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Abstract: Phytoplasmas are the causal agents of more than 100 plant diseases in economically im-
portant crops. Eleven genomes have been fully sequenced and have allowed us to gain a better
understanding of the biology and evolution of phytoplasmas. Effectors are key players in pathogenic-
ity and virulence, and their identification and description are becoming an essential practice in the
description of phytoplasma genomes. This is of particular importance because effectors are possible
candidates for the development of new strategies for the control of plant diseases. To date, the predic-
tion of effectors in phytoplasmas has been a great challenge; the reliable comparison of effectoromes
has been hindered because research teams have used the combination of different programs in their
predictions. This is not trivial since significant differences in the results can arise, depending on the
predictive pipeline used. Here, we tested different predictive pipelines to create the PhyEffector
algorithm; the average value of the F1 score for PhyEffector was 0.9761 when applied to different
databases or genomes, demonstrating its robustness as a predictive tool. PhyEffector can recover
both classical and non-classical phytoplasma effectors, making it an invaluable tool to accelerate
effectoromics in phytoplasmas.

Keywords: phytoplasmas; crop pathogens; PhyEffector algorithm; classical and non-classical effectors

1. Introduction

Phytoplasmas are pleomorphic, mycoplasma-like bacterial pathogenic microorgan-
isms. These organisms are between 0.2 to 0.8 µm in diameter and lack cell walls; they reside
in plant phloem and are transmitted by phloem-feeding insect vectors [1–3]. Phytoplas-
mas cause severe damage to the agriculture and horticulture industries worldwide, with
extensive yield losses in thousands of economically important crops such as vegetables,
spices, medicinal plants, ornamentals, palms, fruit trees, among others [4]. Infected plants
display symptoms such as phyllody (transformation of floral organs into tissues similar to
leaves), virescence (green coloration in floral organs), yellowing (chlorosis), stunting, Little
Leaf disease, and witches’ broom (proliferation of shoots) [5,6]. Phytoplasmas cause these
abnormal plant morphologies through the secretion of virulent proteins known as effectors,
which interfere with the hormone signaling of their hosts [7,8].

Effectors are defined as small molecules that selectively bind to a protein and regulates
its biological activity [9]. These molecules are fundamental in the parasite–host interaction,
where the parasite is metabolically dependent on its host; a struggle of forces is established
between the attack of the parasite and the defense of the host. Effectors play key roles in
the successful infection of the plant host by the pathogen [10].

To date, eleven phytoplasma genomes have been sequenced (Cho et al. (2020) [11];
KEGG, https://www.genome.jp/kegg/genome/; accessed on 10 July 2023), ranging from
~570 Mb to ~950 Mb, and comprising ~470 to 870 proteins [12]. The number of predicted
effectors reported per genome ranges from 10 in the genome of ‘Ca. Phytoplasma asteris’
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De Villa [11], 65 effectors in the genome of the AY-WB strain OY-M [13], and 98 in ‘Ca.
Phytoplasma aurantifolia’ [14].

Phytoplasma effectors are secreted proteins, usually with no transmembrane domains.
However, although this description of the effectors is relatively simple, their identification
has followed different routes. For signal peptide identification, different versions of SignalP
have been used, a program that has been trained to predict the presence of signal peptides
(SP) in gram-negative or gram-positive bacterial proteins. Bai et al. (2009) [15] evaluated
SignalP v3.0 on 369 mollicute protein sequences that included 46 experimentally verified
secreted proteins; the program was able to identify 43 of these 46 secreted proteins. After
using SignalP v3.0, and eliminating the SP (20–50 amino acids) sequence, the proteins
were analyzed using the TMHMM v2.0 program to identify and eliminate proteins with
transmembrane domains (TMDs). Using this approach, 56 effector candidates were found
in the genome of the aster yellows phytoplasma strain witches’ broom.

Anabestani et al. (2017) [16] used a similar approach, but compared SignalP v3.0 and
SignalP v4.0, selecting the latter as the predictor for their secreted proteins; they predicted
28 effectors in ‘Ca. Phytoplasma aurantifolia’, nine of them with nuclear localization. Wang
et al. (2018) [17] used the same pipeline, combining SignalP v4.0 and TMHMM v2.0 after
eliminating the SP and found 28 effectors in the Jujube Witches’ Broom (JWB) Phytoplasma
genome. Recently, Tan et al. (2021) [14] compared the use of SignalP v4.1 vs. SignalP
v5.0. With the latter they found 28 extracellular proteins, while SignalP v4.1 excluded one
of these proteins, but retrieved 70 additional secreted proteins. However, they found by
manual analysis that many of these proteins were false positives, warning users about the
accuracy of the predictions depending on the version of SignalP used. Previously, Cho
et al. (2020) [11] used SignalP v5.0 (in Gram-positive bacterial mode), then filtered with
TMHMM v2.0 to retain the secreted proteins with no TMDs; they analyzed 11 phytoplasma
genomes and found differences in the results previously reported by Music et al. (2019) [18]
using SignalP v3.0. For example, these authors predicted eight effectors for AYWB strain,
and 15 effectors for OY-M strain, while Cho et al. (2020) [11] predicted 33 and 37 effectors,
respectively.

Most of the previous pipelines focused on predicting effectors as secreted proteins
with no TMDs. However, a few known phytoplasma effectors are transmembrane proteins,
such as Amp [19] and Imp [20]. Very recently, Debonneville et al. (2022) [12] combined the
use of SignalP v5.0 with Phobius to predict the presence of signal peptide and TMDs in
effectors from the ‘Flavescence Dorée’ Phytoplasma. This combination identified 17 effector
candidates; Phobius identified three secreted proteins with a TMD and a SP. In addition,
Phobius was able to retrieve two putative secreted proteins that are unique to the genome
of this phytoplasma, which suggests that Phobius must be considered in pipelines for the
identification of effectors in phytoplasmas.

Interestingly, Gao et al. (2023) [21] identified 95 non-classically secreted proteins
(ncSecPs) in the ‘Ca. Phytoplasma ziziphi’ genome for the first time and confirmed that 25 of
them are true secreted proteins. Non-classically secreted proteins lack SPs or translocation
signals, but are still exported to the extracellular space through a Sec-independent secretion
pathway. These proteins are not identified by the SignalP program but by SecretomeP. These
novel results show that classic pipelines for the identification of phytoplasma effectors
must be revised and innovated.

Here, we performed a comparison of different pipelines comprising either SignalP
v3.0, SignalP v4.1 or SignalP v5.0, with TMHMM v2.0 (on SP-lacking proteins), followed
by sequential analysis with Phobius, SecretomeP and sequence-homology-based Blastp.
The false positives retrieved by any of the steps were eliminated. The performance of
the pipelines was evaluated on positive and testing datasets (comprising phytoplasma
effectors) and negative datasets (phytoplasma non-effectors proteins), resulting in F1 scores
from 0.56 to 1.0. The best algorithm was named PhyEffector and it was further evaluated on
phytoplasma genomes (i.e., deduced proteomes), resulting in an average F1 score of 0.9761.
These results showed that PhyEffector is a robust predictor of phytoplasma effectors, with
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very low false negatives (generally < 10). PhyEffector is able to retrieve both classical
effectors (containing a SP and without TMD) as well as non-classical (atypical) effectors
from phytoplasmas (effectors that contain a TMD or lack SP and are secreted by a Sec-
independent secretion pathway), which makes PhyEffector a powerful computational tool
to speed up phytoplasma effectoromics.

2. Materials and Methods
2.1. Creation of Databases

Positive dataset: The positive dataset was constructed with 10 of 21 validated phyto-
plasma effectors reported in the literature (Table 1): 5 of them canonical effectors (secreted
and identified by any version of the SignalP program) and 5 non-canonical ones (with a
TDM, or secreted by a non-classical pathway). The list was completed by searching in
the UNIPROT database with the keywords: SAP01, SAP02, SAP03, until SAP80; TENGU,
phyllody, phyll, antigenic membrane protein (Amp), Immunodominant membrane protein
A (idpA), Immunodominant membrane protein (Imp), and Variable membrane protein
A (VmpA). The complete retrieved list contained 738 protein sequences. To prevent over-
representation due to large effector families, 4 members were chosen per family, except for
SAP11, for which sequence identity among them was lower than 45%. Similarly, to avoid
over-fitting due to highly conserved effector sequences, members with ~50% sequence
identity were selected, except for largely conserved families such as TENGU, idpA and
PME. The final list of positive datasets of phytoplasma effectors comprised 64 sequences
(Table S1).

A second database was constructed for testing PhyEffector, comprising the other
11 true effectors (6 canonicals and 5 non-canonicals), plus 215 of the other potential effectors
retrieved from UNIPROT. These 226 potential effectors share ~50% identity with protein
sequences in the positive database.

Negative dataset: Core phytoplasma proteomes were identified after manual revision
of phytoplasma genomes available at KEGG (https://www.genome.jp/kegg/genome/;
accessed on 15 July 2023). Conserved KEGG pathways were identified, such as: glycoly-
sis/gluconeogenesis, citrate cycle (TCA cycle), pentose phosphate pathway, fructose and
mannose metabolism, purine metabolism, pyrimidine metabolism, glycine, serine and
threonine metabolism, valine, leucine and isoleucine degradation, etc. Among these KEGG
pathways, 64 core protein sequences with 40 different functional annotations were used to
construct the negative dataset (Table S2).

2.2. In Silico Characterization of Effectors from Phytoplasmas

To gain knowledge about the features of currently known phytoplasma effectors,
the positive dataset was analyzed with SignalP v4.1, TMHMM v2.0 on mature proteins
(without signal peptide), Phobius and SecretomeP v2.0.

2.3. Characterization of Different Pipelines to Predict Effectors in Phytoplasmas: Construction of
PhyEffector Algorithm

Different versions of SignalP: v3.0 [22], 4.1 [23] and 5.0 [24] were tested independently in
Gram-positive and Gram-negative modes to identify secreted proteins, and after removal of
the SP, the proteins were filtered with TMHMM v2.0 [25], resulting in each case in the set #1.

Prediction by Phobius server (set #2) [26], SecretomeP (set # 3) [27] and Blastp anal-
ysis using the dataset of phytoplasma effectors as query (set # 4) were pooled, and then
redundancies were eliminated in the results of each pipeline, becoming the “total potential
effectorome” for each pipeline. These proteins were annotated performing a Blastp against
the GenBank non-redundant protein database (https://www.ncbi.nlm.nih.gov/; accessed
on 10 August 2023); proteins annotated as hypothetical proteins, unknown function, pre-
dicted proteins, no hits, as well as pathogenic/virulence related functions and those with
annotations related to phytoplasma effectors, were selected and comprise the final list
of effectors, while proteins with metabolic essential functions were discarded (Figure 1).

https://www.genome.jp/kegg/genome/
https://www.ncbi.nlm.nih.gov/
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Table S3 shows the list of functional descriptors (annotations) of known effectors. The list
of annotations of essential metabolic activities was obtained from Cho et al. (2020) [11].
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Figure 1. PhyEffector workflow for the prediction of effectors in phytoplasma proteomes. *, pro-
grams are run in Gram-positive mode. Mature proteins are signal peptide-lacking proteins. Blue
squares, pre-installed prediction tools; green squares, Blastp analyses; pink squares, custom tools
for filtering results based on descriptors; yellow squares, lists of effector candidates. All databases
were constructed here, except the database of annotations of metabolic essential activities, which was
based on the open access report from Cho et al. (2020) [11].

These pipelines were run on the positive dataset (phytoplasma effectors) and the
negative dataset (non-effector phytoplasma proteins). True positives (TP), false positives
(FP), true negatives (TN) and false negatives (FN) were determined to calculate sensitivity,
specificity, precision and accuracy parameters. F1 scores were calculated to measure and
compare performances of the pipelines.

2.4. Validation of PhyEffector Algorithm

PhyEffector was used to carry out the identification of effector candidates on a testing
database comprising 11 true effectors (different from those 10 true effectors in the positive
dataset) and the 385 protein sequences retrieved from UNIPROT, which shared ~50%
identity with protein sequences in the positive dataset.

PhyEffector was validated through the identification of effectors in the genomes (i.e.,
deduced proteomes) of ‘Ca. P. asteris’ AYWB (16SrI-A), ‘Ca. P. asteris’ OY-M (16SrI-B),
‘Ca. P. aurantifolia’ (16SrII), ‘Ca. P. ziziphi’ Jwb-nky (16SrV-B), ‘Ca. P. vitis’ of Flavescence
dorée phytoplasma’ (16SrV-C), ´Ca. P. luffae’ (16SrVIII), ‘Ca. P. mali’ (16SrX), ‘Ca. P.
australiense’ PAa (16SrXII) and ‘Ca. P. solani’ SA-1 (16SrXII); prediction by PhyEffector on
each phytoplasma genome was compared with the results from the respective report in
the literature. Discrepancies between the prediction from PhyEffector and the scientific
literature were solved by determining the number of FP and FN for each prediction by
following the criteria described above, i.e., identifying those FN using the list of effector
annotations, and those FP with the list of annotations of essential metabolic activities.
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Table 1. List of true phytoplasma effectors used in the present work.

Effector Accession at
GenBank/UNIPROT Homolog Phytoplasma Phenotype or Function Observations Dataset Reference

Canonical, typical or classical

TENGU BAH29766.1/A0A4P6MDK8 ------

‘Ca. Phytoplasma
Asteris’, strain
Onion yellows

phytoplasma OY-M.
Group 16SrI.

Dwarfism, witches’
broom symptoms and

plant sterility. Pleiotropic
effects on auxin and

jasmonic acid

First reported witches’
broom-inducing effector.
Small protein (70-amino
acid preprotein, of which
38 C-terminal amino acids

are released into plant
host)

Positive set [28,29]

SAP05 8PFC_A
WP_011412316.1 ------

Aster Yellows
phytoplasma strain

Witches’ Broom
(AY-WB)

Induces witches’ broom
symptoms, Proliferation
of vegetative tissue and

shoots.

Binds plant SPL and GATA
transcription factors and

mediates their degradation
in a ubiquitin-independent

manner

Positive set [30]

SAP11 GI:85057650 ------

Aster Yellows
phytoplasma strain

Witches’ Broom
(AY-WB). Crinkled
leaves and siliques

CIN-TCP binding and
destabilization, and

impaired synthesis of
jasmonic acid, and

increase in leafhopper
oviposition activity.

Modular organization; at
least three domains are

required for efficient
CIN-TCP destabilization in

plants

Positive set [31]

SAP54 WP_252861407.1 ------

Aster Yellows
phytoplasma strain

Witches’ Broom
(AY-WB). Virescence

Degrading MADS-box
Proteins; induces

phyllody and sterile
plants

------- Positive set [32]

PHYL1

LC388988.1, LC3889891,
LC3889911, LC388990.1,
LC388981.1, LC388982.1,
LC388983.1, LC388992. 1,
LC492887.1, LC388972.1,
LC388985.1, LC388987.1

SAP-54 “Ca. Phytoplasma”
species

Witches’ broom
symptoms

Phyllogens (four groups:
phyl-A, -B, -C, and -D) Positive set [33]

SWP1 WP_024563292.1 SAP11-like Wheat blue dwarf
phytoplasma

witches’ broom
symptoms ------ Testing set [17]

SWP11
No GenBank accession.
Arbitrary authors’ code

WBD_0004
------ Wheat blue dwarf

phytoplasma

Cell death and defence
responses, including

H2O2 accumulation and
callose deposition.

Up-regulation of HIN1,
PR1, PR2 and PR3 Testing set [34]
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Table 1. Cont.

Effector Accession at
GenBank/UNIPROT Homolog Phytoplasma Phenotype or Function Observations Dataset Reference

SWP12
No GenBank accession.

Arbitrary authors´ code
WBD_0238

------ Wheat blue dwarf
phytoplasma

suppress SWP11-, BAX-,
and/or INF1-induced

cell death
------ Testing set [34]

SWP21
No GenBank accession.

Arbitrary authors´ code
WBD_0274

TENGU-like Wheat blue dwarf
phytoplasma

suppress SWP11-, BAX-,
and/or INF1-induced

cell death

SWP21 has a distinct role
in virulence compared

with TENGU
Testing set [29,34]

Zaofeng3 AYJ01078.1 SAP54-like

‘Ca. Phytoplasma
ziziphi’ (JWB
phytoplasma)

(16SrV-B)

Overexpression showed
phytoplasma-like

symptoms

87% identity with
SAP54PnWB Testing set [35]

Zaofeng6 AYJ01297.1 SAP11-like JWB phytoplasma

Overexpression resulted
in shoot proliferation;

triggered hypersensitive
response and induced

the expression of
defense-related genes

48% identity with
SAP11AYWB. Testing set [35]

Non-canonical, atypical or non-classical

IdpA ADD52250.1 ------
Poinsettia

branch-inducing
phytoplasma

Crucial role in plant and
insect vector
transmission

Immunodominant
membrane protein A;

transmembrane domain
present

Positive set [36]

Imp CBJ17020.1 ------ ‘Ca. Phytoplasma
mali’

Binds to plant actin;
probably involved in

phytoplasma motility in
host plants

Immunodominant
membrane protein;

transmembrane domain
present

Positive set [20]

VmpA ULR56812.1 ------ Flavescence dorée
phytoplasma

Binds the midgut of the
insect vector and

promotes adhesion to its
epithelial cells.

Variable membrane
protein A; transmembrane

domain present
Testing set [37]

Amp WP071345415.1 ------ Rice orange leaf
Phytoplasma

Suppresses host defenses.
Interacts with actin of its

vector; probably
involved in vector

specificity

Antigenic membrane
protein; transmembrane

domain present
Positive set [38]
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Table 1. Cont.

Effector Accession at
GenBank/UNIPROT Homolog Phytoplasma Phenotype or Function Observations Dataset Reference

ncSecP3 WP_161554967.1 ------ ‘Ca. P. ziziphi’

Suppresses
hypersensitive cell death

response (HR) in
Nicotiana bentamiana,

triggered by the
pro-apoptotic mouse
protein Bax and the

Phytophthora infestans
elicitin INF1

Non-classically secreted
proteins (ncSecPs);

non-secreted by
Sec-pathway

Positive set [21]

ncSecP9 WP_121463838.1 ------ ‘Ca. P. ziziphi’

Suppresses HR in
Nicotiana bentamiana,
triggered by Bax and

INF1

ncSecPs Positive set [21]

ncSecP12 WP_161554974.1 ------ ‘Ca. P. ziziphi’

Suppresses HR in
Nicotiana bentamiana,
triggered by Bax and

INF1

ncSecPs Testing set [21]

ncSecP14 WP_121463915.1 ------ ‘Ca. P. ziziphi’

Suppresses HR in
Nicotiana bentamiana,
triggered by Bax and

INF1

ncSecPs Testing set [21]

ncSecP16 WP_161554978.1 ------ ‘Ca. P. ziziphi’

Suppresses HR in
Nicotiana bentamiana,
triggered by Bax and

INF1

ncSecPs Testing set [21]

ncSecP22 WP_121463976.1 ------ ‘Ca. P. ziziphi’

Suppresses HR in
Nicotiana bentamiana,
triggered by Bax and

INF1

ncSecPs Testing set [21]
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3. Results
3.1. Construction of Positive Dataset

The positive dataset was constructed with 21 validated phytoplasma effectors reported
in the literature (Table 1), 11 of them canonical effectors (secreted, with SP and no TMD),
and 10 non-canonical ones (with a TMD, or secreted by a non-classical pathway). The first
attempt to complete the list of phytoplasma effectors was done through searches in GenBank
using certain keywords (for example effector names), but results were highly redundant.
For example, “phytoplasma effector sap11” retrieved 71 results, but 18 sequences for
SAP11 effector protein from ‘Lime witches’-broom phytoplasma (IDs from QAB44970.1
to QAB44987.1) were 100% identical. High redundancy was observed as well in other
results while “phytoplasma effector TENGU” retrieved no results from the GenBank
(10 March 2023). Phytoplasma effectors were then searched for in the UNIPROT database
using the keywords SAP01, SAP02, SAP03, until SAP80; other keywords used were TENGU,
phyllody, phyll, antigenic membrane protein (Amp), Immunodominant membrane protein
A (idpA), Immunodominant membrane protein (Imp) and Variable membrane protein
A (VmpA). The first list of phytoplasma effectors comprised 738 amino acid sequences.
The list was carefully revised to eliminate potential false positives; 229 effector candidates
annotated as “Candidatus effector” or “phytoplasma effector” were eliminated because
they do not share identity with any known phytoplasma effectors and none of them have
been experimentally validated. The preferred proteins were phytoplasma effectors with
~50% identity shared among each other to avoid over-representation or over-fitting of
effector families; only 15% of the sequences share > 80% identity. The final list comprised
64 phytoplasma effectors (Table S1).

3.2. Characterization of Phytoplasma Effectors

The positive dataset was analyzed to classify the phytoplasma effectors in classical
(secreted, with SP, with no TMD), and non-classical candidates (those that do not meet
any of the characteristics of classical phytoplasma effectors) (Table 2). Most of the known
phytoplasma effectors are predicted to be secreted through the canonical type II secretion
system. From the other ~10%, half are predicted to be secreted by the non-classical pathway
and the other half are predicted as non-secreted. Understandably, it was found that almost
92% were predicted to have no TMD, while ~8% have one TMD, but the occurrence of
TMD indicates that a “no TMD” criterion leads to the underestimation of the phytoplasma
effectoromes.

Table 2. Analyses of phytoplasma effectors features.

Characteristics Number of Effectors % of the Total *

SP ** 58 90.6
Nc-SecP 3 *** 4.7

Non-secreted 3 **** 4.7
0 TMD ***** 59 92.2

1 TMD 5 7.8
* Considering 64 phytoplasma effector sequences in the positive dataset; ** by SignalP v4.1; *** Considering the 6
sequences which were not recognized by SignalP v4.1 but recognized by SecretomeP v2.0; **** Results which were
not recognized by SignalPv4.1 neither by SecretomeP v2.0; ***** by TMHMM v2.0 on mature proteins (without
signal peptide).

3.3. Comparison of Multiple Pipelines to Identify Phytoplasma Effectors

The most common pipelines for the identification of phytoplasma effectors use SignalP
v4.1 or SignalP v5.0 and TMHMM v2.0 on SP-lacking mature proteins [11,16,18,21,36]. Only
a few reports have modified these pipelines to include other programs such as Phobius [12]
and SecretomeP v2.0 [21]. Most authors have used SignalP programs in Gram-positive
mode [11,16,18,21,36]. Recently, Gao et al. (2023) [21] argued that phytoplasmas have a
distinct membrane composition, and they are neither in the Gram-positive group nor the
Gram-negative group; these authors used both SignalP program modes to identify effectors
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in ‘Ca. Phytoplasma ziziphi’. Based on these reports, different pipelines were tested in
our analyses using SignalP v4.1 or SignalP v5.0 in either Gram-positive or Gram-negative
modes.

Taking into consideration that ~8% of phytoplasma effectors were found to have TMDs,
and ~10% were elusive to the SignalP programs (Table 2), the pipelines constructed here
included additional programs, Phobius and/or SecretomeP. The results of these programs
were pooled and redundancies were eliminated. Table 3 shows the performance of pipelines
with programs used in Gram-positive mode, and Table 4 for Gram-negative mode.

Table 3. Comparison of Signal P v4.1 and Signal P v5.0, in Gram-positive mode, in different pipelines
for the prediction of Phytoplasma effectors.

Pipeline 1 (Signalp4.1 + phobius + secretomeP2.0 + TMHMM2.0)

Control set Proteins Prediction Sen Spe PPV ACC FPR F1 score

Positive dataset 64 61
0.93 0.89 0.89 0.91 0.10 0.91

Negative dataset 64 7

Pipeline 2 (Signalp4.1 + phobius + secretomeP2.0 + TMHMM2.0 + BLASTP+ elimination of false positive)

Control set Proteins Prediction Sen Spe PPV ACC FPR F1 score

Positive dataset 64 64
1 1 1 1 0 1

Negative dataset 64 0

Pipeline 3 (Signalp4.1 + phobius + TMHMM2.0)

Control set Proteins Prediction Sen Spe PPV ACC FPR F1 score

Positive dataset 64 59
0.92 0.92 0.92 0.92 0.07 0.92

Negative dataset 64 5

Pipeline 4 (Signalp4.1 + phobius + TMHMM2.0 + BLASTP+ elimination of false positive)

Control set Proteins Prediction Sen Spe PPV ACC FPR F1 score

Positive dataset 64 64
1 1 1 1 0 1

Negative dataset 64 0

Pipeline 5 (Signalp5.0 + phobius + secretomeP2.0 + TMHMM2.0)

Control set Proteins Prediction Sen Spe PPV ACC FPR F1 score

Positive dataset 64 55
0.85 0.95 0.94 0.90 0.04 0.90

Negative dataset 64 3

Pipeline 6 (Signalp5.0 + phobius + secretomeP2.0 + TMHMM2.0 + BLASTP+ elimination of false positive)

Control set Proteins Prediction Sen Spe PPV ACC FPR F1 score

Positive dataset 64 64
1 1 1 1 0 1

Negative dataset 64 0

Pipeline 7 (Signalp5.0 + phobius + TMHMM2.0)

Control set Proteins Prediction Sen Spe PPV ACC FPR F1 score

Positive dataset 64 52
0.81 0.98 0.98 0.89 0.01 0.88

Negative dataset 64 1

Pipeline 8 (Signalp5.0 + phobius + TMHMM2.0 + BLASTP+ elimination of false positive)

Control set Proteins Prediction Sen Spe PPV ACC FPR F1 score

Positive dataset 64 64
1 1 1 1 0 1

Negative dataset 64 0

BlastP = [BlastP with the positive dataset constructed in this work (results added to positive predictions); Blast
of false positives or suspected false positives against a database with annotations of known effectors (hits are
included); Blast of false positives or suspected false positives against a database with annotations of metabolic
essential activities (hits are discarded)]. Sen: Sensitivity; Spe: Specificity; PPV: Positive Predictive Value; ACC:
Accuracy; FPR: False positive rate; F1 score: Measure of the success of binary classifier (score reaches its best value
at 1, and worst score at 0).
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Table 4. Comparison of Signal P v4.1 and Signal P v5.0, in Gram-negative mode, in different pipelines
for the prediction of Phytoplasma effectors.

Pipeline 1 (Signalp4.1 + phobius + secretomeP2.0 + TMHMM2.0)

Control set Proteins Prediction Sen Spe PPV ACC FPR F1 score

Positive dataset 64 60
0.93 0.93 0.93 0.93 0.06 0.93

Negative dataset 64 4

Pipeline 2 (Signalp4.1 + phobius + secretomeP2.0 + TMHMM2.0 + BLASTP+ elimination of false positive)

Control set Proteins Prediction Sen Spe PPV ACC FPR F1 score

Positive dataset 64 64
1 1 1 1 0 1

Negative dataset 64 0

Pipeline 3 (Signalp4.1 + phobius + TMHMM2.0)

Control set Proteins Prediction Sen Spe PPV ACC FPR F1 score

Positive dataset 64 56
0.87 0.96 0.96 0.92 0.03 0.0.91

Negative dataset 64 2

Pipeline 4 (Signalp4.1 + phobius + TMHMM2.0 + BLASTP+ elimination of false positive)

Control set Proteins Prediction Sen Spe PPV ACC FPR F1 score

Positive dataset 64 64
1 1 1 1 0 1

Negative dataset 64 0

Pipeline 5 (Signalp5.0 + phobius + secretomeP2.0 + TMHMM2.0)

Control set Proteins Prediction Sen Spe PPV ACC FPR F1 score

Positive dataset 64 49
0.76 0.95 0.94 0.85 0.04 0.84

Negative dataset 64 3

Pipeline 6 (Signalp5.0 + phobius + secretomeP2.0 + TMHMM2.0 + BLASTP+ elimination of false positive)

Control set Proteins Prediction Sen/Rec Spe PPV/Prec ACC FPR F1 score

Positive dataset 64 64
1 1 1 1 0 1

Negative dataset 64 0

Pipeline 7 (Signalp5.0 + phobius + TMHMM2.0)

Control set Proteins Prediction Sen Spe PPV ACC FPR F1 score

Positive dataset 64 45
0.70 0.98 0.97 0.84 0.01 0.81

Negative dataset 64 1

Pipeline 8 (Signalp5.0 + phobius + TMHMM2.0 + BLASTP+ elimination of false positive)

Control set Proteins Prediction Sen Spe PPV ACC FPR F1 score

Positive dataset 64 64
1 1 1 1 0 1

Negative dataset 64 0

BlastP = [BlastP with the positive dataset constructed in this work (results added to positive predictions); Blast
of false positives or suspected false positives against a database with annotations of known effectors (hits are
included); Blast of false positives or suspected false positives against a database with annotations of metabolic
essential activities (hits are discarded)]. Sen: Sensitivity; Spe: Specificity; PPV: Positive Predictive Value; ACC:
Accuracy; FPR: False positive rate; F1 score: Measure of the success of binary classifier (score reaches its best value
at 1, and worst score at 0).

The pipelines were constructed as follows:

1. Signalp4.1 + phobius + secretomeP2.0 + TMHMM2.0
2. Signalp4.1 + phobius + secretomeP2.0 + TMHMM2.0 + BLASTP+ elimination of false

positive
3. Signalp4.1 + phobius + TMHMM2.0
4. Signalp4.1 + phobius + TMHMM2.0 + BLASTP+ elimination of false positive
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5. Signalp5.0 + phobius + secretomeP2.0 + TMHMM2.0
6. Signalp5.0 + phobius + secretomeP2.0 + TMHMM2.0 + BLASTP+ elimination of false

positives
7. Signalp5.0 + phobius + TMHMM2.0
8. Signalp5.0 + phobius + TMHMM2.0 + BLASTP+ elimination of false positives

For both classes of pipelines, either with SignalP v.4.1 or SignalP v5.0, the Gram-
negative mode achieved F1 scores lower than their counterpart in the Gram-positive mode.
These results indicate that the Gram-positive mode is more suitable for the prediction
of phytoplasma effectors. The pipelines with SignalP + TMHMM + Phobius retrieved
consistently fewer false positives (pipelines 3 and 7) compared to pipelines that included
these programs plus SecretomeP v2.0 (pipelines 1 and 5), but also excluded more effectors in
comparison with the pipelines that include SecretomeP (see pipelines 3 and 7 and compare
with pipelines 1 and 5). These results support pipelines 1 and 5 to continue the analysis.
Pipelines 1 and 5 differ in the version of SignalP in use. The pipeline that includes SignalP
v4.1 retrieved 16 more false positives (7) than retrieved by SignalP v5.0 (3), but the pipeline
with SignalP v5.0 excluded 9 effectors (false negatives) while the pipeline with SignalP v4.1
excluded 3; in other words, pipeline 1 is able to retrieve 6 effectors that pipeline 5 could not
(Table 3). The balance of false positives and false negatives lead to an F1 score of 0.91 for
pipeline 1, and an F1 score of 0.90 for pipeline 5.

To improve the performance of pipeline 1, three databases were independently linked
for the effector identification: (A) the positive dataset (Table S1), which was compiled with
the results of the Blastp analysis and contains the potential homologs of known effectors;
these results were included as effector candidates. (B) a list of annotations/functional
descriptors of known effectors (Table S3); this step provides additional supports for effector
candidates (reinforces true positives). When some predictors fail to identify “true positive”
effectors, the outcome is “false negatives” for that predictor.

(C) a list of 40 annotations/descriptors of essential metabolic activities (the list of these
annotations was obtained from KEGG) (Table S2). This step allows for the exclusion of false
positives.

3.4. PhyEffector Pipeline

Based on the performance of the pipelines analyzed above to identify phytoplasma ef-
fectors, the PhyEffector pipeline was constructed with SignalP v4.1, TMHMM v2.0, Phobius
and SecretomeP v2.0. Their results were pooled, redundancies were eliminated, and the
candidates were subsequently added to the results from Blastp using the positive dataset as
query. This second list of effector candidates was converted to FASTA format and submitted
to Blastp against the non-redundant protein database at GenBank to obtain homology-
based descriptions of all the retrieved hits. Their descriptions were then compared with
the list of functional descriptions of known phytoplasma effectors (Table S3). Those hits
that did not have any effector-related annotations were then further compared with the
list of functional annotations of metabolic essential activities (proteins that correspond to
phytoplasmas´ core proteome); those which matched with descriptions in this set were
discarded. Figure 1 shows the complete PhyEffector workflow.

3.5. PhyEffector Performance: Prediction of Effectors on a Testing Dataset and on Phytoplasma
Genomes and Comparison with Literature

A second validation of the different pipelines was conducted on a testing dataset
composed of a different set of 11 validated effectors, along with 192 proteins annotated
in UNIPROT as “Candidatus effector” or “phytoplasma effector” and 23 homologs of the
proteins comprising the positive dataset to give 226 proteins in total (Table S4). These
protein sequences share ~50% identity with each other in the testing dataset (except for
effector families which are largely conserved) and ~50% identity with protein sequences
from the positive dataset. Those annotated as “effectors” are largely divergent from each
other and share no identity with the positive dataset. A second negative dataset, comprising
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226 core proteins (Table S5), different from the first negative dataset, was constructed as
well. Validation of PhyEffector on these sets calculates a realistic F1 score since positive
and testing datasets comprise different proteins with low identity among them. Table 5
shows the performance of PhyEffector on the testing dataset, as well as the comparison
with the other pipelines, to re-analyze whether pipeline # 2 (denominated PhyEffector) is
the best predictor for phytoplasma effectors. The F1 score of PhyEffector was 0.90 and it
was higher than in all the other pipelines, reinforcing that this pipeline is the best option
for further analyses.

Table 5. Prediction of Phytoplasma effectors using different pipelines on a testing dataset.

Pipeline 1 (Signalp4.1 + phobius + secretomeP2.0 + TMHMM2.0)

Set Num. Proteins Prediction Sen Spe PPV ACC FPR F1 score

Testing set 226 181
0.80 0.84 0.83 0.82 0.15 0.81

Negative set 226 35

Pipeline 2 (Signalp4.1 + phobius + secretomeP2.0 + TMHMM2.0 + BLASTP+ elimination of false positive)

Set Num. Proteins Prediction Sen Spe PPV ACC FPR F1 score

Testing set 226 189
0.83 0.99 0.99 0.91 0.004 0.90

Negative set 226 1

Pipeline 3 (Signalp4.1 + phobius + TMHMM2.0)

Set Num. Proteins Prediction Sen Spe PPV ACC FPR F1 score

Testing set 226 158
0.69 0.94 0.92 0.82 0.05 0.79

Negative set 226 13

Pipeline 4 (Signalp4.1 + phobius + TMHMM2.0 + BLASTP+ elimination of false positive)

Set Num. Proteins Prediction Sen Spe PPV ACC FPR F1 score

Testing set 226 172
0.76 0.99 0.98 0.87 0.008 0.86

Negative set 226 1

Pipeline 5 (Signalp5.0 + phobius + secretomeP2.0 + TMHMM2.0)

Set Num. Proteins Prediction Sen Spe PPV ACC FPR F1 score

Testing set 226 127
0.56 0.87 0.81 0.71 0.12 0.66

Negative set 226 29

Pipeline 6 (Signalp5.0 + phobius + secretomeP2.0 + TMHMM2.0 + BLASTP+ elimination of false positive)

Set Num. Proteins Prediction Sen Spe PPV ACC FPR F1 score

Testing set 226 138
0.61 0.98 0.97 0.79 0.01 0.75

Negative set 226 1

Pipeline 7 (Signalp5.0 + phobius + TMHMM2.0)

Set Num. Proteins Prediction Sen Spe PPV ACC FPR F1 score

Testing set 226 89
0.39 0.93 0.86 0.66 0.06 0.54

Negative set 226 12

Pipeline 8 (Signalp5.0 + phobius + TMHMM2.0 + BLASTP+ elimination of false positive)

Set Num. Proteins Prediction Sen Spe PPV ACC FPR F1 score

Testing set 226 106
0.46 0.99 0.98 0.73 0.008 0.63

Negative set 226 2
Pipelines 1–4, SignalP is in Gram-positive mode; Pipelines 5–8, SignalP is in Gram-negative mode. BlastP = [BlastP
with the positive dataset constructed in this work (results added to positive predictions); Blast of false positives or
suspected false positives against a database with annotations of known effectors (hits are included); Blast of false
positives or suspected false positives against a database with annotations of metabolic essential activities (hits are
discarded)]. Sen: Sensitivity; Spe: Specificity; PPV: Positive Predictive Value; ACC: Accuracy; FPR: False positive
rate; F1 score: Measure of the success of binary classifier (score reaches its best value at 1, and worst score at 0).
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In a third analysis for the validation of PhyEffector, the algorithm was used to identify
effectors in phytoplasma genomes (i.e., deduced proteomes), and the results were compared
with corresponding scientific reports. In order to solve discrepancies between the prediction
of PhyEffector and the literature, and to determine which prediction is stronger, false
negatives (FN) were identified comparing the annotations of the predicted effectors with
the descriptions of known effectors; those that coincide with “true effector” annotations
were considered “true”, and those that were not recognized (i.e., lacking effector-associated
annotations) were considered “FN”. False positives (FP) were identified with a similar
strategy, but instead, the effector results were compared with functional annotations of
essential (core) proteins; those that coincided with essential proteins were considered “false
positives”.

The number of predicted effectors by PhyEffector was highly variable, from 41 in
the Flavescence dorée phytoplasma, to 97 effector candidates in ‘Ca. Phytoplasma asteris’
DY2014. In all cases, PhyEffector predicted a higher number of effector candidates than the
scientific reports (Table 6). Since the prediction by PhyEffector included the FP elimination
step, the number of FP was zero in all predictions, while FN were less than 10 in general,
except in ‘Ca. Phytoplasma asteris’ (AY-WB), where PhyEffector had 17 FN. However,
the predictions from the corresponding literature had higher numbers of FN and higher
numbers of FP. Based on the results obtained from the various phytoplasma genomes, the
F1 score for PhyEffector ranked from 0.8957 to 1.0, with an average value of 0.9783. These
results indicate that the PhyEffector is a robust algorithm to identify effector candidates in
phytoplasmas.

For this evaluation, the proteins that were not retrieved by the pipelines from the “Test-
ing set” were considered as “false negatives” for F1 score determination. However, these
proteins are actually “ambiguous” since they may be false positives and the PhyEffector´
F1 score may be higher for each pipeline in Table 5.
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Table 6. Effector prediction by PhyEffector on phytoplasma genomes.

Phytoplasma Effectors Predicted
by the Authors

Pipeline Used for Effector
Prediction * Reference PhyEffector

Prediction
Shared

Candidates
Unshared

Candidates
False

Negatives
False

Positives F1 Score ***

‘Ca. Phytoplasma
mali’ 31

SignalP v4.0, for SP, and
then TMHMM v2.0 on

mature protein sequence
without the SP

[13] 49 18 A = 13
P = 31

A = 31
P = 6

A = 7
P = 0 0.9423

‘Ca. Phytoplasma
australiense’ 61

SignalP v4.0, for SP, and
then TMHMM v2.0 on

mature protein sequence
without the SP

[13] 89 43 A = 18
P = 46

A = 46
P = 10

A = 8
P = 0 0.9518

‘Ca. Phytoplasma
asteris’ (AY-WB) 58

SignalP v4.0, for SP, and
then TMHMM v2.0 on

mature protein sequence
without the SP

[13] 73 35 A = 23
P = 38

A = 38
P = 17

A = 6
P = 0 0.8957

‘Ca. Phytoplasma
asteris’ OY-M 65

SignalP v4.0, for SP, and
then TMHMM v2.0 on

mature protein sequence
without the SP

[13] 85 54 A = 11
P = 50

A = 50
P = 7

A = 4
P = 0 0.9674

‘Ca. Phytoplasma
solani’ strain SA-1 38

SignalP v3.0, for SP, and
then TMHMM v2.0 on

mature protein sequence
without the SP

[18] 96 26 A = 12
P = 83

A = 83
P = 4

A = 8
P = 0 0.9819

‘Ca. Phytoplasma
asteris’ AYWB 33

SignalP v3.0, for SP, and
then TMHMM v2.0 on

mature protein sequence
without the SP

[11] 73 23 A = 10
P = 40

A = 40
P = 5

A = 5
P = 0 0.9668

‘Ca. Phytoplasma.
asteris’ NJAY 23

SignalP v5.0, for SP, and
then TMHMM v2.0 on

mature protein sequence
without the SP

[11] 95 18 A = 5
P = 77

A = 77
P = 0

A = 5
P = 0 1

‘Ca. Phytoplasma
asteris’ WEID 17

SignalP v5.0, for SP, and
then TMHMM v2.0 on

mature protein sequence
without the SP

[11] 64 11 A = 6
P = 53

A = 53
P = 1

A = 5
P = 0 0.9922
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Table 6. Cont.

Phytoplasma Effectors Predicted
by the Authors

Pipeline Used for Effector
Prediction * Reference PhyEffector

Prediction
Shared

Candidates
Unshared

Candidates
False

Negatives
False

Positives F1 Score ***

‘Ca. Phytoplasma
asteris’
OY-M

37

SignalP v5.0, for SP, and
then TMHMM v2.0 on

mature protein sequence
without the SP

[11] 84 15 A = 22
P = 69

A = 84
P = 5

A = 17
P = 0 0.9710

‘Ca. Phytoplasma
asteris’
OY-V

36

SignalP v5.0, for SP, and
then TMHMM v2.0 on

mature protein sequence
without the SP

[11] 87 24 A = 12
P = 63

A = 129
P = 4

A = 8
P = 0 0.9870

‘Ca. Phytoplasma
asteris’ DY2014 45

SignalP v5.0, for SP, and
then TMHMM v2.0 on

mature protein sequence
without the SP

[11] 97 31 A = 14
P = 52

A = 52
P = 2

A = 12
P = 0 0.9944

‘Ca. Phytoplasma
asteris’ MBP-M3 13

SignalP v5.0, for SP, and
then TMHMM v2.0 on

mature protein sequence
without the SP

[11] 64 9 A = 4
P = 51

A = 56
P = 0

A = 4
P = 0 1

‘Ca. Phytoplasma
asteris’

De Villa
10

SignalP v5.0, for SP, and
then TMHMM v2.0 on

mature protein sequence
without the SP

[11] 55 5 A = 5
P = 50

A = 50
P = 1

A = 4
P = 0 0.9909

‘Ca. Phytoplasma
asteris’

LD1
14

SignalP v5.0, for SP, and
then TMHMM v2.0 on

mature protein sequence
without the SP

[11] 60 9 A = 5
P = 46

A = 56
P = 1

A = 4
P = 0 0.9923

‘Ca. Phytoplasma
asteris’
CYP

21

SignalP v5.0, for SP, and
then TMHMM v2.0 on

mature protein sequence
without the SP

[11] 91 14 A = 7
P = 77

A = 77
P = 0

A = 7
P = 0 1

‘Ca. Phytoplasma
asteris’
TW1

19

SignalP v5.0, for SP, and
then TMHMM v2.0 on

mature protein sequence
without the SP

[11] 57 14 A = 5
P = 38

A = 51
P = 2

A = 3
P = 0 0.9827
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Table 6. Cont.

Phytoplasma Effectors Predicted
by the Authors

Pipeline Used for Effector
Prediction * Reference PhyEffector

Prediction
Shared

Candidates
Unshared

Candidates
False

Negatives
False

Positives F1 Score ***

‘Ca. Phytoplasma
hytoplasma
aurantifolia’

98
SignalP v4.1

Comparison of SignalP v4.1
and SignalP v5.0; the

former retrieved ~ 70 false
positives.

[14] 93 53 A = 45
P = 40

A = 40
P = 8

A = 37
P = 0 0.9587

‘Ca. Phytoplasma
aurantifolia’

27 **
SignalP v5.0

Comparison of SignalP v4.1
and SignalP v5.0; the

former retrieved ~ 70 false
positives.

[14] 93 20 A = 7
P = 73

A = 73
P = 5

A = 2
P = 0 0.9738

‘Ca. Phytoplasma
vitis’ (Flavescence

dorée)
17

SignalP v5.0 and Phobius.
Effectors with

transmembrane domains
(TMDs) were also

identified.

[12] 41 6 A = 11
P = 35

A = 35
P = 2

A = 9
P = 0 0.9791

‘Ca.
Phytoplasma

ziziphi’ (Jujube
witches’-broom
Phytoplasma)

8 (Zaofeng1
to Zaofeng8).

Signal peptide by SignalP
4.1 and TMDs by the

TMHMM 2.0. Potential
mobile units (PMUs) were
identified by the presence
of flanking tra5 insertion

sequences and DNA
replication genes (dnaG,
dnaB, ssb, tmk). Secreted

proteins harbored in PMUs
were identified as JWB
phytoplasma putative

effectors.

[35] 87 5 A = 3
P = 82

A = 89
P = 1

A = 2
P = 0 0.9942

* SignalP v3.0, v4.0, v5.0 were used on the Gram-positive bacteria mode. A = authors; P = PhyEffector. ** Authors recognized this number as the correct prediction. *** F1 score calculated
using the effector prediction by PhyEffector in each genome.
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4. Discussion

Effectors are essential for virulence and are therefore susceptible targets for the control
of phytoplasma-associated diseases [39,40]. It is necessary to have a robust computa-
tional tool that specifically identifies these effector candidates to accelerate phytoplasma
effectoromics.

A positive database (phytoplasma effectors) was constructed by searching with key-
words such as “Phytoplasma effectors”, “SAP effector”, etc. The first attempt was the
search in the GenBank database, but it resulted in highly redundant data. Better results
were obtained in the UNIPROT database, but manual revision was also necessary. Finally,
the positive dataset comprised 64 non-redundant proteins. Difficulties involved in the pre-
diction of effectors include the small number of true (validated) currently known effectors,
and the number of potential false positives in the public databases. We found that many
proteins annotated in UNIPROT as “phytoplasma effectors” and “Candidatus effectors”
correspond to “hypothetical proteins” in GenBank. Although many hypothetical proteins
are expected to be effectors, it cannot be ruled out that false positives are among them.
Here, care was taken and we did not include proteins annotated as “effectors” (phyto-
plasma effectors or Candidatus effectors) according to UNIPROT, which have no homology
to known validated effectors and have no experimental validation either, in the positive
dataset. However, they were included in another dataset to test the algorithm. Those from
the testing dataset that were not retrieved by PhyEffector were counted as false negatives,
although they are ambiguous because it is not possible to classify them as effectors or
non-effectors at this time.

We reasoned that, if the positive dataset comprises phytoplasma effectors, which are
dispensable proteins, i.e., most of them are not ubiquitous in all phytoplasmas, and have a
patchy phylogenetic distribution [41,42], the negative dataset must comprise indispensable
proteins from phytoplasmas. Indispensable proteins are widely distributed in phytoplas-
mas, and are related to essential metabolic activities (part of the core proteome). Music et al.
(2019) [18] compared the proteomes of phytoplasmas from 16SrI, 16SrXII and 16SrXVI and
found 259 orthologous gene clusters shared among them. Recently, Cho et al. (2020) [11]
compared 11 genomes of 16SrI-phytoplasmas and found 303 single-copy genes shared
among all of them. This list is representative of the core proteome in phytoplasmas and the
size is similar to the extended negative dataset constructed in the present study.

Usually, phytoplasma effectors are described as secreted proteins, but recent reports
have uncovered the existence of phytoplasma effectors having transmembrane domains
(TMDs) or being secreted by a non-classical pathway [21]. Analyzing the positive dataset
(64 phytoplasma effector proteins) showed that these proteins are more common than pre-
viously believed: ~8% of the phytoplasma effectors have TMDs and ~5% are non-secreted.
Based on these findings, different pipelines comprising different predicted programs were
constructed and evaluated.

Gram-positive bacteria are surrounded by a thick peptidoglycan cell wall, while Gram-
negative bacteria have a much thinner peptidoglycan cell wall with an outer membrane
surrounding the cell containing lipopolysaccharides [43]. Phytoplasmas are strictly neither
Gram-positive nor Gram-negative in terms of their membrane composition [15], but they
are closely related to the non-sterol-requiring acholeplasmas [44]. To choose the best option
for phytoplasmas, SignalP programs were tested both in Gram-positive and Gram-negative
modes on the positive dataset; better retrieval of phytoplasma effectors was achieved in the
Gram-positive mode. This is consistent with phytoplasmas’ phylogeny, since they belong
to the Mollicutes class—cell wall-less microorganisms derived from a Bacillus/Clostridium-
like ancestor [45,46]. In other words, phytoplasmas are derived from Gram-positive bacteria
but they lack the cell wall.

The mechanisms for delivering effectors are also different between Gram-negative and
Gram-positive bacteria. Gram-negative bacteria have type III, type IV and type VI secretion
systems that form hollow tubes through which effectors are directly translocated from the
bacterial cytosol directly into the cytosol of host cells [47]. In the case of Gram-positive
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bacteria, they predominantly use the Sec-dependent pathway for effector delivery [48].
Therefore, the SignalP program is suitable for the identification of phytoplasma effectors,
and different versions of this program have been used [11,13,15]. Here, a comparison of
pipelines only differing in the version 4.1 or 5.0 of SignalP showed that the specificity
(proportion of negatives that were correctly identified) of SignalP v5.0 was higher than that
of SignalP v4.1, but sensitivity of SignalP v5.0 (proportion of positives that are correctly
identified) was lower; simply put, v5.0 excluded more true effectors. Similar results were
found by Tan et al. (2021) [14] with SignalP v5.0 identifying less false positives in ‘Ca.
Phytoplasma aurantifolia’ than SignalP v4.1, but SignalP v5.0 also identified a smaller
number of effectors. In order to distinguish the performance of the pipelines evaluated
here, the F1 scores (these measure the success of the pipelines; best value at 1 and the worst
score at 0) were calculated. F1 scores were higher for pipelines that harbor SignalP v4.1
(Tables 3 and 4), supporting this version for the search for effectors in the phytoplasma
proteomes. However, none of the pipelines were able to retrieve all sequences from the
positive dataset. The best pipeline (pipeline 1, indicated in Table 3 with a F1 score of 0.91)
excluded three true effectors. We reasoned that the best pipeline should be able to recover
all or most of the effectors, even if a large number of false positives are initially recovered,
followed by the elimination of the false positives present.

During the in silico characterization of the effectors, we realized that some of them
were identified by homology because selection based on common characteristics (hav-
ing signal peptide and not having TMD) would exclude them. For example, protein ID
A0A859I9H9 (GenBank QKX95313.1) from the rapeseed phyllody phytoplasma is homolo-
gous to the effector SAP01 from the phytoplasma AY-WB, but the mature protein (after in
silico removal of the signal peptide) has a TMD according to TMHMM. Therefore, to im-
prove the pipeline’s sensitivity, a Blastp step was included using the phytoplasma effectors’
positive dataset as query. Subsequently, the functional annotation of known effectors and
essential proteins was used to distinguish effector candidates from false positives. The hits
with descriptors that match with annotations of essential proteins were ruled out.

The search for effectors based on homology was also used in the prediction of fungal
and oomycete effectors by WideEffHunter and demonstrated to improve its accuracy on
real tests beyond positive control [49].

This strategy showed no significant differences in the identification of effectors on the
positive dataset (Tables 3 and 4), but the combination of the different programs used in the
different reports, including SignalP v4.1, TMHMM v2.0, Phobius and SecretomeP, along
with the search for homologous sequences of known effectors, significantly expanded the
number of effector candidates retrieved in the testing dataset (see in Table 5, pipeline 2 vs.
pipeline 1; pipeline 4 vs. pipeline 3; pipeline 6 vs. pipeline 5; and pipeline 8 vs. pipeline 7).
Later, the last step of the pipeline specifically eliminated FP, resulting in higher F1 scores in
all cases of pipelines that include the steps of Blastp and elimination of FP. The pipeline # 2
was chosen as the best predictor and it was named “PhyEffector”. To challenge the pipeline,
“PhyEffector” was applied on a number of deduced proteomes of phytoplasmas. PhyEffec-
tor identified double to triple the number of effector candidates identified by the authors of
previous phytoplasma-related reports. The analyses showed that PhyEffector identified
zero FP and a low number (<10) of FN, while both parameters were greater numbers in all
previous reports. The F1 score for PhyEffector ranked from 0.8957 to 1, with an average
value of 0.9783, evidencing that this is a robust predictor of phytoplasma effectors. The
results from PhyEffector indicate that phytoplasma effectoromes have been underestimated.
Larger phytoplasma effectoromes were predicted than previously reported, and these
large sizes are congruent with the fact that many phytoplasma proteins are annotated as
“hypothetical protein”; for example, 257 hypothetical proteins in ‘Ca. Phytoplasma solani’
SA-1, and 337 in ‘Ca. Phytoplasma australiense’ PAa [18], and 81 in Peanut Witches’-Broom
Phytoplasma [13]. Hypothetical proteins are not part of the core proteins because core
proteins are conserved and have known essential functions. Therefore, some or all of
these hypothetical proteins may be part of phytoplasma effectoromes [15,21]. PhyEffector
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demonstrated the ability to identify these novel effectors at the genome level, retrieving
not only classical effector candidates but also the non-classical ones.

It is important to emphasize that PhyEffector does not rank effectors based on proba-
bility. Researchers may prioritize effectors according to their own interests. Conventional
predictions pay attention to homologs of known effector families [14], or to genomic lo-
cation (in PMUs) [13,50] or high expression during host or insect vector infection [16,51].
Other researchers look for novel effectors, choosing candidates with non-canonical char-
acteristics [21,52]. Regardless of the type of phytoplasma effectors that the researcher
is interested in, the PhyEffector algorithm may be useful to them. PhyEffector may be
found at https://github.com/Gisel-Carreon/PhyEffector. Researchers are encouraged to
experimentally validate the chosen effector candidates after in silico prediction, especially
the novel non-classical ones.

5. Conclusions

The number of validated phytoplasma effectors is still very small. A carefully con-
structed positive dataset was made possible through the inclusion of putative effec-
tor candidates from the UNIPROT database, avoiding high-risk false positives; over-
representation/overfitting of any class of effectors was prevented by including only a few
members per family (2–4, except for SAP11, which is a large family with highly diver-
gent members). Proteins in the positive database or testing database usually shared ~50%
identity with each other in the same database and between both of these databases.

The pipeline containing the SignalP v4.1 in Gram-positive mode, in combination
with Phobius and TMHMM2.0, resulted in the best option to identify phytoplasma ef-
fectors. Blastp with effector protein sequences as queries improved the identification of
phytoplasma effectors. All retrieved proteins were pooled, and redundant proteins were
eliminated. Many false positives were effectively excluded by eliminating proteins that
share annotations of conserved core proteins, while effector candidates were supported for
proteins that share common annotations of phytoplasma effectors. This entire pipeline was
named PhyEffector.

PhyEffector (https://github.com/Gisel-Carreon/PhyEffector) is a pipeline suitable
for the identification of effectors in phytoplasma genomes, with an average F1 score of
0.9761. It is able to not only retrieve classical but also non-classical phytoplasma effectors.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biomimetics8070550/s1. Table S1. Positive dataset. The list comprises
64 phytoplasma protein sequences (11 true validated effectors and 53 selected effector accessions
from UNIPROT); Table S2. Negative dataset. The list comprises 64 diverse phytoplasma core protein
(essential metabolic proteins); Table S3. List of functional annotation of Phytoplasma effectors;
Table S4. Testing dataset. The list comprises 226 phytoplasma protein sequences (10 true validated
effectors and 216 selected effector accessions from UNIPROT, different and divergent than proteins
comprising the positive dataset); Table S5. Negative dataset. This second negative dataset comprises
226 phytoplasma core protein, different from proteins in the other negative dataset.
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