theory and the fuzzy theory combined led to fuzzy estimators for
the hydraulic parameters (water levels and outflow volumes). Therefore, engineers and
designers can have a complete picture of the influence of these parameters, and by knowing
the confidence intervals with a certain strong probability and a small risk can help them
make the right decisions for water resource projects.

2. Materials and Methods
2.1. Crisp Model

For the convenience of the reader throughout this work, the following sketch
(Figure 1) is provided, in which valuable definitions regarding the physical problem under
examination are provided.
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The free surface of the groundwater flow to the drains is described by the Boussinesq
equation:

∂h
∂t

=
K
S

∂

∂x

(
h

∂h
∂x

)
(1)

with the following initial and boundary flow conditions:

t = 0, h(x, 0) = h0,
t > 0, h(0, t) = 0, ∂h(L,t)

∂x = 0.
(2)

Now, nondimensional variables are introduced:

H =
h
h0

, s =
x
L

, τ =
Kh0t
2SL2 , (3)

and Equation (1) is then transformed into the following expression:

∂H
∂τ

=
∂

∂s

(
2H

∂H
∂s

)
, (4)

with the following new initial and boundary flow conditions:

τ = 0, H(s, 0) = 1,
τ > 0, H(0, τ) = 0, ∂(H(1,τ))

∂s = 0.
(5)

Numerical Method

For the solution of Equation (4), the FEM has been used. The domain of integration
(s, τ) is divided into rectangular elements with dimensions ∆s and ∆τ/2. The global nodal
points are numbered with bold numbers 1, 2, ..., and G, while the local ones inside each
element are numbered with large numbers N = (1), (2), (3), and (4) enclosed in parentheses.
Each element (e) is also numbered with small letters enclosed in parentheses (e1), (e2), . . ..,
(en) (Figure 2b). Equation (4) is not linear, so the more suitable numerical method for the
construction of a model with finite elements is Galerkin’s method [69].
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By using this method, Equation (4) is written:

L
(

H
)
=

∂H
∂τ

− ∂

∂s

(
2H

∂H
∂s

)
= r0, (6)

where r0 = a smal quantity, and H = an approximating function to H.
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In Galerkin’s method, the global basis function Φ∆(
→
X) (Figure 2a) is orthogonal with

respect to operator L(H), that is:∫
R

L(H)Φ∆(
→
X)dR = 0,

→
X = (s, τ), ∆ = 1, 2, ...., G. (7)

Note: from now on, the dash over H will be omitted for practical reasons.
By using Green’s theorem, Equation (7) gives the nonlinear algebraic equation

as follows:

−λ[∆2
i,j+ 1

2

(
H2)+ 1

6 ∆2
i,j
(

H2)+ 1
6 ∆2

i,j+1
(

H2)+ 1
3{Hi−1,j+ 1

2

(
Hi−1,j + Hi−1,j+1

)
− 2Hi,j+ 1

2

(
Hi,j + Hi,j+1

)
+

Hi+1,j+ 1
2

(
Hi+1,j + Hi+1,j+1

)
}] + 1

6
{(

Hi−1,j+1 + 4Hi,j+1 + Hi+1,j+1
)
−
(

Hi−1,j + 4Hi,j + Hi+1,j
)}

= 0,
i = 1, 2, ...., n, j = 1, 2, . . . . . . k,

(8)

where λ = ∆τ/∆s2 and the operator ∆2
i,j
(

H2) = H2
i+1,j − 2H2

i,j + H2
i−1,j. The nonlinear terms

are linearized by taking

H2
i,j+1 = H2

i,j +
∂
(

H2)
∂H

|i, j(Hi,j+1 − Hi,j), (9)

and the functions at the point (i, j + 1/2) are approximated by

(H2)i,j+1/2 =
1
2
((H2)i,j +

(
H2)i,j+1

)
. (10)

Under the above simplifications, the linearized equation becomes:

AiXi−1,j+1 + BiXi,j+1 + CiXi+1,j+1 = Di (11)

with
Ai = −λHi−1,j +

1
6 ,

Bi = 2λHi,j +
2
3 ,

Ci = −λHi+1,j +
1
6 ,

Di =
1
6
(

Hi+1,j + 4Hi,j + Hi−1,j
)

Xi−1,j+1 ≡ Hi−1,j+1, Xi,j+1 ≡ Hi,j+1, Xi+1,j+1 ≡ Hi+1,j+1.

The solution of Equation (11) is obtained via the Thomas algorithm [70] for tridiagonal
systems. It is also crucial to mention that this algorithm is a special adaptation of the
Gauss elimination method, and it is very efficient if the following relation is applied in a
computer [25]:

Ai > 0, Bi > 0, Ci > 0, Di > 0
λ > 1

Hi−1,j−2Hi,j+Hi+1,j
.

In the current work, the values of ∆t = 0.006d and ∆x2 = 1.5m used provide numerical
stability for all cases.

2.2. Fyzzy Framework and Definitions

For readers unfamiliar with the fuzzy theory, we describe definitions concerning some
preliminaries in fuzzy theory and definitions of the differentiability.

Definition 1. A fuzzy set Ũ on a universe set X is mapping Ũ : X → [0, 1], assigning to each
element x ∈ X a degree of membership 0 ≤ Ũ(x) ≤ 1. The membership function Ũ(x) is also
defined as µŨ(x) with the properties:

(i) µŨ is upper semicontinuous;
(ii) µŨ(x) = 0, is outside of some interval [c, d];
(iii) there are real numbers c ≤ a ≤ b ≤ d, such that µŨ is monotonic nondecreasing on

[c,a], and monotonic nonincreasing on [b, d] and µŨ(x) = 1 for each x ∈ [a, b];
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(iv) Ũ is a convex fuzzy set (i.e., µŨ(λx + (1 − λ)x) ≥ min
{

µŨ(λx), µŨ((1 − λ)x)
}

.

Definition 2. Let X be a Banach space and Ũ be a fuzzy set on X. We define the α-cuts
of Ũ as [Ũ]

α
=
{

x ∈ R
∣∣∣Ũ(x) ≥ α

}
, α ∈ (0, 1] are defined, and forα=0, the closure is

[Ũ]
0
=

−−−−−−−−−−−−−−{
x ∈ R

∣∣∣Ũ(x) > 0
}

Definition 3. Let
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tation theorem of [71] and the theorem of [72], the membership function and the α-cut form of a 

fuzzy number 𝑈 are equivalent, and, in particular, the α-cuts [𝑈]𝛼 = [𝑈𝛼
−, 𝑈𝛼

+] uniquely repre-

sent 𝑈, provided that the two functions are monotonic (𝑈𝛼
−monotonic nondecreasing, 𝑈𝛼

+ mono-

tonic nonincreasing) and 𝑈𝛼=1
− ≤ 𝑈𝛼=1

+  for a = 1. 

Definition 5. gH-differentiability [73]. Let 𝑈: [𝑎, 𝑏] →  RƑ be such that [𝑈̃(𝑥)]𝛼 =

[𝑈𝛼
−(𝑥), 𝑈𝛼

+(𝑥)]. Suppose that the functions 𝑈𝛼
−(𝑥) and 𝑈𝛼

+(𝑥) are real-valued functions, differ-

entiable w.r.t. x, and uniformly w.r.t. 𝛼 ∈ [0,1]. Then, the function 𝑈̃ is gH-differentiable at a 

fixed 𝑥 ∈ [𝑎, 𝑏] if, and only if, one of the following two cases holds: 

1. (𝑈𝛼
−)′(𝑥) is increasing, (𝑈𝛼

+)′(𝑥) is decreasing as functions of α, and  

2. [(𝑈𝛼=1
− )′(𝑥) ≤ (𝑈𝛼=1

+ )′(𝑥)], or 

3. (𝑈𝛼
+)′(𝑥)  is increasing, (𝑈𝛼

−)′(𝑥)  is decreasing as functions of α, and     [(𝑈𝛼=1
+ )′(𝑥) ≤

(𝐻𝛼=1
− )′(𝑥)] 

Note: (𝑈𝛼
−)′(𝑥) =

𝑑𝑈𝛼
−(𝑥)

𝑑𝑥
, (𝑈𝛼

+)′(𝑥) =
𝑑𝑈𝛼

+(𝑥)

𝑑𝑥
. In both of the above cases, the 𝑈𝛼

′ (𝑥) deriva-

tive is a fuzzy number. 

Definition 6. gH-differentiable at x0. Let 𝑈: [𝑎, 𝑏] →  RF and 𝑥0 ∈ [𝑎, 𝑏]  with 𝑈𝛼
−(𝑥)  and 

𝑈𝛼
+(𝑥), and both be differentiable at x0. We say that [73]: 

• 𝑈 is (i)-gH-differentiable at x0 if: 

(i) [𝑈̃𝑔𝐻
′ (𝑥0)]𝛼 = [(𝑈𝛼

−)′(𝑥0), (𝑈𝛼
+)′(𝑥0)], ∀𝛼 ∈ [0,1]  

• 𝐻 is (ii)-gH-differentiable at x0 if: 

(ii) [𝑈̃𝑔𝐻
′ (𝑥0)]𝛼 = [(𝑈𝛼

+)′(𝑥0), (𝑈𝛼
−)′(𝑥0)], ∀𝛼 ∈ [0,1]  

Definition 7. g-differentiability. Let 𝑈̃: [𝑎, 𝑏] → RF be such that [𝑈(𝑥)]𝛼 = [𝑈𝛼
−(𝑥), 𝑈𝛼

+(𝑥)] . If 

𝑈𝛼
−(𝑥) and 𝑈𝛼

+(𝑥) are differentiable real-valued functions with respect to x, and uniformly for 

𝛼 ∈ [0,1], then 𝑈(𝑥) is g-differentiable and we have [29]: 

(X) be the family of all nonempty compact convex subsets of a Banach space.
A fuzzy set Ũ on X is called compact if [Ũ]α ∈
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′ (𝑥0)]𝛼 = [(𝑈𝛼
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be such that
[

Ũ(x)]α
]
=[U−

α (x), U+
α (x)]

. Suppose that the functions U−
α (x) and U+

α (x) are real-valued functions, differentiable w.r.t. x,
and uniformly w.r.t. α ∈ [0, 1]. Then, the function Ũ is gH-differentiable at a fixed x ∈ [a, b] if,
and only if, one of the following two cases holds:

1. (U−
α )

′
(x) is increasing, (U+

α )
′
(x) is decreasing as functions of α, and

2.
[(

U−
α=1
)′
(x) ≤

(
U+

α=1
)′
(x)
]
, or

3. (U+
α )

′
(x) is increasing, (U−

α )
′
(x) is decreasing as functions of α, and

[(
U+

α=1
)′
(x) ≤

(
H−

α=1
)′
(x)
]

Note: (U−
α )

′
(x) = dU−

α (x)
dx , (U+

α )
′
(x) = dU+

α (x)
dx . In both of the above cases, the Ũ′

α(x)
derivative is a fuzzy number.

Definition 6. gH-differentiable at x0. Let Ũ : [a, b] → RF and x0 ∈ [a, b] with U−
α (x) and U+

α (x),
and both be differentiable at x0. We say that [73]:

• Ũ is (i)-gH-differentiable at x0 if:

(i)
[

Ũ′
gH(x0)

]
α
=
[
(U−

α )
′
(x0), U+

α )′(x0)
]
, ∀α ∈0, 1

• H̃ is (ii)-gH-differentiable at x0 if:

(ii)
[

Ũ′
gH(x0)

]
α
=
[
(U+

α )
′
(x0),

(
U−

α )′(x0)], ∀α ∈[0, 1
]

Definition 7. g-differentiability. Let Ũ : [a, b] →RF be such that
[

Ũ(x)
]

α
=[U−

α (x), U+
α (x)] .

If U−
α (x) and U+

α (x) are differentiable real-valued functions with respect to x, and uniformly
for α ∈ [0, 1], then Ũ(x) is g-differentiable and we have [29]:

[Ũ′
g(x)]

α
=

[
in f
β≥α

min{(U−
α )

′
(x), (U+

α )
′
(x)}, sup

β≥α

max{(U−
α )

′
(x), (U+

α )
′
(x)}

]

Definition 8. The gH-differentiability implies g-differentiability, but the inverse is not true.

Definition 9. [gH-p] differentiability. A fuzzy-valued function Ũ of two variables is a rule
that assigns to each ordered pair of real numbers (x, t) in a set D a unique fuzzy number denoted
by Ũ(x, t). Let Ũ(x, t): D→ R
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3. (𝑈𝛼
+)′(𝑥)  is increasing, (𝑈𝛼

−)′(𝑥)  is decreasing as functions of α, and     [(𝑈𝛼=1
+ )′(𝑥) ≤

(𝐻𝛼=1
− )′(𝑥)] 

Note: (𝑈𝛼
−)′(𝑥) =

𝑑𝑈𝛼
−(𝑥)

𝑑𝑥
, (𝑈𝛼

+)′(𝑥) =
𝑑𝑈𝛼

+(𝑥)

𝑑𝑥
. In both of the above cases, the 𝑈𝛼

′ (𝑥) deriva-

tive is a fuzzy number. 

Definition 6. gH-differentiable at x0. Let 𝑈: [𝑎, 𝑏] →  RF and 𝑥0 ∈ [𝑎, 𝑏]  with 𝑈𝛼
−(𝑥)  and 

𝑈𝛼
+(𝑥), and both be differentiable at x0. We say that [73]: 

• 𝑈 is (i)-gH-differentiable at x0 if: 

(i) [𝑈̃𝑔𝐻
′ (𝑥0)]𝛼 = [(𝑈𝛼

−)′(𝑥0), (𝑈𝛼
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• 𝐻 is (ii)-gH-differentiable at x0 if: 
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′ (𝑥0)]𝛼 = [(𝑈𝛼

+)′(𝑥0), (𝑈𝛼
−)′(𝑥0)], ∀𝛼 ∈ [0,1]  

Definition 7. g-differentiability. Let 𝑈̃: [𝑎, 𝑏] → RF be such that [𝑈(𝑥)]𝛼 = [𝑈𝛼
−(𝑥), 𝑈𝛼

+(𝑥)] . If 

𝑈𝛼
−(𝑥) and 𝑈𝛼

+(𝑥) are differentiable real-valued functions with respect to x, and uniformly for 

𝛼 ∈ [0,1], then 𝑈(𝑥) is g-differentiable and we have [29]: 

, (x0, t0) ∈ D and U−
α (x, t), U+

α (x, t) are real-valued functions
and partial differentiable w.r.t. x. We say that [58,74]:
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• Ũ is [(i)-p]-differentiable w.r.t. x at (x0, t0) if:

∂Ũα(x0, t0)

∂xi.gH
=

[
∂U−

α (x0, t0)

∂x
,

∂U+
α (x0, t0)

∂x

]
• Ũ is [(ii)-p]-differentiable w.r.t. x at (x0, t0) if:

∂Ũα(x0, t0)

∂xi.gH
=

[
∂U+

α (x0, t0)

∂x
,

∂U−
α (x0, t0)

∂x

]

Notation. The same is valid for ∂H̃α(x0,t0)
∂t .

Definition 10. Let Ũ(x, t): D→R
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, and ∂Ũα(x0,t0)
∂xi.gH

be [gH-p]-differentiable at (x0, t0) ∈ D with
respect to x. We say that [58,74]:

• ∂Uα(x0,t0)
∂xi.gH

is [(i)-p]-differentiable w.r.t.x if:

∂2Ũα(x0, t0)

∂x2
i.gH

=


[

∂2U−
α (x0,t0)
∂x2 , ∂2U+

α (x0,t0)
∂x2

]
i f Ũ(x, t)is[(i)− p]di f f erentiable[

∂2U+
α (x0,t0)
∂x2 , ∂2U−

α (x0,t0)
∂x2

]
i f Ũ(x, t)is[(ii)− p]di f f erentiable

• ∂H̃α(x0,t0)
∂xi.gH

is [(ii)-p]-differentiable w.r.t.x if:

∂2Ũα(x0, t0)

∂x2
i.gH

=


[

∂2U+
α (x0,t0)
∂x2 , ∂2U−

α (x0,t0)
∂x2

]
i f Ũ(x, t)is[(i)− p]di f f erentiable[

∂2U−
α (x0,t0)
∂x2 , ∂2U+

α (x0,t0)
∂x2

]
i f Ũ(x, t)is[(ii)− p]di f f erentiable

2.2.1. Possibility Theory

Below, we provide critical definitions regarding the possibility theory that is imple-
mented in the current work.

Definition 11. A possibility measure, Π, on a set, X (e.g., a set of reels), is characterized by a
possibility distribution of π → [0, 1] and is defined by the following:

A ⊆ X, Π(A) = sup(π(x), x ∈ A).

For finite sets, this definition reduces to the following:

∀A ⊆ X, Π(A) = max(π(x), x ∈ A).

Definition 12. A degree of necessity, Ness X, on a set X (e.g., a set of reels), is characterized by
the non-possibility (one minus possibility) of A complement (AC).

Definition 13. A probability distribution p and a possibility distributionπ are said to be consistent
only if π(u) ≥ p(u), ∀u[75,76].

Definition 14. Two possibility distributions, πx and π′
x, are consistent with the probability

distribution px. The πx distribution is more specific than π′
x if πx < π′

x. A possibility dis-
tribution of π′

x consistent with the probability distribution px is called maximal specificity
if it is more specific than the other possibility distribution:

πx : π′
x (x) < πx (x), ∀x.
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Definition 15. For a number Y with a known and continuous probability distribution function
p, the fuzzy number Ỹ, which has a possibility measure Π

(
Ỹ
)
= µỸ is the fuzzy estimator of

Y and has an α-cut of ΠỸ(α) = Ỹ(α). This fuzzy number satisfies the consistency principle and
verifies ΠỸ(α) = NessỸ(α) = 1 − α, so that the probability of the possibility α-cut is equal to
1 − α. The α-cuts Ỹ(α) are the confidence intervals of P, and the confidence level is α.

Definition 16. Conjecture [76]. For a function Y = Y (X1, X2, ....Xn) with an unknown probability
distribution function, a fuzzy number may be constructed Ỹ∗ = Ỹ

(
X̃∗

1 , X̃∗
2 , ...., X̃∗

n

)
, and the α-cut

is equal to the following:

Ỹ∗(α) = Ỹ
(

X̃∗
1 (α), X̃∗

2 (α), ...., X̃∗
n(α)

)
.

In this case, the fuzzy number Ỹ∗ is the fuzzy estimator of Y and verifies the following:

P
(

Ỹ∗(α)
)
≥ NessỸ∗(α) = 1 − α

so that the probability of the possibility α-cut is greater than 1 − α.

2.2.2. Fuzzy Model

The parameters K and S of Equation (1) are considered fuzzy (Figure 3). Thus, the
function h is fuzzy, as is the nondimensional function H.
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Equation (4) is written in its fuzzy form as follows:

∂H̃
∂τ

=
∂

∂s

(
2H̃

∂H̃
∂s

)
. (12)
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With the new boundary

τ > 0, H̃(0, τ) = 0,
∂(H̃(1, τ)

∂s
= 0 (13)

and initial conditions:
τ = 0, H̃(s, 0) = 1̃.

Solutions to the fuzzy problem (12) and the boundary and initial conditions (13) can
be found utilizing the theory of [23,58,73,74], translating the above fuzzy problem to a
system of second-order crisp boundary value problems, hereafter called the corresponding
system for the fuzzy problem. Therefore, eight crisp BVP systems are possible for the fuzzy
problem with the same initial and boundary conditions.

System (1,1): System (1,2):
∂H−

∂τ = H− ∂2 H−

∂ξ2 +
(

∂H−

∂ξ

)2

∂H−

∂τ = H− ∂2 H−

∂ξ2 +
(

∂H+

∂ξ

)2

∂H+

∂τ = H+ ∂2 H+

∂ξ2 +
(

∂H+

∂ξ

)2

∂H+

∂τ = H+ ∂2 H+

∂ξ2 +
(

∂H−

∂ξ

)2

System (1,3): System (1,4):
∂H−

∂τ = H− ∂2 H+

∂ξ2 +
(

∂H+

∂ξ

)2

∂H−

∂τ = H− ∂2 H+

∂ξ2 +
(

∂H−

∂ξ

)2

∂H+

∂τ = H+ ∂2 H−

∂ξ2 +
(

∂H−

∂ξ

)2

∂H+

∂τ = H+ ∂2 H−

∂ξ2 +
(

∂H+

∂ξ

)2

System (2,1): System (2,2):
∂H+

∂τ = H− ∂2 H+

∂ξ2 +
(

∂H+

∂ξ

)2

∂H+

∂τ = H− ∂2 H+

∂ξ2 +
(

∂H−

∂ξ

)2

∂H−

∂τ = H+ ∂2 H−

∂ξ2 +
(

∂H−

∂ξ

)2

∂H−

∂τ = H+ ∂2 H−

∂ξ2 +
(

∂H+

∂ξ

)2

System (2,3): System (2,4):
∂H+

∂τ = H− ∂2 H−

∂ξ2 +
(

∂H−

∂ξ

)2

∂H+

∂τ = H− ∂2 H−

∂ξ2 +
(

∂H+

∂ξ

)2

∂H−

∂τ = H+ ∂2 H+

∂ξ2 +
(

∂H+

∂ξ

)2

∂H−

∂τ = H+ ∂2 H+

∂ξ2 +
(

∂H−

∂ξ

)2

Note: We will hereby restrict ourselves to the solution of the first system (1,1), which
is described in detail below. We apply this case since it provides a physical solution to the
problem of aquifer recharging from the lake.

According to definition (4), the α-cuts [H−α, H+α] uniquely represent the fuzzy func-
tion H̃, and the following fuzzy expression is valid and refers to α-cuts:

L
(

H̃α
)
=
[
L
(

H−α
)
, L
(

H+α
)]

(14)

Solution of system (1,1)
System (1,1) could be defined as:

[ ∂H̃
∂τ − H̃ ∂2 H̃

∂s2 + ( ∂H̃
∂s )

2
= 0]

α

=

[
∂H−

∂τ − H− ∂2 H−

∂s2 + ( ∂H−
∂s )

2
= 0, ∂H+

∂τ − H+ ∂2 H+

∂s2 + ( ∂H+

∂s )
2
= 0

]
, α

∈ [0, 1],

where for convenience, the following is defined:

H− ≡ Hαle f t , H+ ∼= Haright .

For the left side, the boundary conditions and initial conditions are as follows:

τ > 0, H−(0, τ) = 0,
∂(H−(1,τ))

∂s = 0
τ = 0, H−(s, 0) = 1−
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while for the right side, the boundary and initial conditions are defined as:

τ > 0, H+(0, τ) = 0,
∂(H+(1,τ))

∂s = 0,
τ = 0, H + (s, 0) = 1+

2.2.3. Fuzzy Finite Elements Solution

1. From Equation (3), we have:

τ =
Kh0t
2SL2 , or ταi = (

K
S
)

αi

h0

2L2 tαi (15)

where αi means the α-cut in line i; for simplification, we put the ratio (K
S )αi

= ναi ,and the
above relation becomes:

ταi = ναi

h0

2L2 tαi

and for two different α-cuts αi, αj we take:

ταi

ταj

=
ναi

ναj

tαi

tαj

→ ταi = ταj

ναi

ναj

tαi

tαj

, (16)

and for the same real-time tαi = tαj , we have:

ταi = ταj

ναi

ναj

. (17)

Therefore, for the solution of Case a, as well as for Case b, solving the crisp nondimen-
sional system (8) and the linearized Equation (11) is sufficient in order to have the solution
for the two cases. For every real-time tαi = tαj , the nondimensional time ταi of every α-cut
is given by Equation (17). The α-cut α1 = 0.05 is taken as a basis for Equation (17), and this
equation becomes:

ταi = ναi

(
τα1 = 0.05

να1=0.05

)
. (18)

2. Another solution for Case a is putting it in the dimensional form:

∂h−

∂t
=

(
K
S

)
∂

∂x

(
h−

∂h−

∂x

)
in which the value of the ratio (K/S) equals ναi , (i = 1, 2, . . . , 6), and this system is solved for
every ναi , (i = 1, 2, . . . , 6), applying the Equations (8) and (11), transformed in dimensional
form. Initial and boundary conditions should also be transformed into dimensional forms.
The same is applied to Case b.

Methods 1 and 2 are equivalent and give exactly the same values.

2.2.4. Outflow Volumes

The outflow volume per with for dimensional variables is equal to:

Ω(ti) =
∫ L

0
Sh(x, ti)dx

(
m3/m

)
,

or in nondimensional variables

V(τi) =
Ω(ti)

Sh0L
=
∫ 1

0
H(s, τi)ds.
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In the case of fuzzy numbers, we have:

[V(τi)]αi =[
∫ 1

0
H(s, τi)ds]αi .

It is now easy to find fuzzy estimators of outflow volume for each time, τi.

2.3. A Proposed Method to Solve the Crisp and Fuzzy Models

For the convenience of the reader, the following step-by-step solving process is pre-
sented in explanatory form.

The Step-by-Step Solving Process

Step 1:
The interval [s0, sN] is divided into N equal parts:
∆s = (sN−s0)

N , sr = s0 + (r − 1)∆s, r = 1, 2, ...., N + 1, s0 = 0, sN = 1

Step 2:
τ = τ + ∆τ,
λ = ∆τ

∆s2

Step 3:
Initial values
H(sr,0) sr, r = 1, 2, . . . N + 1

Step 4:
Boundary values
H(0,τ) = H0,
dH(sN+1,τ)

ds = 0 → H(sN+2,τ)−H(sN ,τ)
2∆s = 0 → H(sN+2, τ) = H(sN , τ)

Step 5: Find coefficients Ai, Bi, Ci, Di
Step 6: Solve the tridiagonal system [34,70]
Step 7: Put HNEW into HINITIAL
Step 8: Compute outflow volume V(HNEW)
Step 9: Print τ, V(τ), HNEW values

Step 10: If τ ≤ τmax go to 2
end

3. Results—Application

In order to test the efficiency of the present study with other methods, two different
cases are used:

1. The Karadi et al. (1968) [68] case, and
2. The Boussinesq (1904) [1] analytical solution case.

In both cases, the same soil sample was used with the following parameters: A
hydraulic conductivity K = 2.121 cm/h and an effective porosity S = 20%. The two pa-
rameters follow a normal distribution with K = 2.121 cm/h and a standard deviation
σ = 0.55329 cm/h, and S with S = 0.2 and standard deviation σ = 0.0363. Figure 3
presents the fuzzy estimators of K, S, and the ratio K/S for different α-cuts (αi with
i = 1, 2, . . ., and 6), while Figure 4 presents the initial and boundary conditions of the
physical problem.
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3.1. The Case by Karadi [68]

Karadi et al. (1968) [68] considered the problem of unsteady seepage flow (Figure 4)
under the assumption that the porous medium is homogeneous and isotropic. Experimental
data were obtained from a sand model with the following boundary and initial conditions:

h(0, t) = 0.2h0, h(L, t) = 0.2h0

h(x, 0) = h0.

This problem corresponds to a drainage problem with an initial water table equal to h0.
For t > 0 the water table is falling, and outflow volume is flowing to the two drains. Karadi
et al. (1968) [68] used a numerical solution, and the continuous domain is replaced by a
pattern of discrete points, while the partial differential equation is replaced by a system of
ordinary differential difference equations. An iteration process is used in order to obtain a
small error in each time step.

In the present case, the fuzzy FEM method is used in order to make a comparison with
the Karadi method, and a Fortran program is constructed as described above for the crisp
case. For the fuzzy case, different time spaces were used. Figure 5 illustrates the falling of
the water level at different times; using the FEM method, the bold lines represent the α-cut
(α = 1), while the other two lines on either side represent the α-cuts (α−, α+). The black
orthogonal points represent the numerical solution of Karadi et al.. It is to be noted that the
Karadi solution was available only for crisp cases, and it is easily observable that for this
case, the FEM proposed solution is in close agreement with Karadi numerical method, and
experimental data were not available but graphically were in gut agreement with numerical
points. Figure 6 illustrates the fuzzy estimator of outflow volume V for τ = 0.1. According
to possibility theory, there is a probability that the interval [0.6, 0.64] will be greater
than 95%.
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3.2. The Case for the Boussinesq Analytical Solution (1904)

Boussinesq (1904) [1] obtained an exact analytical solution assuming an inverse in-
complete beta function as the initial condition for the groundwater table. His solution was
obtained under simplifying assumptions:

(a) Neglecting the effect of capillary rise above the water table;
(b) Accepting the Dupuit-Forcheimer approximation, i.e., the hydraulic head is indepen-

dent of depth, and therefore, the streamlines are assumed to be approximately parallel
to the bed;

(c) His solution is valid when t is large, that is, when the water table at x = L is below the
aquifer depth h0. (See Figure 1).

3.2.1. Initial Water Table

The analytical Boussinesq solution for the initial water table is:

s = 1
C
∫ H(s)

0
H√

1−H3 dH, C = 1
3 B
(

2
3 , 1

2

)
= 0.86236

s = 1
0.86236

∫ H(s)
0

H√
1−H3 dH,

in which B(a,b) = complete Beta function, and the above integral via the transformation of

H = γ1/3 takes the form 1
3

∫ γ
1
3

0 γ
2
3−1(1 − γ)

1
2−1. This integral is the incomplete Beta function.

The above equation was calculated in the present article using the numerical integration
appearing in Figure 7.

3.2.2. Water Table Equation

The final value for each time is given by Boussinesq in the following form:

H(s, τ) =
H(s, 0)

1 + 1.115·τ , τ =
Kh0t
SL2 .

Note: In the present research, the value of τ1 = Kh0t
2SL2 = τ

2 → τ = 2τ1, while the
boundary conditions are:

for s = 0, H(0, τ) = 0,
for s = 1, ∂H(1,τ)

∂s = 0.
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3.2.3. Outflow Volume

The volume at a fixed time τ1 flowing to the spring (or drain) at s = 0 is equal to
Vinit =

∫ 1
0 H(s, 0)ds. This integral was estimated with the aid of the two polynomials,

and its value is equal to 0.769458. Boussinesq has given a value of this integral equal to
2

3C = 0.773072, C = 0.86236. The absolute reduced error between the two values is 4.6‰.

3.2.4. Discharge

The discharge Q per unit is equal to dV
dτ = 0.86236

(1+1.115497τ)2 .

In the present study, the fuzzy FEM method is used, and a Fortran program is con-
structed as described above for the crisp case. For the fuzzy, different time spaces were
used. Table 1 presents the values of the initial Boussinesq curve with ∆s = 0.05. These
values were obtained with the two polynomials fitting the Boussinesq initial curve with a
mean absolute reduced error between the two curves equal to 3.2‰. Figure 8 illustrates the
falling of the water level at different times; using the FEM method, the bold lines represent
the α-cut (α = 1), while the other two lines on either side represent the α-cuts (α−, α+). The
black orthogonal points represent the Boussinesq analytical solution. Table 2 presents the
values of water table H(s,τ) for τ = 0.26, and Table 3 Values of H(s,τ) for τ = 0.52presents
the values of the water table of H(s,τ) for τ = 0.52. In order to make a comparison between
the FEM method and the Boussinesq analytical solution, the mean absolute difference is
introduced as follows:

δαι =
∣∣Hαi

FEM − Hαi
Bous

∣∣.
Table 1. Values of initial curve for ∆s = 0.05 (si = si−1 + ∆s, i = 1, 2, . . ., 19, s0 = 0).

s H(s,0) s H(s,0) s H(s,0) s H(s,0)

s0 0.000 s6 0.689 s12 0.909 s18 0.990
s1 0.250 s7 0.740 s13 0.930 s19 0.997
s2 0.417 s8 0.784 s14 0.947 s20 1.000
s3 0.497 s9 0.823 s15 0.961
s4 0.568 s10 0.857 s16 0.972
s5 0.633 s11 0.885 s17 0.982
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Table 2. Values of H(s,τ) for τ = 0.26.

FEM Boussinesq FEM vs. Boussinesq

s τα− 0.22751 τα+ 0.296197 τα−=τα+ 0.26 τα− 0.22751 τα+ 0.296197 τα−=τα+ 0.26 δα− δα+ δα−=δα+

0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.05 0.19392 0.17600 0.18499 0.19100 0.17338 0.18224 0.01505558 0.002919578 0.002618113
0.10 0.27306 0.24783 0.26049 0.27154 0.24649 0.25909 0.00557023 0.001521008 0.001338698
0.15 0.33244 0.30172 0.31713 0.33440 0.30356 0.31907 0.00590884 0.001964334 0.001837729
0.20 0.38111 0.34588 0.36356 0.38438 0.34892 0.36675 0.00857316 0.003267318 0.003041032
0.25 0.42257 0.38350 0.40310 0.42519 0.38597 0.40569 0.00620473 0.002621934 0.002470768
0.30 0.45860 0.41619 0.43747 0.45965 0.41725 0.43857 0.00230021 0.001054877 0.001064731
0.35 0.49028 0.44492 0.46768 0.48977 0.44459 0.46730 0.00105017 0.000514879 0.000332497
0.40 0.51827 0.47031 0.49437 0.51683 0.46916 0.49313 0.00277172 0.001436498 0.001150997
0.45 0.54306 0.49278 0.51801 0.54160 0.49164 0.51676 0.00268424 0.001457705 0.001136963
0.50 0.56499 0.51266 0.53891 0.56436 0.51231 0.53848 0.00110658 0.000625205 0.000354154
0.55 0.58430 0.53015 0.55732 0.58508 0.53111 0.55825 0.00134331 0.000784895 0.000964653
0.60 0.60119 0.54545 0.57341 0.60352 0.54785 0.57584 0.0038701 0.002326665 0.002396213
0.65 0.61580 0.55867 0.58733 0.61932 0.56220 0.59092 0.00572253 0.003523935 0.003525366
0.70 0.62825 0.56994 0.59919 0.63220 0.57388 0.60321 0.00628709 0.003949867 0.003943577
0.75 0.63863 0.57931 0.60907 0.64199 0.58277 0.61254 0.00525585 0.003356541 0.003457496
0.80 0.64701 0.58687 0.61704 0.64879 0.58895 0.61904 0.00275812 0.001784533 0.002077495
0.85 0.65344 0.59265 0.62314 0.65312 0.59288 0.62317 0.0004859 0.000317509 0.000226227
0.90 0.65795 0.59669 0.62741 0.65598 0.59547 0.62589 0.00299914 0.001973282 0.00122283
0.95 0.66057 0.59901 0.62988 0.65899 0.59820 0.62877 0.00239074 0.001579253 0.000806825
1.00 0.66131 0.59960 0.63056 0.66342 0.60222 0.63299 0.00318628 0.002107117 0.002621241

1.86 × 10−3 1.74 × 10−3 1.80 × 10−3

Average = 1.80114 × 10−3

According to the aforementioned tables, the mean absolute difference is 1.8 × 10−3

for τ = 0.26 and 2.17 × 10−3 for τ = 0.52. Moreover, Table 4 presents the values of outflow
volume (FEM vs. Boussinesq) for two different times where the mean absolute difference is
5.16 × 10−4 for τ = 0.26 and 1.75 × 10−3 for τ = 0.52. According to these values of Tables 2–4,
from a simple visualization of the results, it is easily observable that the proposed solution
FEM is in close agreement with Boussinesq analytical method. Figure 9 illustrates the
outflow volume in which the bold line is the α-cut (α− = α+), and the two lines on either
side represent the α-cuts (α−, α+). The probability of interval [α−, α+] is greater than 95‰
for any time. Finally, Figure 10 illustrates the fuzzy estimator of outflow volume V for
τ = 0.26 and τ = 0.52. According to these figures, the probability of interval [0.462, 0.509] is
greater than 95‰ for τ = 0.26, and the probability of interval [0.329, 0.380] is greater than
95‰ for τ = 0.52.
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Table 3. Values of H(s,τ) for τ = 0.52.

FEM Boussinesq FEM vs. Boussinesq

s τα− 0.22751 τα+ 0.296197 τα−=τα+ 0.26 τα− 0.22751 τα+ 0.296197 τα−=τα+ 0.26 δα− δα+ δα−=δα+

0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.000000
0.05 0.14481 0.12549 0.13493 0.14291 0.12404 0.13331 0.001905 0.001450 0.001616
0.10 0.20390 0.17670 0.18998 0.20316 0.17634 0.18953 0.000736 0.000356 0.000453
0.15 0.24823 0.21511 0.23128 0.25020 0.21717 0.23341 0.001969 0.002060 0.002126
0.20 0.28456 0.24658 0.26512 0.28759 0.24962 0.26829 0.003028 0.003044 0.003166
0.25 0.31549 0.27337 0.29394 0.31813 0.27613 0.29677 0.002636 0.002760 0.002833
0.30 0.34236 0.29665 0.31897 0.34391 0.29851 0.32083 0.001551 0.001861 0.001858
0.35 0.36597 0.31710 0.34096 0.36644 0.31807 0.34184 0.000469 0.000965 0.000884
0.40 0.38683 0.33515 0.36038 0.38669 0.33564 0.36074 0.000139 0.000494 0.000357
0.45 0.40529 0.35113 0.37757 0.40522 0.35173 0.37802 0.000067 0.000600 0.000455
0.50 0.42160 0.36524 0.39276 0.42225 0.36651 0.39391 0.000654 0.001272 0.001153
0.55 0.43595 0.37765 0.40611 0.43776 0.37997 0.40837 0.001807 0.002318 0.002265
0.60 0.44848 0.38849 0.41778 0.45155 0.39194 0.42124 0.003067 0.003448 0.003460
0.65 0.45931 0.39785 0.42785 0.46337 0.40220 0.43227 0.004064 0.004354 0.004423
0.70 0.46852 0.40579 0.43641 0.47301 0.41057 0.44126 0.004488 0.004776 0.004850
0.75 0.47617 0.41239 0.44353 0.48033 0.41692 0.44809 0.004160 0.004532 0.004561
0.80 0.48232 0.41768 0.44924 0.48542 0.42134 0.45284 0.003104 0.003663 0.003603
0.85 0.48701 0.42170 0.45358 0.48866 0.42415 0.45586 0.001652 0.002454 0.002283
0.90 0.49025 0.42447 0.45658 0.49080 0.42601 0.45786 0.000547 0.001537 0.001275
0.95 0.49208 0.42601 0.45826 0.49305 0.42796 0.45996 0.000972 0.001955 0.001699
1.00 0.49249 0.42632 0.45862 0.49636 0.43084 0.46305 0.003874 0.004519 0.004429

1.94702 × 10−3 2.30559 × 10−3 2.27369 × 10−3

Average = 2.17543 × 10−3

Table 4. Values of outflow volume for two different times, τ = 0.26 and τ = 0.52, with their relative
errors.

α-Cut

Method α− α− α− = α+

τ = 0.26

FEM 0.5098587 0.486479 0.46283113
Boussinesq 0.5104053 0.486995 0.46331698

δ 5.47 × 10−4 5.16 × 10−4 4.86 × 10−4

Average = 5.16 × 10−4

τ = 0.52

FEM 0.3802688 0.329547 0.354413
Boussinesq 0.3818421 0.331422 0.35621128

δ 1.57 × 10−3 1.88 × 10−3 1.80 × 10−3

Average = 1.75 × 10−3
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4. Discussion and Future Research
4.1. Significance of Incorporating Uncertainty in Groundwater Modeling

Undoubtedly, groundwater flow modeling plays a pivotal role in understanding and
managing subsurface water resources. The Boussinesq equation, traditionally employed
for modeling groundwater flow, proves to be a robust method for simulating recession
flow in unconfined aquifers without precipitation. However, the inherent variability in
aquifers’ hydraulic properties introduces uncertainties in the equation that can significantly
impact the accuracy of simulations. Among these properties, hydraulic conductivity and
porosity stand out as critical factors influencing the flow and transport of groundwater
within aquifer systems [77].

In addition, porosity, representing the void spaces in the subsurface through which
groundwater can move, adds another complex layer to groundwater flow modeling. Ge-
ological formations, compaction processes [78–80], and grain size distribution [81,82] are
some of the most common dependence factors that influence porosity and make its estima-
tion challenging. Ignoring the uncertainties associated with porosity can lead to significant
biases in groundwater flow predictions.

4.2. The Role of the Fuzzy Finite Element Method for Solving the Boussinesq Equation

Recognizing the uncertainties associated with the critical hydraulic parameters in the
Boussinesq equation, such as the aforementioned hydraulic conductivity and porosity, it
becomes imperative to adopt novel approaches in groundwater modeling.

The results of this study showed that the Fuzzy FEM application to an unconfined
aquifer provides a unique opportunity to address the inherent uncertainties associated
with subsurface hydrological processes. By introducing the fuzzy logic theory to the finite
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element framework, the approach accommodated the imprecise and uncertain parameters
of the problem. Through this work, this adaptability proved to be particularly valuable in
dealing with the complex and dynamic nature of groundwater recession flow. Furthermore,
the model’s ability to handle these uncertainties positions it as a valuable tool for assessing
the impacts of changing climate patterns and anthropogenic activities on outflow dynamics.

The Boussinesq equation was selected to be solved by a novel fuzzy FEM because the
absence of external water inputs (precipitation) allows the equation to focus on the intrinsic
behavior of groundwater dynamics during recession periods. Having in mind the general
problem of in situ data lacking, especially for hydraulic parameters that present significant
spatial distribution, this combination offered a holistic approach to quantify the problem
uncertainties. To our knowledge, no other study in the literature implements this approach,
while a limited number of studies used fuzzy methods coupled mainly with neural net-
works to estimate the unsaturated and saturated hydraulic conductivity[83–85], . In the
end, it should also be highlighted that the possibility theory offers a unique opportunity
to understand the fuzzy results better and translate the fuzzy numbers into real decisions
with high levels of confidence.

4.3. Model Validation with Existing Solutions and Practical Applications

The integrated approach of FEM with the Boussinesq equation, validated against
existing analytical and numerical solutions, provides a comprehensive understanding
of groundwater recession in unconfined aquifers without precipitation. The developed
FEM-Boussinesq model was validated against the Karadi numerical solution, which served
as a valuable benchmark. The Karadi numerical solution, based on simplified assumptions,
allows for a comparative analysis of the model’s performance in capturing the recession
flow dynamics. In addition to the Karadi solution, we employed the Boussinesq exact
analytical solution. The utilization of multiple solutions ensures a more robust verification
process, offering confidence in the reliability of the model outcomes. Specifically, the
proposed numerical scheme achieved significant performance against the exact solution of
Boussinesq. By examining two different times, the mean absolute difference is 5.16 × 10−4

for τ = 0.26, and 1.75 × 10−3 for τ = 0.52 proved the closest in agreement with the results.
The results against the Karadi numerical solution showed a lower performance than with
the Boussinesq analytical solution; however, they are considered satisfactory, taking into
account the assumptions by the Karadi method (see also Section 3.1) and that the solution
is a numerical approximation.

In general, the proposed approach successfully captures the complex interplay be-
tween aquifer properties and recession flow dynamics, allowing for reliable predictions of
groundwater outflow. The ability to quantify uncertainties and validate predictions against
an analytical solution enhances the model’s reliability in guiding decision-making processes
related to water resource management and sustainable groundwater use. These insights
have direct implications for water resource management, particularly in regions where
understanding recession flow is crucial for sustainable groundwater use. The validated
model serves as a valuable decision-support tool, aiding in the development of effective
water management strategies.

Moreover, the importance of the Boussinesq equation and its use in different fields
reinforces the findings of the current research and the use of the proposed methodology
in other practical applications. In this context, the proposed fuzzy FEM scheme could
be used, for example, in geotechnical engineering to analyze the behavior of soils under
different loading conditions. The proposed approach can indirectly enhance the accuracy of
predictions regarding soil settlement, bearing capacity, and stability analysis of foundation
and retaining structures. This can lead to more reliable designs and safer construction
practices. Another very useful practical application of the proposed methodology could
be in civil infrastructure and specifically in the design of dams, embankments, and under-
ground tunnels where the knowledge of the groundwater flow, including the uncertainties,
is considered more than necessary for successful and efficient construction projects. Also,
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undoubtedly, in drainage projects, the proposed approach can result in a more accurate
calculation of the drain spacing as mainly the knowledge of hydraulic conductivity and its
uncertainties is considered very important for determining the groundwater table, which
mostly affects the drain spacing.

4.4. Limitations and Future Perspectives

Significant results were obtained during this research; however, there are certain
limitations that should be addressed. The proposed approach offers a promising avenue
for improving the accuracy and reliability of recession flow modeling.

Regarding the physical problem, it is important to acknowledge that the Karadi so-
lution assumes steady-state boundary and initial conditions and homogeneous aquifer
properties, which may not fully represent the complexity of real-world aquifer systems.
Thus, challenges remain in accurately characterizing subsurface heterogeneity and dynamic
changes in soil properties over time. This limitation emphasizes the need for continued
efforts to refine both numerical and analytical approaches for recession flow modeling.
Future research should focus on refining the solutions by incorporating advanced geostatis-
tical methods and real-time monitoring data to improve their predictive accuracy under
varying hydrological conditions.

Furthermore, it is essential to acknowledge the computational demands associated
with Fuzzy FEM. The introduction of fuzzy logic also introduces additional computational
complexity, and further research is needed to optimize the method for large-scale simula-
tions. Additionally, the choice of membership functions and fuzzy rules plays a crucial role
in the accuracy of the results, necessitating a thorough sensitivity analysis to identify the
most suitable configurations while to advance the applicability of the proposed methodol-
ogy, further research is recommended to explore alternative fuzzy logic formulations and
investigate their impact on the accuracy and efficiency of the Fuzzy FEM-Boussinesq model.
Moreover, ignoring the great performance of the fuzzy scheme, an additional stability
analysis of the proposed fuzzy numerical scheme should be investigated in the future in
order to prove whether the model is unconditionally stable or otherwise to determine its
constraints. In addition, the inclusion of the uncertainties of the initial and boundary condi-
tions coupled with the uncertainties of the parameters K and S could be future research but
with a detailed investigation in order for the overall degree of uncertainty to be at normal
levels and the results to be interpretable.

Lastly, to further refine and validate the model’s applicability to real-world con-
ditions, integrating field observations, such as groundwater level measurements, sub-
surface geophysical data, and discharge records, is essential. This integration will not
only contribute to continuous model refinement but also ensure its relevance in diverse
hydrogeological settings.

5. Conclusions

In conclusion, the inclusion of uncertainties, particularly in hydraulic conductivity and
porosity, is critical for advancing groundwater flow modeling. Embracing fuzzy approaches
and ensemble modeling techniques provides a path forward for improving the reliability
and accuracy of predictions, empowering stakeholders to make informed decisions in the
sustainable management of groundwater resources.

The application of the Fuzzy Finite Element Method (FFEM) in modeling recession
flow within unconfined aquifers without precipitation has proven effective in addressing
the inherent uncertainties associated with aquifer properties. Specifically, in the current
research, the application of our proposed solution to real cases as well as to the Boussinesq
analytical solution has proved that the present numerical solution using the FEM method
is in agreement with the Karadi et al. numerical method and in close agreement with
the Boussinesq analytical method, and in addition, proves the accuracy and reliability of
the new fuzzy numerical method. In addition, it was observed to be easy and simple to
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calculate in comparison to other methods without affecting the accuracy of the results,
especially using the method of nondimensional time ταi for every α-cut.

Furthermore, it should be noted that with the aid of the possibility theory, fuzzy
estimators for different hydraulic parameters are possible. Therefore, for practical cases,
such as irrigation, drainage, and water resources projects with uncertainties, the engineers
and designers could now have a better idea of the real physical conditions. That is, knowing
the confidence intervals of the crisp value of these hydraulic parameters with a certain
strong probability, they can make the right decision.

By addressing uncertainties and leveraging analytical benchmarks, this research
contributes to advancing hydrological modeling and underscores the practical implica-
tions for sustainable aquifer management, particularly concerning water discharge during
recession periods.

In the future, our research could be oriented to present certain fuzzy FEM algorithms,
which will optimize the method for large-scale simulations by insertion other more flex-
ible Finite Elements (e.g., triangular) and presentation of a complete stability analysis
with the von Neumann method. This algorithm will integrate field observations such as
groundwater level measurements, subsurface geophysical data, and discharge records.
This integration will not only contribute to continuous model refinement but also ensure
its relevance and its future application in diverse hydrogeological settings.
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