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Abstract: In this paper, we introduce a compressible formulation for dealing with 2D/3D compressible
interfacial flows. It integrates a monolithic solver to achieve robust velocity–pressure coupling,
ensuring precision and stability across diverse fluid flow conditions, including incompressible and
compressible single-phase and two-phase flows. Validation of the model is conducted through
various test scenarios, including Sod’s shock tube problem, isothermal viscous two-phase flows
without capillary effects, and the impact of drops on viscous liquid films. The results highlight
the ability of the scheme to handle compressible flow situations with capillary effects, which are
important in computational fluid dynamics (CFD).

Keywords: compressible formulation; fully coupled solvers; momentum conserving

1. Introduction

The modelling and simulation of two-phase compressible flows is a highly dynamic
field of study due to their crucial involvement in energy systems, such as aerospace
engineering, the oil and gas industry, nuclear and biomedical engineering, geophysical
studies, and chemical processes.

The use of numerical simulation proves necessary for analysing and understanding
compressible two-phase flows involving separated phases. Firstly, these flows are intrinsi-
cally complex and involve challenging interactions that occur between different phases of
fluids or gases, particularly in the vicinity of interfaces. Additionally, safety considerations
also drive the use of the numerical simulation. In applications like nuclear reactors or
chemical processes, conducting experiments may not be safe or feasible. Further, the nu-
merical simulation facilitates parametric studies, enabling engineers to efficiently explore a
large range of operating conditions and design parameters. The reasons mentioned above
have prompted the CFD community to develop a two-phase compressible flow model
throughout the last few decades. Our efforts have been directed towards encompassing a
wide array of Mach formulations documented in prior research. Noteworthy references
include the work of [1–6] and other relevant sources.

In this paper, a compressible formulation is developed to simulate such flow situations.
In this formulation, we solve the conservation of mass (in two forms), momentum, and total
energy in each of the two phases, as well as an equation for the volume fraction. To close
the system of equations, an equation of state is used to take into account the variations in
density as a function of pressure and possibly temperature. The original formulation was
introduced by [7] and recently extended to all-Mach flows by [8] to account for heat diffusion
between two different compressible phases. In the present work, we extend this formulation
by maintaining a strong coupling between velocity and pressure variables through the use
of a monolithic solver [9–11] and by preserving the consistency between mass transport and
momentum via a momentum-conserving scheme [12]. Our approach is different from what
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is traditionally performed in the two-phase compressible flow simulation community, for
example Abgrall [13], Saurel [14], Massot [15], who use conservative variables such as density
or momentum to solve the problem. The interest of our approach is to manage continuous
quantities as long as no shock waves occur on velocity or pressure.

The remainder of this manuscript is structured as follows: Section 2 introduces the
governing equations, including the conservation of mass, momentum, and total energy in
each of the two phases. Section 3 describes the employed numerical schemes as well as the
monolithic solver used for the solution of the saddle point system on the velocity–pressure
coupling. In Section 4, we introduce different cases to check how accurate the incorporation
of our compressible formulation is. These test cases are divided into two parts: one to deal
with an adiabatic case for an inviscid flow, such as Sod’s shock tube problem, whereas a
second part will be devoted to isothermal cases for viscous flows, like liquid injection in a
closed cavity, the compression of an air bubble by water, and the drop impact on viscous
liquid film. Ultimately, we will sum up our work and offer a perspective on future research.

2. Governing Equations

The derivation of the compressible formulation follows the work of [7]. The governing
equations, suitable for modelling compressible two-phase flows using a one-fluid model,
are presented. In their conservative forms, the mass and momentum equations read
as follows:

∂ρ

∂t
+∇ · (ρv⃗) = 0 (1)

and
∂ρv⃗
∂t

+∇ · (ρv⃗ ⊗ v⃗) = −∇p +∇ · τ + ρg⃗ + F⃗s (2)

where v⃗ is the fluid velocity, p is the pressure field, t is the time, and ρ and µ are the
properties of the fluid. In addition, τ = µ(∇v⃗ + (∇v⃗)T)− 2

3 µ∇ · v⃗ is the viscous stress
tensor and g⃗ is the gravity acceleration, whereas F⃗s is the capillary term acting on the
interface, modelled in this study by the continuum surface tension force (CSF) [16]. The
tracking of the spatio-temporal evolution of the interface requires solving an advection
equation for the phase indicator color function C:

∂C
∂t

+ v⃗ · ∇C = 0 (3)

By definition, C = 1 in one phase and 0 in the other phase. In the framework of a finite
volume approximation of the solution, the color function in the control volumes cut by the
interface is, for example, 0 < C < 1. As the velocity and the pressure fields are coupled,
a relation between v⃗ and p is needed to obtain the evolution equation for the pressure.
Thereby, the conservation of mass equation is not used in its original form (Equation (1))
but is transformed into a pressure equation that is combined with the velocity variable.
Within the framework of a compressible flow between two successive instants t and t + dt,
the differential in the density with respect to the pressure p and the temperature T leads to

dρ

dt
=

(
∂ρ

∂p

)
T

dp
dt

+

(
∂ρ

∂T

)
p

dT
dt

(4)

Introducing the coefficients of isothermal compressibility and isobaric thermal expansiv-
ity (sometimes called the expansion or dilatation coefficient), χT = ρ−1(∂ρ/∂p)T and
β = ρ−1(∂ρ/∂T)p, respectively, the mass conservation (Equation (1)), combined with
Equation (4), can be rewritten as

χT
dp
dt

+ β
dT
dt

+∇ · v⃗ = 0 (5)

For incompressible (χT = 0) and isothermal (β = 0) flows, Equation (5) gives ∇ · v⃗ = 0.
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When considering compressible flow, the energy equation is also addressed. Within
the scope of this paper, we focus on scenarios where thermal diffusion and mass transfer
at the interface do not play a significant role and are then neglected. Consequently, under
these specific circumstances, the total energy equation is formulated as follows:

∂ρe
∂t

+∇ · (ρe⃗v) = −∇ · (⃗vp) +∇ ·
(
τ · v⃗

)
+ ρg⃗ · v⃗ + F⃗s · v⃗ (6)

where e = u + ek denotes the total energy, which is the sum of the internal energy u and
kinetic energy per unit mass ek = ∥v⃗∥2/2.

To complete the set of equations, an equation of state (EoS) that establishes a relation-
ship among the thermodynamic variables, pressure, p; density, ρ; and temperature, T, is
required. For any phase, gas or liquid, the Noble–Abel Stiffened-Gas (NASG) equation [17]
can give the general formulation of an EoS. In this work, the liquid phase is always as-
sumed to be incompressible, while the ideal gas model is adopted for the gas phase. The
variation in the density as a function of pressure and temperature is classically expressed
by ρ = p/(rT), wherein r is the specific gas constant. On the other hand, from the NASG
EoS of an ideal gas, it is seen that ρ = p/(u(γ − 1)), with γ = cp/cv as the isotropic gas
coefficient. The combination of the two previous expressions provides a relation for the
temperature as a function of the internal energy, T = ru(γ − 1), needed to close the system
of Equations (2), (5) and (6), where the interface dynamics are provided by Equation (3).

3. Numerical Scheme

In this section, the global algorithm used to solve the coupled mass, momentum, and
energy equations detailed in the previous section is presented.

The algorithm was designed with the underlying idea of a fully implicit formulation
of system equations. For example, in momentum conservation Equation (2), all variables
(ρ, v⃗, . . . ) and terms would like to be resolved simultaneously. Due to non-linearity, some
quantities, such as physical properties, the inertial term, or the geometrical properties of
the interface, are estimated with values expected to closely approximate those obtained
through implicit solving. To that purpose, a consistent reformulation and discretization
of the inertial term, based on a momentum preserving approach [12], is used. The spacial
discretization relies on a classical conservative finite volume approach and is not detailed
in this paper. In practice, solving the full system introduces a sequential resolution of
equations that themselves combine explicit variables (inertial contribution) with implicit
variables resolved by the inversion of linear systems.

After time discretization, all variables at time tn = t0 + n∆t, where n is the iteration
number and ∆t the constant (non restrictive) time step, are supposed to be known from
a previous solution, directly (⃗vn, pn, Cn, and en) or from a reconstruction (ρn, µn, . . . ). At
this step, density and, more generally, all the physical properties are synchronised with
the phase indicator function Cn. The density is, for example, deduced from a mixing rule,
ρn = (1 − Cn)ρ1 + Cnρ2, where ρi is the density of phase i. According to the phase state,
an EoS is used to specify the behaviour of ρi.

1. The initial step involves the inertial term computation of Equations (2) and (6). As
the l.h.s. of the mentioned equations has the same mathematical structure ∂ϕ/∂t +
∇ · (ϕv⃗), with ϕ = ρv⃗, ρe, a general approach is used to compute temporary variables
(denoted ϕ⋆) in the operator splitting framework [12]. As the density is also a required
variable, Equation (1) is also used in the numerical scheme in order to provide an
approximation of the density.
In practice, ϕn = ρn, ρnv⃗n, ρnen is first initialised before the time integration us-
ing a third-order accurate strong stability preserving Runge–Kutta (SSP-RK3) time
integrator [18]:

ϕ(1) = ϕn − ∆t∇ · (ϕnv⃗n) (7a)

ϕ(2) =
3
4

ϕn +
1
4

ϕ(1) − 1
4

∆t∇ ·
(

ϕ(1)v⃗(1)adv

)
(7b)
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ϕ⋆ =
1
3

ϕn +
2
3

ϕ(2) − 2
3

∆t∇ ·
(

ϕ(2)v⃗(2)adv

)
(7c)

where v⃗(1)adv = 2⃗vn − v⃗n−1 and v⃗(2)adv = (3⃗vn − v⃗n−1)/2 are the velocities correctly
extrapolated to maintain scheme accuracy [19]. To ensure that ϕ remains bounded
during advection, high-order schemes such as CUI, WENO, or even CUBISTA are
used (see [19] and the references herein for more details).
At the end of this step, discrete consistency between the temporary density, ρ⋆; mo-
mentum, (ρv⃗)⋆; and energy, (ρe)⋆ variables is ensured. Furthermore, as Equation (1)
is a pure advection equation, ρ⋆ directly provides a predicted density: ρn+1 = ρ⋆.

2. The next step consists of the color function C advection. A conservative VOF approach,
proposed by [20], is used where Equation (3), with time discretization, is formulated as

Cn+1 − Cn

∆t
+∇ ·

(
Cnv⃗(2)adv

)
= Cn∇ · v⃗(2)adv (8)

3. With the knowledge of Cn+1, the termophysical properties of the one-fluid model are
updated. For ξ = µ, χT , β, γ, and r, by using an arithmetic mixing law,

ξn+1 =
(

1 − Cn+1
)

ξ1 + Cn+1ξ2 (9)

where ξi denotes the property corresponding to phase i. Note that the density is not
updated as its value is already known from step 1.

4. The geometrical properties, normal properties n⃗, and curvature κ, of the interface are
evaluated. Here, a smoothed color function C̃n+1 is computed from a diffusion step
applied on Cn+1 and the definition

n⃗n+1 =
∇C̃n+1

∥∇C̃n+1∥
and κn+1 = ∇ · n⃗n+1 (10)

can be used in the CSF expression of F⃗s = σκn⃗δI where σ is the surface tension and δI
is the interface localisation.

5. From the EoS of an ideal gas, the temperature T can be expressed as a function of the
solved variables v⃗ and e,

T =
γ − 1

r

(
e − ∥v⃗∥2

2

)
(11)

and can be injected into the mass conservation (Equation (5)) that couples solved
quantities v⃗, p, and e. However, the velocity norm prevents an implicit coupling
due to the non-linearity. The total derivative dT/dt will then be made explicit in the
following for non isothermal flows.

6. Using the new density ρn+1 and the temporary momentum (ρv⃗)⋆ from step 1, the
physical and interface properties from steps 3 and 4, and the temperature definition
from step 5, the mass conservation, augmented by the compressibility and dilatation
effects, and the momentum equations read, with a first-order time discretization,

χn+1
T

(
pn+1 − pn

∆t
+ v⃗n+1 · ∇pn

)
+ βn+1

(
Tn − Tn−1

∆t
+ v⃗n+1 · ∇Tn

)
+∇ · v⃗n+1 = 0 (12a)

ρn+1v⃗n+1 − (ρv⃗)⋆

∆t
= −∇pn+1 +∇ · τ

n+1
+ ρn+1 g⃗ + σκn+1n⃗n+1δI (12b)

where only the velocity v⃗n+1 and pressure pn+1 fields are implicity coupled and
constitute the unknown vector of the underlying linear system. This latter is solved
with a BiCGStab(2) solver [21], where an efficient block triangular preconditioner,
improving the convergence of the iterative solver as explained in [10,11], is used.
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A last discussion concerns the linearization of the term v⃗n+1∇pn+1 into v⃗n+1∇pn. This
choice relies essentially on the available stencils from the incompressible version of
the used solver [11]. Another approach, where v⃗n+1∇ϕn+1, with ϕ being the pressure
or the temperature field, is one again approximated with the application of step 1 to a
conservative evolution equation for ϕ, is also considered.

7. Finally, we update the total energy (ρe)n+1 using the intermediate total energy (ρe)⋆

computed in step 1 and all other variables now known at time tn+1:

(ρe)n+1 − (ρe)⋆

∆t
= −∇ ·

(
v⃗n+1 pn+1

)
+∇ ·

(
τ

n+1 · v⃗n+1
)
+ ρn+1 g⃗ · v⃗n+1 + σκn+1n⃗n+1 · v⃗n+1δI (13)

The total energy at the end of the time iteration is deduced from en+1 = (ρe)n+1/ρn+1.

4. Results
4.1. Sod’s Shock Tube Problem

This configuration was first introduced by [22]. This is a famous test case used to check
the ability of the compressible schemes to avoid numerical instability at the shock level and
improve the capture of a complex system of shock waves inside the tube. The governing
equations are the Euler equations (Equations (12a) and (12b) with µ = 0) supplemented by
the equation for the conservation of total energy (Equation (6)), with air characterized by
an ideal gas model.

Here, a tube of length L = 1 m is considered. A membrane splits the tube into two
regions: a high-pressure gas (ple f t, ρle f t) on the left side and a low-pressure gas (pright, ρright)
on the other. The membrane is removed at time t = 0. A complex system of shock waves
develops inside the tube, i.e., an expansion wave, a contact discontinuity, and a normal
shock wave.

The initial condition is given on the 1D computational domain, 0 ≤ x ≤ 1 m, as follows:

(ρ, v⃗, p) =


(

ρle f t, v⃗le f t, ple f t

)
=
(

1, 0⃗, 1
)

if x ≤ 0.5(
ρright, v⃗right, pright

)
=
(

0.125, 0⃗, 0.1
)

if x > 0.5
(14)

Preliminary studies were conducted to determine the appropriate mesh sizes for effectively
capturing the phenomena of the shock tube. The simulations were carried out on a 250,
500, and 1000 Cartesian grid with time step conditions such that the CFL is defined by
max |u|∆t/∆x = 0.3. The matrices resulting from the discretization will be solved with the
BiCGSTAB(2) solver with a residual of ε = 10−9.

Figure 1 demonstrates well-resolved shocks with correct shock locations and fewer
smeared contact discontinuities. The corresponding solutions show the evolution of pres-
sure and density at different times (0 s, 0.025 s, 0.05 s, 0.075 s, and 0.1 s) as a function of
the curvilinear abscissa of the shock tube. From this figure, it is clear that an expansion
wave propagates to the left, a shock wave propagates to the right, and there is discontinuity
between these two waves.
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Figure 1. Sod’s shock tube problem: The different colored lines represent the solutions on a 1000-point
grid at different times, as indicated by the legend. From the left to the right plot, we display density
and pressure along the horizontal axis.
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Since the analytical solution was available, the theoretical curves are overlayed on the
numerical ones in Figure 2. This illustrates a clear convergence of the numerical simulations
to the exact solution when using a total energy equation, whether for velocity, pressure,
internal energy, or density.
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Figure 2. Sod’s shock tube problem: Comparison of the numerical solution on different grids (using
total energy) against the exact solution. The solutions are compared at a physical time of 0.1 s and in
a line along the horizontal axis. (a) p. (b) ρ. (c) ∥v⃗∥. (d) u.

Finally, the choice of the solved energy equation is discussed here. As mentioned in
Section 3, as the total energy conservation is used, the temperature is deduced from the
fluid EoS properties. Other choices are possible, such as enthalpy conservation or, in a more
traditional way, the energy equation formulated with the temperature variable (heat or
thermal energy equation). The two first choices involve dealing with conserved quantities,
i.e., the total energy e or the entalpy h, while the temperature variable in the heat equation is
not a conserved quantity. In the latter case, at the discrete level, the energy conservation is
then excepted and no longer ensured by the formulation. The consequences are significant,
particularly for shocks. Figure 3 again presents the pressure, density, velocity, and internal
energy fields by resolving the total energy (Equation (6)) or the heat equation (see [7]). On
the one hand, and as shown before with the convergence study (Figure 3), the conservation
of total energy ensures that all quantities are predicted accurately, even for coarse grids.
On the other hand, on the finest grid level, using the thermal energy equation implies that
all quantities across the shocks are badly predicted.
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Figure 3. Sod’s shock tube problem: Comparison of the numerical solution on a 1000-point grid
(using total and thermal energy) against the exact solution. The solutions are compared at a physical
time of 0.1 s and in a line along the horizontal axis. (a) p. (b) ρ. (c) ∥v⃗∥. (d) u.

4.2. Isothermal Case for a Viscous Flow without Capillary Effects

In order to validate the compressible two-phase model presented in the previous sec-
tion, two academic test cases are studied [3] in the context of isothermal and viscous flows.
The purpose is to check the accuracy of the compressible model in a simple isothermal
two-phase case by comparing the numerical density and pressure fields with the analytical
solutions. The relative error is then estimated for various meshes and the convergence
order can be extracted. In both cases, the thermophysical characteristics of the two fluids
are given in Table 1. The two configurations are quite similar and are presented in Figure 4.
In a square cavity of side length L = 0.1 m, air is compressed by a water injection at a
constant mass flow rate. The initial air density is ρ0. As the analytical solutions to these
problems are based on a quasi static evolution hypothesis, the velocity V0 is chosen to be
very low. In configuration (Figure 4a), air initially spans a length L0 and the water injection
velocity is V0 = 0.1 m/s. The mass of air is constant and its volume will vary over time
with the volume of water injected according to the following law:
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ρ(t) = ρ0

(
1 − V0t

L0

)−1
(15)

In the second case (Figure 4b), an air bubble of initial radius R0 = 30 mm is compressed
by injecting water from all the sides of the square cavity, with V0 = 2.5 × 10−3 m/s. The
theoretical equation for density evolution over time is

ρ(t) = ρ0

(
1 − 4V0Lt

πR2
0

)−1

(16)

The analytical pressure field p is obtained from the analytical density using the ideal gas
model, p(t) = ρ(t)rT0, with T0 = 300 K as the reference temperature.

V0

Water

Air
L0

L

V0

(a) Case 1

Water

Air

V0

V0

V0 V0
L

R0

(b) Case 2
Figure 4. (a) Water injection in a closed cavity initially full of air. (b) Compression of an air bubble by
water injection.

Table 1. The physical properties of air (initial) and water used in the computations. Here, water is
considered to have a constant density, whereas air is treated as a compressible fluid with an ideal gas
law that couples pressure and density. The surface tension between to two phases is neglected.

Air Water

Density ρ (kg ·m−3) 1.1768292 1000
Viscosity µ (Pa · s) 1.85 × 10−5 1 × 10−3

Compressibility χT (Pa−1) 9.8692322 × 10−6 0.44 × 10−9

Specific gas constant r (J ·K/kg) 287 −

In the following, the cases are simulated on four Cartesian grid meshes composed
of 322, 642, 1282, and 2562 control volumes, with a constant time step ∆t = 10−4 s and a
residual of ε = 10−9 for the iterative solver. The averaged values of the solved density and
pressure are used for the gas phase and compared to the analytical solutions in (15) and (16).

Figure 5 presents the density evolution over time. The final time is chosen such that
the final density value (or the gas volume) is about twice (half) the initial one. Before
discussions about the convergence study of the simulations, it should be noted that all
quantities of interest (density and pressure in the air) converge well, for all times, using
the referenced solution. The convergence with the number of control volumes is by upper
values in case 1 and by lower values in case 2.

Errors in the density and pressure fields, estimated with an L1 relative norm, are
presented in Table 2 for both cases. Regarding the relative errors, a Richardson extrapolation
is also used on the three finest meshes to find the asymptotic solutions at the final times. A
first-order 1 convergence towards the asymptotic values is obtained again.

Note that the convergence orders of pressure and density differ slightly since the
errors use quantities at the end of the time step. Density is obtained through step 1 in the
global algorithm presented in Section 3, while the pressure field comes from the resolution
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of the momentum and mass conservation equations (Equations (12a) and (12b)). In case
the fields are synchronised before the error computation, the order is strictly the same.
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Figure 5. Density over time for both cases and different grids. Final time is chosen such as that final
density is twice initial one. (a) Case 1. (b) Case 2.

Table 2. Convergence study for both case. Relative error in L1 norm is computed from analytical
relations Equations (15) and (16).

Case 1

Mesh ρ Error L1 order p Error L1 order

32 × 32 2.571 2.172 × 10−2 2.217 × 105 2.114 × 10−2

64 × 64 2.544 1.093 × 10−2 0.98 2.194 × 105 1.034 × 10−2 1.03
128 × 128 2.531 5.580 × 10−3 0.97 2.182 × 105 4.980 × 10−3 1.05
256 × 256 2.524 2.840 × 10−3 0.97 2.176 × 105 2.240 × 10−3 1.15

Extrapolation 2.517 3.730 × 10−4 0.97 2.170 × 105 1.200 × 10−3 0.97

Case 2

Mesh ρ Error L1 order p Error L1 order

32 × 32 2.383 4.784 × 10−2 2.123 × 105 1.652 × 10−2

64 × 64 2.441 2.482 × 10−2 0.94 2.149 × 105 4.310 × 10−3 0.93
128 × 128 2.474 1.137 × 10−2 1.12 2.182 × 105 4.980 × 10−3 1.00
256 × 256 2.490 5.210 × 10−3 1.12 2.188 × 105 2.030 × 10−3 1.08

Extrapolation 2.503 1.630 × 10−5 1.12 2.189 × 105 1.640 × 10−3 1.04

4.3. Isothermal Case for a Viscous Flow with Capillary Effects: Drop Impact on Viscous Liquid Film

As a continuation of the test cases already presented, the drop impact on the viscous
liquid film case is set up here. The main aim is to check the ability of our compressible
formulation to simulate two-phase flows with large density and viscosity ratios and strong
interface deformation. Here, the Mach number is around 0.007 and the flow configuration
is almost incompressible. Following the simulations in [23], we consider a drop of water of
diameter D = 2.8 × 10−3 m, perfectly circular, with coordinates (0, 0, 5.15 D), placed into a
rectangular domain of dimensions Lx = 10D, Ly = 10D, and Lz = 20D. The water surface
is initialised at y = 4.5D. The boundary conditions of the domain are non-slip on all faces
and homogeneous Neumann on the top. The time step is adaptive, and the CFL is 0.3. The
simulations were carried out with the residual ϵ = 10−5 of BiCGSTAB(2) solver, both with
the compressible formulation and with the incompressible scheme.

The results obtained from the compressible and incompressible models are compared
with the experimental results shown in Figure 6. Figure 7 shows time snapshots captured
at 5, 25, 45, and 65 milliseconds after droplet impact. Initially, as inertia dominates the
capillary forces, the drop penetrates the water film and induces the formation of a crater
(see Figure 8a) and a rising corona, which later induces a secondary ejection of droplets.
After reaching the maximum depth, the crater begins to retract over time due to capillary
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forces. Finally, compressible and incompressible solvers give identical results that are in
agreement with the experiment results (see Figure 6). In addition, in Figure 8b, we can
see an equivalence between the compressible model and the incompressible model on the
evolution of the crater, in which a good agreement is observed between the numerical
results and the experimental measurements. We are dealing with the case where the
compressible model degenerates into an incompressible model. We then conclude that
our compressible scheme is capable of handling two-phase flows with large interface
deformations in incompressible limit of the flow motion.

(a) (b) (c)
Figure 6. Experimental images [23] of the crater formation inside a deep pool and the rising crown
above the liquid surface. (a) is 4.3 ms. (b) is 22.6 ms. (c) is 28.7 ms.

(a) (b) (c)

1-Incompressible Model

2-Compressible Model

Figure 7. Simulation of drop impact into a deep pool using different schemes with a resolution of
32 cells per drop diameter. Presentation of the VOF interface (C = 0.5 isosurface) at three different times:
4.3 ms, 22.6 ms, and 28.7 ms. The simulation with a resolution of 32 cells per drop diameter was carried
out on 512 processors of the TGCC IRENE Rome HPC cluster. (a) is 4.3 ms. (b) is 22.6 ms. (c) is 28.7 ms.

(a)

0 10 20 30 40 50
= tVi

Dd

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Z
* cr

=
Z c

r
D

d

Experimental reference
Incompressible model
Compressible model

(b)

Figure 8. Evolution of the dimensionless crater depth Z∗
cr as a function of dimensionless time τ for

the studied schemes. The numerical results are compared to the experimental measurement in [23].
(a) Definition of the maximum crater depth. (b) Compressible vs. incompressible model using 32 cells
per drop diameter.
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5. Conclusions

In this work, we introduce a compressible formulation integrated with an original
monolithic solver to address two- and three-dimensional compressible interfacial flows,
showcasing a concrete progression in computational fluid dynamics. Our developed
scheme stands as a notable advancement, providing a dependable and flexible toolkit for
accurately and stably simulating diverse fluid flow scenarios, spanning from incompressible
to compressible and encompassing both single-phase and two-phase situations with or
without capillary effects. Future works will be devoted to the extension of this solver to
the validation of the presented model in the case of a droplet splashing into a pool or air
bubbles [24,25] or a spray of drops and the interaction between shock/rarefaction waves
and fluid/fluid interfaces.
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