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Abstract: Nonvolatile, molecular multiferroic devices have now been demonstrated, but it is worth
giving some consideration to the issue of whether such devices could be a competitive alternative
for solid-state nonvolatile memory. For the Fe (II) spin crossover complex [Fe{H2B(pz)2}2(bipy)],
where pz = tris(pyrazol-1-yl)-borohydride and bipy = 2,2′-bipyridine, voltage-controlled isothermal
changes in the electronic structure and spin state have been demonstrated and are accompanied by
changes in conductance. Higher conductance is seen with [Fe{H2B(pz)2}2(bipy)] in the high spin
state, while lower conductance occurs for the low spin state. Plausibly, there is the potential here for
low-cost molecular solid-state memory because the essential molecular thin films are easily fabricated.
However, successful device fabrication does not mean a device that has a practical value. Here,
we discuss the progress and challenges yet facing the fabrication of molecular multiferroic devices,
which could be considered competitive to silicon.

Keywords: molecular devices; molecular multiferroics; spin crossover; voltage control; nonvolatile
memory

1. Introduction

As the expectations for novel organic electronics grow, the design of flexible and
high-density nonvolatile memory device remains a hot topic. The successes with or-
ganic electronics, combined with indications of success in addressing the complex grand
challenge of manipulating magnetically ordered states by electrical means, suggest new
approaches and applications to develop novel spintronics. In molecular systems, the spin
crossover (SCO) relates to the transition between a low spin (LS) of the metal ion (indeed,
diamagnetic state in the case of the Fe2+ system) to a high-spin (HS) paramagnetic state
in 3D transition metal compounds, and for quite some time now, it has been suggested
that the spin crossover (SCO) phenomenon has potential applicability in molecular spin-
tronic devices [1–15]. In such device elements, based on the molecular spin state, is very
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likely that state switching may be accomplished without large current densities or power
consumption. Molecular systems have the very real possibility of providing a room tem-
perature device on a length scale less than 10 nm while delivering low-power nonvolatile
local magneto-electric memory operations.

We have investigated heteromolecular devices from molecular ferroelectrics and
spin crossover molecular complex [Fe{H2B(pz)2}2(bipy)], where pz = tris(pyrazol-1-yl)-
borohydride and bipy = 2,2′-bipyridine [13,14]. Such devices work where the voltage
control of the molecular spin states leads to nonvolatile conductance changes [13,14]. From
these many perspectives of memory devices [1–14] made possible by the molecular spin-
state transition, we can construct a list of some of the key elements needed to make a
competitive nonvolatile molecular device for memory applications.

Spin crossover molecular systems have a long history [16–21], but as successful non-
volatile devices that can be manipulated by voltage alone, the success is much more
recent [12–14]. Nonetheless, a picture has emerged [5,7,8,12,22,23] of some of the key
criteria needed to make a molecular spintronic device, based on spin crossover complexes,
competitive with silicon technology. These identified criteria are as follows:

1. A device implementation scheme;
2. The ability to make a thin film;
3. The ability to “lock” the spin state (i.e., nonvolatility);
4. The ability to isothermally “unlock” and switch the spin state, ideally with voltage;
5. A low coercive voltage (ideally less than 1 V) and low write peak currents (ideally

104 A/cm2);
6. A conductance change with spin state;
7. Room-temperature operation and at temperatures well above room temperature;
8. A device on/off ratio > 10;
9. An on-state device resistivity less than 1 Ω·cm;
10. A device fast switching speed, ideally less than 100 ps;
11. Device reproducibility;
12. Device endurance, ideally 1016 switches without degradation;
13. The ability of having a nonvolatile device with a transistor channel width of 40 nm

or below.

Nonvolatile devices that are both two-terminal diode-like devices [13] and effectively
four-terminal transistor devices [13,14] have been fabricated from spin crossover molecules.
Both are seen to operate at room temperature. The diode or two-terminal multiferroic
molecular devices are very much like the nonvolatile tunnel junction devices, in terms of
implementation, for which there is considerable literature [24–27] and indeed a commercial
product [28–31]. The two-terminal spin crossover heteromolecular nonvolatile device [13]
could be very competitive, because the on/off ratio of the oxide tunnel barrier magnetic
tunnel junction is typically very low, often less than 2 [32–35].

Existing memory components are configured in numerous ways, the most common
being SRAM (static random-access memory), DRAM (dynamic random-access memory),
and NAND flash. They each have their own distinct advantages in memory cell area and
read or write time. Spin-state molecular devices have inherent memory, so they do not
benefit from being configured as an SRAM memory cell, where a positive feedback loop
provides the memory storage rather than being provided by the device itself. In a similar
way, memory, based on the nonvolatile manipulation of molecular spin state, is likely not
suitable for configuration in a “NAND Flash” memory arrays, due to read difficulties and
write difficulties associated with the very high resistance of these molecular devices, as
noted below. However, the basic DRAM cell consists of an access transistor and a capacitive
storage element. We can use the same concept of an access transistor but substitute the
capacitor with a spin-state molecular device. Figure 1 shows a schematic of a plausible
nonvolatile memory element cell. This memory cell is based on the field effect voltage-
controlled spin state molecular transistor described elsewhere [12–14] and could exploit
the difference between the low-resistance and high-resistance states of a voltage-controlled
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spin-state molecular memory device fabricated from spin crossover complexes. However,
unlike DRAM (dynamic random-access memory), where charge storage on the cell must
be refreshed periodically, molecular spin-state memory is nonvolatile, as noted above and
elsewhere [12–14], and the output is resistive. This is particularly useful when low-power
memory is needed. The select transistor may be any appropriate transistor switch. It could
be a silicon NMOS (n-channel MOSFET) device, a tunnel field-effect transistor (TFET), or
even another molecular multiferroic spin transistor, providing that switching does not
allow for any memory storage in the select transistor.
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Figure 1. A schematic of a nonvolatile memory element utilizing the multiferroic spin transistor
made by spin crossover molecular heteromolecular systems, as described here. The select transistor
may be any appropriate transistor switch. It could be a silicon NMOS device, a TFET, or even another
molecular multiferroic spin transistor, providing switching does not allow for any memory storage
in the select transistor.

With this DRAM-like configuration, read is achieved by activating the required bit
line to a voltage high enough that the resistance of the multiferroic transistor may be
read but low enough that programming cannot occur. Then, the word line is activated,
so the resistance of a particular multiferroic transistor may be read. Read is achieved
with a current sensing amplifier, as the read voltage is typically in the tens to hundreds of
millivolts, and a current sense amplifier is more robust in these conditions. It is anticipated
that the sense amplifier will be constructed in conventional MOS technology. In order to
write a state into the spin transistor, the bit line is raised to the positive reprogramming
voltage to program a “1” state or lowered to a sufficiently negative voltage that the transistor
is programmed to the “0” state.

As indicated elsewhere in this article, this particular variant of a nonvolatile memory
element would not be the only implementation scheme for a potential nonvolatile spin
crossover molecular device, but it provides a context for reviewing the experimentally
demonstrated properties of spin crossover molecular devices and spin crossover complexes
in the context of what would be needed for a competitive nonvolatile molecular device.
Other types of memory architecture are possible utilizing this room temperature voltage-
controlled spin state molecular memory device technology.

Here, we seek to outline the key characteristics of the successful room-temperature
nonvolatile spin crossover devices in the context of what must be achieved and demon-
strated for such devices to be competitive against silicon technology. This is not only a
roadmap for future work but also a basis for benchmarking the molecular spintronics
devices against silicon technology and other beyond CMOS device concepts.

2. Making a Spin Crossover Molecular Thin Film

A competitive device requires scalability. This is to say that there has to be a route
to large scale manufacturability. This tends to negate single molecule devices [12] for the
simple reason that there are insurmountable barriers to the fabrication of such devices into
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a 1 GB memory array. Large device arrays require thin films. There are three approaches.
These are to build a spin crossover thin film architecture chemically, as has been done
in the case of [Fe-(pz){Pd(CN4)}] [36,37], evaporate a thin film, or spin coat a thin film
from solution.

The more widely used approach to film fabrication is to evaporate a thin film of spin
crossover molecules [8]. This will not work with all spin crossover molecular systems,
because the sublimation process must leave the molecules “intact”, and the condensation
process must result in a suitable molecular packing on the local scale (at least), so that the
properties that change across the spin transition can be exploited reproducibly. The require-
ments tend to exclude molecular salts and polymers, as neither can be evaporated readily.
Yet the approach has been successfully applied to [Fe(1,10-phenanthroline)2(NCS)2] (fre-
quently known as Fe(phen)2(NCS)2) [38–44], as illustrated in Figure 2a, [Fe(H2B(pz)2)2phen]
where H2B(pz)2 = dihydrobis(1H-pyrazol-1-yl)borate [45–51], as illustrated in Figure 2c,
[Fe(HB(tz)3)2] (tz = 1,2,4-triazol-1-yl) [52–56], as illustrated in Figure 2d, [Fe(HB(3,5-(CH3)2-
(pz)3)2], where pz = pyrazolyl [10,57–61], as illustrated in Figure 2e, [Fe(qnal)2] where qnal
= quinoline-naphthaldehyde [62], as illustrated in Figure 2f, [Fe(HB(pz)3)2] where pz = pyra-
zolyl [11,63], and the molecule that is the focus of this review: [Fe{H2B(pz)2}2(bipy)] where
(H2B(pz)2 = bis(hydrido)bis(1H-pyrazol-1-yl)borate, bipy = 2,2′-bipyridine) [13,14,64–77],
as illustrated in Figure 2b.
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Figure 2. Some of the more popular spin crossover complexes that can be evaporated as molecular thin
films. (a) [Fe(1,10-phenanthroline)2(NCS)2], frequently written as Fe(phen)2(NCS)2. (b) [Fe{H2B(pz)2}2(bipy)] where
(H2B(pz)2 = bis(hydrido)bis(1H-pyrazol-1-yl)borate, bipy = 2,2′-bipyridine). (c) [Fe{H2B(pz)2}2phen] where again
(H2B(pz)2 = dihydrobis(1H-pyrazol-1-yl)borate). (d) [Fe(HB(tz)3)2] (tz = 1,2,4-triazol-1-yl). (e) [Fe(HB(3,5-(CH3)2(pz)3)2],
pz = pyrazolyl]. (f) [Fe(qnal)2] where qnal = quinoline-naphthaldehyde. Adapted with permission from ref. [8]. Copyright
2020 Wiley-VCH.

Another approach would be to spin coat the molecular layers from solution, as in
the case of Fe(hptrz)3](OTs)2 (hptrz = 4-heptyl-1,2,4-triazole, OTs = tosylate) [78]. The
problem with making the thin film from solution is that solvent effects are known to alter
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the characteristics of the spin-state transition for some spin crossover complexes [79,80].
This is not likely to be an insurmountable problem, but realistically, the molecular solubility
and solvent effects are issues that would have to be addressed if this were chosen as the
route to large scale device fabrication. Presently, efforts to explore solubility and solvent
effects are only in their infancy.

3. Locking the Molecular Spin State

A competitive nonvolatile device requires locking of the spin state in the region of
room temperature, as has been achieved with the inclusion of both dipolar molecular
additives [73,81] as well as from the influence of the substrate. Key here is that the
polarization of a ferroelectric interface can preferentially favor the adoption of the high
or low spin state of an adjacent spin cross molecular thin film [13,14,72,77] over a wide
range of temperatures from 100 K [72] to 350 K [14]. It is important to note that this
influence of the ferroelectric substrate domain polarization extends away from the interface
with ferroelectric and well into the adjacent spin crossover molecular thin film. The
exact mechanisms for this influence of the substrate on the spin state of the molecular
spin crossover complex thin film have not been precisely identified, but intermolecular
cooperative effects are implicated in the influence of the substrate on the adjacent spin
crossover molecular thin film [71]. The fact that the interface polarization influences the
spin-state occupancy significantly for molecular spin crossover complex thin films up to
20 molecular layers [71], and for even greater film thicknesses in a somewhat diminished
manner [14] means that device fabrication does not require precise and stringent film
thickness choices, easing the constraints.

Thus far, there is no evidence of finite scaling effects that would lead to diminished
critical temperatures with thinner films, although intermolecular cooperativity is seen to
vary with film thickness [71]. The result is that isothermal switching (as discussed below) is
more complete, and spin-state locking is more effective in thinner films than thicker films.
We note, in passing, that the surface of molecular spin crossover complex thin film may
have a different spin-state occupancy than the rest of the film [71]. Furthermore, since the
device has to be both top and bottom gated, the molecular spin crossover complex thin
film will be influenced by two different interfaces, and the effects of the latter have not yet
been investigated in detail.

4. Isothermal Molecular Spin-State Switching

A competitive nonvolatile molecular spin crossover device requires change of the
spin state, ideally with voltage, from one nonvolatile state to another. This is the device
“write” operation and has now been demonstrated [13,14]. Recent studies [74,82] suggest
that an applied magnetic field could reduce the activation barrier to a change in spin state,
but as with light activation of a spin state change [69,77], this does not seem to lend itself
toward a readily applicable memory application. Just the same, isothermal spin state
and conductance switching has been demonstrated. It is this achievement of nonvolatile
voltage control of the molecular spin state [13,14] that opens the door to potential practical
applications. The adjacent ferroelectric layer provides a low coercivity voltage control
of the spin state, as well as nonvolatility, but the device practicalities favor the use of
organic [13,14] rather than inorganic [77] ferroelectrics, as discussed next.

Isothermal switching of the spin state optically, in the vicinity of room temperature, is
certainly well established [55,57,58,73,74,83–89], as there are a number of photoactive spin
crossover molecules, and optically switching has been a route to probing spin-state switch-
ing speed (as discussed below). However, these other routes to isothermal switching of the
spin state (pressure changes, light, etc.) are not a route to a competitive memory device.

5. The Search for a Low Coercive Voltage and Low Peak Write Currents

The working nonvolatile molecular spin crossover devices fabricated so far [12–14]
make use of a ferroelectric layer adjacent to the spin crossover molecular layer. Thus, the co-
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ercive voltage of the device tends to be dominated by the coercive voltage of the ferroelectric
layer. Obviously, the choice of molecular ferroelectric also plays a role. Coercive voltages
of 1.5 V have been obtained for a five-layer poly(vinylidene fluoride with trifluoroethylene)
film [90], and roughly 5 V has been obtained for both 35 nm and 185 nm thick croconic acid
thin films [91], respectively (Figure 3). The good news here is that the coercive voltage for
the ferroelectric layer tends to scale with the ferroelectric layer film thickness, but sadly,
this scaling with film thickness appears to be far from perfect [92–95] in the thin film limit.
Yet a critical electric field Ecr of roughly 50 MVm−1 [95] and 0.2–0.4 GVm−1 [94,96,97] have
been estimated for poly(vinylidene fluoride with trifluoroethylene) films, meaning that
coercive voltages of 50 mV to 0.2 V are possible for bilayer thick molecular films of about
1 nm thickness. Even with failures of scaling in the thin film limit, coercive voltages of less
than 0.5 V should be possible for bilayer thick molecular films [90]. The critical electric
field Ecr of less than 2 MVm−1 [97,98] for croconic acid means that coercive voltages less
than 3 mV might be possible, which in fact would be too small to be practical, so thicker
and thus more reliable ferroelectric thin films would be required.
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While there have been some successes with inorganic ferroelectric layers influencing
the spin state of an adjacent molecular spin crossover complex thin film [77], in general, the
problems with the inorganic ferroelectric layers are that, apart from PbZr0.2Ti0.8O3 (PZT),
the coercive voltages tend to be somewhat higher, outside of the tunnel junction geometry
where the coercive voltages also are in the range of 1 V [99,100]. In the very thinnest of
oxide ferroelectric films, ferroelectric polarization retention tends to be lower [100]. Indeed,
our experience is that in the very thin oxide ferroelectric films, one ferroelectric polarization
is favored so that the retention of one ferroelectric polarization is favored over another. Thin
film oxide ferroelectrics, even when grown on oxide surfaces, tend to exhibit preferential
upward polarization (C+) [101,102]. This is not desirable in a nonvolatile device destined
for memory applications. For the oxides, surface defects abound. How a spin crossover
complex will bond at such defects sites is not yet clear, so concerns remain that spin-state
switching will be suppressed for spin crossover complexes residing at such oxide surface
imperfections.

Organic ferroelectric thin films are also far from perfect in their behavior. First, there is
the problem that the faster the switching speed, the higher the coercive voltage needed [87].
Second, the coercive voltages for each ferroelectric polarization direction may differ as
the film thickness decreases [79]. The loss of symmetry in the coercive voltage can be the
result of the interface with a conducting contact [92]. Organic ferroelectric thin films also
tend to exhibit preferential upward polarization [103]. Finally, there is the problem that the
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polarization hysteresis is not “square”, meaning that the application of higher voltage, the
coercive voltage, may be necessary to achieve full polarization.

If the current density is 1 electron per molecule in 1 ns, this translates into an overall
minimum current density of 3.6 × 105 A/cm2. This approaches the industry goal of a
current density of 104 A/cm2. This is because the gate supply needs to be able to do
two things: (1) be able to make the device switch the polarization of the ferroelectric gate
dielectric, and hence the spin state in the spin crossover molecular layer (where the latter
plays the role of the semiconductor channel in the transistor geometry) at a reasonable
supply voltage. In other words, the gate supply voltage should not be too high and not
too low. If the gate supply voltage required is too high, then the implementation of room
temperature nonvolatile spin crossover transistor molecular devices would require high-
voltage supplies or charge pumps on chip in order to program a memory device. This is
why EEPROM is not a very popular nonvolatile memory device—it simply requires too
much supply voltage to make it a very usable memory. If the gate supply voltages are
too significant, this would limit the application of nonvolatile spin crossover transistor
molecular devices to one-time-programmable memory only. On the other hand, if the
programming voltage could be brought down to a very low value, it has the advantage of
making the memory chip easy to program, but circuitry then has to be carefully designed to
ensure that accidental programming does not occur especially during the read operations.
(2) The second factor to be considered is speed of write. While less important than the
ability to write a memory cell, speed is nonetheless important, and it becomes more
important in memory applications requiring a fast write time. Unfortunately, the writing
or programing voltage and the write speed requirements can act against each other in
operational memory, since the lower the programming or write voltage, the better it is for
the write time, but reducing the programming voltage too much increases the chances of a
write “disturb” event.

We do know that the molecular ferroelectric gate dielectrics can be made as thin
as 1 nm and still be reliable [90,96], and the coercive voltage would be <0.5 V. A gate
dielectric 2 nm thick would be “worry free” with a coercive voltage of about 0.8 V or less. A
ferroelectric gate dielectric any thicker than that would result in an unnecessary increase in
the coercive voltage and an increase in the current needed to “write” the gate ferroelectric
correctly. The desire for faster write speeds means that the peak current densities needed
to provide the correct ferroelectric polarization at the gate will also scale up. There has to
be recognition that there is a trade-off between faster write speeds and lower peak current
densities for a “write” operation.

6. Isothermal Switching of Conductance in a Nonvolatile Spin Crossover
Molecular Device

Along with the device write operation, a nonvolatile molecular device requires a read
operation. So far, the read operation has been successfully exploiting the conductance
change that accompanies the change in molecular spin state [12–14], as seen in Figure 4. In
part, this conductance change may be associated with the known changes to the highest
occupied molecular orbital to lowest unoccupied molecular orbital gap that occur with
a change in spin state. For [Fe{H2B(pz)2}2(bipy)], the highest occupied molecular orbital
to lowest unoccupied molecular orbital gap is much larger (by about 2 eV [72]) in the
low spin state than the high spin state. A smaller band gap for the high spin state of
[Fe{H2B(pz)2}2(bipy)] is consistent with a higher conductance, and this higher conductance
is seen in working room temperature devices [13,14]. This type of conductance change
has been observed with other spin crossover complexes, such as [Fe(bpz)2phen] [51],
Fe(trans- bis(3-(2-pyridyl)(1,2,3)triazolo(1–5)pyridine)bis(isothiocyanato)] [104], Rb0.8Mn-
[Fe(CN)6]0.93·1.62H2O [105], [Fe(trz)3](BF4)2 (trz = triazole) [22], [Fe(phen)2(NCS)2] [38],
and [FeIII(qsal)2][Ni(dmit)2]3·CH3CN·H2O [106], although in these latter examples, the
conductance change was volatile.
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Figure 4. The conductance change seen in a [Fe{H2B(pz)2}2(bipy)], where py = tris(pyrazole-1-y1)-
borohydride and bipy = 2,2′-bipyridine), with the reversal of the ferroelectric polarization in an
adjacent ferroelectric polyvinylidene fluoride hexafluoropropylene (PVDF-HFP) layer, as described
in [14], either toward or away from the molecular spin crossover [Fe{H2B(pz)2}2(bipy)].

7. Room-Temperature Operation of a Nonvolatile Spin Crossover Molecular Device

Device stability and reliability, at room temperature, is now a given. There are now
working nonvolatile molecular devices fabricated from spin crossover complexes that work
not only at room temperature [12–14] but to temperatures well above room temperature [14].
Working nonvolatile molecular device operation has been demonstrated at temperatures
as high as 350 K [14]. While higher temperatures have not yet been tested in the working
device, higher operational device temperatures are indicated. The spin crossover molecules
that can be evaporated as thin films typically sublime between 433 and 510 K [8], which
suggests molecular stability at these temperatures. Of course, molecular stability at high
temperatures is not the only consideration, as too high a temperature may lead to material
loss through sublimation, even if it does not lead to molecular degradation. Overall, given
the current status, it does seem that nonvolatile molecular devices fabricated from spin
crossover complexes are operational over a wide enough temperature range to be both
practical and competitive.

8. Improving the Molecular Nonvolatile Multiferroic Device On/Off Ratio

Nonvolatile molecular devices, based on a change of molecular spin state, should exhibit
a high level of fidelity in possible molecular electronics applications. The initial working
nonvolatile molecular devices, based on the spin crossover complex [Fe{H2B(pz)2}2(bipy)],
had an on/off ratio of about 4 to 5 [13,14], for the devices in the transistor geometry. With
more complete spin-state switching, there are indications that the on/off ratio can be
increased greater than 100 [14].

While a homogeneous ferroelectric layer is very desirable for nonvolatile molecular
multiferroics devices in the transistor geometry because the ferroelectric is a gate dielectric
layer for one of the gates (either top or bottom), more complete spin-state switching
occurs in the volatile conductance switching that arises in a two-terminal device when the
ferroelectric layer is more homogeneous. The data from such a two-terminal diode-like
device, as opposed to the top and bottom gated transistor device, shows such a device to
be volatile, as shown in Figure 5. Here, current on/off ratios of 104 have been obtained,
with 103 near the threshold voltage, as indicated in Figure 6. This high on/off ratio, as seen
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in Figure 6, suggests that the changes in conductance, associated with a spin-state change,
can be engineered to be very significant. Yet, nonvolatility is possible in the longitudinal
conductance for a two-terminal diode device, as reported elsewhere [13].
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Figure 5. The conductance change with applied voltage of a 20 nm [Fe{H2B(pz)2}2(bipy)] thin film
deposited on top of a uniform croconic acid thin film showing a loss of nonvolatility. Longitudinal
voltage was applied on different junctions and the measurement was taken at room temperature, and
the device schematic is shown in the inset of Figure 5.
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Figure 6. The “zoomed” conductance change of a 20 nm [Fe{H2B(pz)2}2(bipy)] thin film deposited
on croconic acid thin film, showing a high on/off ratio.

The on/off current ratios are greater than 10 and frequently greater than 100 in many
of the two-terminal volatile spin crossover molecular devices [54]. These higher (>10)
on/off ratios are good for a memory cell and ease the pathway to implementation. This is
because, in practice, memory cells are not typically uniform. There is a statistical range
of cell resistances and device to device on/off ratios. As the on–off ratio decreases, there
is a point where the on/off ratio is sufficient, so there is an overlap between the “high”
state and the “low” state. When this occurs, there is the potential for error, which in some
cases can be corrected but at the expense of error correction circuitry. Figure 7 illustrates
the issue of state overlap if on/off ratio is reduced too much.

The device characteristics discussed after this, which are needed for competitive non-
volatile multiferroic molecular devices fabricated from spin crossover molecular complexes,
have not been integrated into a working device. Integration of the additional possibly
valuable characteristics described in the following sections represents the challenges for
the future. When working with such small currents, as may be involved in switching a
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multiferroic device, other circuit effects, such as capacitance and resistance impact what
can be readily measured directly.
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Figure 7. An illustration of the on/off ratio requirements for memory cells. This on/off ratio is
defined in terms of the “read” mechanism. In the example presented in this review, the on/off ratio
relies on current or conductance changes but could also be a change in resistance. The measurable
indicator of state change would be along the x-axis. There is a statistical variation in the conductance
in both the on and the off states, between memory cells in a memory array, and this results in a range
of ”low” and “high” conductance states associated with the low and high spin states. If the on/off
ratio is reduced too much, an indeterminate state can occur, where it is not clear which state the
memory cell is in.

9. Reducing the On-State Resistance of a Spin Crossover Molecular Device

From the geometry of the devices fabricated so far, particularly from the nonvolatile
multiferroic molecular two terminal diode-like devices, we can estimate that the resistance
in the on state is about 103 Ω·cm and 106 Ω·cm in the off state for a spin crossover device
based on [Fe{H2B(pz)2}2(bipy)]. For a nanoscale device, this presents a serious problem,
because if the resistance scales with size, the nanoscale device will have a total resistance
that diminishes utility. This is evident from the schematic of the transistor in Figure 8.
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Figure 8. A schematic of the critical dimensions of nonvolatile molecular transistor devices fabricated
from spin crossover complexes. The ferroelectric layer would typically be a molecular ferroelectric
that also serves as one of the gate dielectric layers, and in practice, such a device would be both top
and bottom gated, so as to provide uniform electric field across the ferroelectric, so in turn, there is
uniform ferroelectric polarization in the ferroelectric dielectric layer.
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Here, a resistance of 103 Ω·cm translates to a device resistance of 5 GΩ when the
dimensions of the device are reduced to a 10 nm width, a source to drain distance of 10 nm,
and a film thickness of 2 nm according to:

R = ρ
L

WT
= 103 × 10−2(Ω·m)× 10× 10−9m

(10× 10−9m)(2× 10−9m)
= 5 GΩ

This 5 GΩ resistance is simply too high a resistance to be valuable from an applications
point of view, especially as this may not correctly include resistance at the molecule–metal
contact interface, which is a known problem discussed further below. The large impedance
will lead to delay times that are simply too long to be competitive. Just the same, it has to
be realized that [Fe{H2B(pz)2}2(bipy)] is probably not the most desirable spin crossover
complex for competitive nonvolatile molecular devices for memory applications. Other
spin crossover molecular complexes are reported with lower on-state resistance of 5 Ω·cm
for the spin crossover molecules [Fe(tpma)(xbim)](X)(TCNQ)1.5·DMF (X=ClO4) [107] and
[FeIII(sal2-trien)][Ni(dmit)2] [108]. An even lower on-state resistance of 0.5 Ω·cm [95] has
been reported for the spin crossover molecule [FeIII(qsal)2][Ni(dmit)2]3·CH3CN·H2O. This
strongly suggests that the reduction of the intrinsic resistance of a spin crossover molecular
system is a problem that can be addressed by some adroit synthetic chemistry.

Another approach is to use the spin crossover molecular thin film as part of the
gate dielectric to a high-mobility graphene device and modulate the conductance in the
graphene layer, as demonstrated recently [10,109,110]. This is not regarded here as a
competitive approach because of the problems associated with graphene as the channel
width shrinks to less than 50 nm [111–115], namely significant increases in effective carrier
mass, large edge scattering, and low carrier mobilities, not to mention the problems
associated with scaling to large arrays using graphene nanoribbons. On the other hand,
spin crossover complexes combined with carbon nanotubes may provide a viable memory
device alternative [116].

While the devices made so far have source-to-drain on-state resistances of 103 Ohm·cm,
there are options from ongoing chemistry [106–108] where the on-state resistance could
be as low as 0.5 Ohm·cm. These other spin crossover molecules have not been fabricated
into a working nonvolatile molecular transistor, but if applicable from a fabrication point
of view, for a transistor at the 10 nm node with the channel at 0.5 Ohm·cm resistance, this
would lead to a source-to-drain resistance of 2.5 MΩ in a spin crossover transistor device
10 nm wide and 2 nm thick.

10. Faster Device Switching Speeds for a Nonvolatile Spin Crossover Molecular Device

There are spin crossover complexes that may have spin-state switching speeds ad-
equate for a competitive device. A number of measurements suggest sub-picosecond
switching speeds [55,117]. This means that the switching speed is limited by the switch-
ing speed of the ferroelectric. For copolymers of polyvinylidene fluoride (PVDF), this
means that the reversal of a ferroelectric domain will take far longer than a nanosec-
ond, because of the need to rotate the -CH2CF2- chemical formulae units. Benzimida-
zole, 2-methylbenzimidazole [108], 5,6-dichloro-2-methylbenzimidazole [118], bridged
bis(benzimidazole) [119], and croconic acid [91,98] are molecular ferroelectrics that require
far less dramatic atomic repositioning and thus potentially should have faster ferroelectric
polarization switching speeds.

Device switching speed is not simply determined by the switching speed of the
molecular state and configuration. Resistance, as discussed above, can play a big role in
determining the overall operational speed of the device. This latter point is complicated
not just by the resistance of the spin crossover molecular layer, which acts to reduce the
operation speed of the device but a variety of parasitic capacitances. The demonstration
that the magnetic field reduces the activation barrier separating the high and low spin
states [82] does suggest that faster switching speed may be possible with the application
of a magnetic field, but this may be an unwanted complication in the implementation
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of nonvolatile multiferroic molecular devices fabricated from spin crossover molecular
complexes for memory.

It should also be noted that as the device on/off ratio decreases, it takes longer to
isolate the correct state (on or off) when doing a read function. Read time is typically more
important than write time, since typically, there are more read than write cycles, especially
in nonvolatile memory configurations. A moderately high on/off ratio of more than 103,
as suggested by the current changes seen for more complete spin-state switching for data
taken in in the transistor geometry [14], may be possible. This higher on/off ratio would
allow for faster sense amplifiers and a variety of memory configurations. This suggests that
there is promise for these types of devices and the existing devices are more than adequate
for memory applications from the perspective of the on/off ratio.

Understudied but a huge concern is the contact potential. Organic layers are known
to have a molecular band offset when interfaced with a metal [120–122]. This is typically
about 200 meV, but it can vary widely. We simply do not know if there is sufficiently
reliable and efficient carrier injection into nonvolatile molecular devices fabricated from
spin crossover complexes. So far, this issue of contact potentials and molecular band offsets
has not been investigated, but it could have a profound effect on the overall device speed.

11. Reproducibility for Nonvolatile Spin Crossover Molecular Devices

At this point, not much is known about device reproducibility simply because very
few devices have been made, and the emphasis has been on the fabrication of different
nonvolatile spin crossover molecular devices to demonstrate the fact that such devices
work at all. Yet, this is a question that demands attention. Any large variation in either
on-state or off-state conductance from one nonvolatile molecular device fabricated from
spin crossover complexes to the next device would limit the wide-scale applicability or
require greater on/off ratios. Unless the process of large-scale nonvolatile multiferroic
molecular devices fabricated from spin crossover molecular complexes can be made both
sufficiently reliable and uniform, then wide scale applicability is a chimera.

12. Nonvolatile Spin Crossover Molecular Device Endurance, Without Degradation

Although molecular devices are generally considered very fragile compared to in-
organic devices, endurance may not be the issue once feared. Recently, there have been
molecular spin crossover devices fabricated that have been shown to undergo 10 mil-
lion switches without degradation [56]. These demonstration spin crossover molecular
devices were not designed for nonvolatile voltage-controlled memory applications; just
the same, this recent demonstration of spin-state switching endurance [56] provides con-
siderable evidence in favor of spin crossover molecular devices. The limits of possible
endurance without degradation have not been tested in spite of the fact that these are
molecular devices.

13. The Potential for Transistor Widths on the Tens of Nanometer Scale or Less

With almost all devices dependent on magneto-electric coupling, there is the concern
that there is a limit to the device size. In other words, there is concern that the magneto-
electric coupling either suffers from some sort of finite scaling or that there is a critical
volume where magneto-electric coupling simply fails. In the case of spin crossover sys-
tems, spin-state switching at room temperature has been demonstrated to the 3.6 ± 0.8 nm
scale [123]. Again, this demonstration [123] provides considerable evidence that devices
at the 10 nm scale are possible, and this would be competitive with silicon (CMOS) tech-
nologies. Yet the on-state resistance is high, as discussed above. Even a decrease of the
on-state resistance to about 0.5 Ω·cm through a better choice of spin crossover complex
would still mean a substantial device resistance on the nanometer scale. While the materials
properties indicate that spin-state switching is possible below 10 nm, the exigencies of
device implementation may preclude this implementation of nonvolatile voltage-controlled
spin crossover molecular devices at dimensions below 10 nm as a result of the high on-
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state resistance as discussed above. Yet, depending on the lithography resolution, the
source–drain distance could be decreased to lower the device resistance.

If the spin crossover molecular film thickness, acting as the semiconductor channel, is
increased to 15 nm (experimentally shown to work [14,72]), this drops the device source
to drain resistance to 667 MΩ. If a spin crossover complex with an on-state resistance of
0.5 Ω·cm is utilized, then the resistance drops further to 333 KΩ. For a transistor at the
20 nm node, this decreases the device source-to-drain resistance further to 167 KΩ. At
the 30 nm node, device source-to-drain resistance drops even further to 111 KΩ, and at a
channel width to 50 nm node, the resistance would about 67 KΩ.

14. Conclusions

While working room-temperature nonvolatile spin crossover molecular devices have
been fabricated by placing a spin crossover molecular thin film adjacent to a molecular
ferroelectric layer [12–14], a competitive device has not been demonstrated. Yet, there has
been considerable progress in meeting the challenges that need to be satisfied. Of the dozen
actual device issues listed in the introduction, seven of the challenges have been met and
addressed in a working device.

A competitive nonvolatile multiferroic molecular device, fabricated from spin crossover
molecular complexes, still needs to be demonstrated. The challenges that must be addressed
but have not yet been realized in a working device, are clearly a smaller on-state resistance,
faster switching speeds, low coercive voltages, and low peak power write current densities
in reproducible working devices at the 10 to 50 nm scale that can endure 1016 switches, as
indicated in Table 1.

Table 1. Spin crossover molecular multiferroic field effect transistor characteristics as demonstrated
in a nonvolatile voltage-controlled device (experiment) and what might be possible from other
experiments on spin crossover complexes.

Molecular Multiferroic FETs

Possibilities Demonstrated in a Device

Minimum size 3.6 ± 0.8 nm [122] -
Switching speed <1 ps [55,108] -

On state resistance 0.5 Ω·cm [108] 103 Ω·cm *
On/off ratio 104 * 4 [13,14]

Number of switches 107 [56] -
Coercive voltage 50 mV [95], <0.2 V [91] 25 V [13,14]

Upper bound operational temperature 400 K [8] 350 K [14]
Peak current density 3.6 × 105 A.cm−2 * -

Write energy/bit 0.7 fJ * -
Silicon compatible yes yes [14]

* This work.

A crude estimate of the write energy can be made, as even if the device is a perfect
capacitor between the top and bottom gates with perfect gate dielectric layers, to reverse
the electric field, current has to flow. If we assume perfect charge ionization, then the
maximum current required to switch the ferroelectric polarization is determined by the
required charge of one electron per dipole. Assuming one electron per molecule [96] and
a molecular bilayer of ferroelectric, with a coercive voltage of 0.2, the write energy for a
nonvolatile multiferroic transistor, fabricated from spin crossover molecular complexes,
would be in the region of 70 aJ, which is far less than the roughly 100 fJ write energy of STT
RAM at 65 nm [32,124] and comparable to the 15 pJ write energy expected of ferroelectric
RAM at 45 to 65 nm [125]. This estimate for nonvolatile multiferroic devices fabricated
from spin crossover molecular complexes neglects the device contact resistance, which is
likely to be significant because of the molecular band offsets [120–122], as noted above.
Given the exigencies associated with device implementation, a more realistic write energy
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for the nonvolatile multiferroic molecular device would be in the region of 0.7 fJ (about
10 times the estimated floor) or higher.

The question is whether nonvolatile multiferroic devices fabricated from spin crossover
molecular complexes with transistor widths of 30, 40, or 50 nm are competitive. With an
on-state resistance estimated to be about 67 KΩ per device at a transistor width of 50 nm
and a spin crossover complex on state resistance of 0.5 Ωcm, these devices begin to appear
to have practical value. There are certainly circumstances where devices with a resistance
of 100 KΩ can be used for memory [126]. With the DRAM-type device arrangement, the
gate is connected to the drain, so it may be that the best resistance goal would be something
around 200 KΩ. The prospect of getting close to this goal seems to be increasingly realistic.

The speed of the memory read is the major factor of concern when we consider device
resistance. There is no hard limit to resistance maximum, but for every doubling of memory
resistance, to a first-order approximation, the read time doubles. For some types of memory,
for example NAND flash, a very slow read time is acceptable, but this is in order to achieve
a very compact memory cell. In the case of magneto-electric memory cells, the base cell
size is bigger than the flash cell, and so this arena of very compact memory is not an area
where nonvolatile multiferroic molecular devices fabricated from spin crossover molecular
complexes is likely to be competitive. Instead, the target for nonvolatile multiferroic
molecular devices fabricated from spin crossover molecular complexes is faster cache
memories. With these possible implementations, it is acceptable to increase the width
of the memory cell, within limits, and a cell width up to about 80 nm (with gate length
of 12 nm) may be acceptable. A major advantage of the nonvolatile multiferroic devices
fabricated from spin crossover molecular complexes is that there is the possibility of 3D
integration of this technology, which can drastically increase the memory capacity. The fact
that the multiferroic molecular device fabrication temperatures are low allows many layers
of such devices to be fabricated on a silicon chip without damaging the underlying silicon
transistor devices. This becomes particularly interesting in the case of crossbar arrays of
nonvolatile multiferroic molecular devices, as in that implementation, one does not need
one silicon transistor per each cell.

The nonvolatile multiferroic devices fabricated from spin crossover molecular com-
plexes also appear to be competitive with zinc–tin oxide thin-film transistors [127] and
other amorphous oxide semiconductor transistor schemes that might be used in flexible
electronics such as displays [128]. After all, the nonvolatile multiferroic devices fabricated
from spin crossover molecular complexes are molecular thin film devices and thus flexible.
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