
Citation: Behera, S.; Prathuri, J.R.

FPGA-Based Acceleration of

K-Nearest Neighbor Algorithm on

Fully Homomorphic Encrypted Data.

Cryptography 2024, 8, 8. https://

doi.org/10.3390/cryptography8010008

Academic Editor: Josef Pieprzyk

Received: 27 December 2023

Revised: 20 February 2024

Accepted: 22 February 2024

Published: 27 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

FPGA-Based Acceleration of K-Nearest Neighbor Algorithm on
Fully Homomorphic Encrypted Data
Sagarika Behera 1,∗,† and Jhansi Rani Prathuri 2,†

1 Department of Computer Science and Engineering, CMR Institute of Technology, Visvesveraya Technological
University, Belagavi 590018, India

2 Department of Computer and Data Sciences, School of Engineering and Computational Sciences, Merrimack
College, North Andover, MA 01845, USA; jhansirani.p@gmail.com

* Correspondence: sagarika.b@cmrit.ac.in
† These authors contributed equally to this work.

Abstract: The suggested solution in this work makes use of the parallel processing capability of
FPGA to enhance the efficiency of the K-Nearest Neighbor (KNN) algorithm on encrypted data. The
suggested technique was assessed utilizing the breast cancer datasets and the findings indicate that
the FPGA-based acceleration method provides significant performance improvements over software
implementation. The Cheon–Kim–Kim–Song (CKKS) homomorphic encryption scheme is used for
the computation of ciphertext. After extensive simulation in Python and implementation in FPGA, it
was found that the proposed architecture brings down the computational time of KNN on ciphertext
to a realistic value in the order of the KNN classification algorithm over plaintext. For the FPGA
implementation, we used the Intel Agilex7 FPGA (AGFB014R24B2E2V) development board and
validated the speed of computation, latency, throughput, and logic utilization. It was observed that
the KNN on encrypted data has a computational time of 41.72 ms which is 80 times slower than the
KNN on plaintext whose computational time is of 0.518 ms. The main computation time for CKKS
FHE schemes is 41.72 ms. With our architecture, we were able to reduce the calculation time of the
CKKS-based KNN to 0.85 ms by using 32 parallel encryption hardware and reaching 300 MHz speed.

Keywords: field-programmable gate array (FPGA); K-Nearest Neighbor (KNN) algorithm;
Cheon–Kim–Kim–Song (CKKS) encryption scheme; fully homomorphic encryption (FHE) scheme;
cloud computing

1. Introduction

In the fully homomorphic encryption (FHE), process operations can be performed on
the ciphertext without performing the decryption. Therefore, this process does not require
to share the private key with others. In contrast to other cryptographic techniques, all
operations require the sharing of the secret key needed for the decoding process, which
may lead to the leakage of private information. Despite this amazing feat of theoretical
cryptography, the high computational and memory costs of FHE continue to be a significant
problem to its broad acceptance. To make it practically acceptable and usable widely, many
researchers have been working on it since 2009 when it was first proposed by C. Gentry [1]
in his Ph.D. thesis. Since then, a significant number of researchers [2–10] started working in
this field to enhance the homomorphic encryption operation. In homomorphic encryption,
after each operation on the encrypted data, the noise will be added. This noise grows
with each operation. For this, the bootstrapping concept is used to keep the noise at a
certain level. The bootstrapping concept was first proposed by C. Gentry et al. [11]. Since
bootstrapping adds more cost to the encryption and decryption processes, it becomes a
bottleneck for the adoption of FHE at large. More researchers are working in this field to
reduce the computing cost of FHE for wide adoption by users to store their data securely at
third-party servers and for various operations to be performed on these encrypted data.

Cryptography 2024, 8, 8. https://doi.org/10.3390/cryptography8010008 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography8010008
https://doi.org/10.3390/cryptography8010008
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0001-6109-2832
https://orcid.org/0000-0002-4180-0341
https://doi.org/10.3390/cryptography8010008
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography8010008?type=check_update&version=2

Cryptography 2024, 8, 8 2 of 28

The rapid accumulation of sensitive data including medical and financial records in
cloud environments, and the corresponding analyses of such information, have under-
standably elevated concerns around maintaining privacy and ensuring security for such
important consumer data. By enabling arbitrary operations to be executed on encrypted
data without requiring decryption, FHE provides an effective means of addressing this
issue through its capability for flexible handling of ciphertext. However, FHE’s actual
applicability in real-world applications has been limited due to its high computational cost
and massive memory needs. FHE can be applied for secure analysis and classification of
data in machine learning (ML).

The most widely used classification algorithm in machine learning is KNN. This
algorithm is a fundamental tool in data classification, clustering, and anomaly detection.
Healthcare, finance, and cyber security are just a few of the industries in which it finds
use. However, running KNN on encrypted data using FHE is an exceptionally demanding
task due to the intricate nature of distance calculations and the large datasets involved.
This research project seeks to address this challenge by exploring the acceleration of the
KNN algorithm on fully homomorphic encrypted data using field-programmable gate
arrays (FPGAs).

CKKS is applicable to perform computations on ciphertext in the context of machine
learning (ML) algorithms. One key application is in training ML models on private data.
Using CKKS, data owners can encrypt their data and deliver them to a cloud-based ML
platform, where the model can be trained on the ciphertext without the cloud provider
having access to the underlying data. This allows for sensitive data to be kept private while
still allowing for the benefits of cloud-based ML.

Motivation

The KNN classification of encrypted data is significant for several compelling reasons:

• Preserving Data Privacy: By performing KNN classification on encrypted data,
organizations can ensure the confidentiality of their data while still deriving valuable
insights from them. This is rather significant in fields like healthcare, finance, and legal,
where data privacy regulations are stringent.

• Machine Learning on Encrypted Data: As machine learning continues to drive inno-
vation across industries, the capacity to perform these tasks on encrypted data without
compromising privacy is crucial. Developing efficient methods to run ML algorithms
like KNN on encrypted data can open new possibilities for secure data analysis.

• Real-World Applications: The KNN algorithm finds applications in numerous real-
world scenarios, such as personalized medicine, fraud detection, and secure collabora-
tive data analysis. Accelerating KNN on encrypted data opens up opportunities for
secure and privacy-preserving decision-making in these domains.

• Resource Efficiency: FPGAs are renowned for their flexibility and efficiency in com-
puting. By leveraging FPGA-based acceleration, this research aims to reduce the
computational burden of FHE, making it a more practical choice for privacy-conscious
organizations and applications.

To overcome the limitations of FHE, this paper presents an FPGA-based acceleration
method for the KNN algorithm applied to fully homomorphically encrypted data in a
cloud environment. Faster processing times and less energy usage are possible with FPGAs
than with standard software implementations because they offer a means of implementing
specialized hardware that may be tuned for certain datasets and use cases. The proposed
method is evaluated using different datasets, and the findings indicate that the FPGA-
based acceleration method provides significant performance improvements over software
implementation, making it more practical for large-scale applications.

2. Relevant Work

This section describes the recent research works in the area of FHE and machine
learning algorithms. This study intends to enhance the acceleration of the KNN algorithm

Cryptography 2024, 8, 8 3 of 28

using an FPGA on encrypted data. The CKKS technique, which makes it possible to
perform operations on vectors of complex numbers as well as real values, is employed in
this case for encryption and decryption. The design and implementation of KNN machine
learning algorithms in FPGA, as well as several homomorphic encryption techniques, have
all been studied in the literature to support this work.

Mohsin, Mokhles A. et al. [12] designed a novel hardware architecture for the FPGA
implementation of the KNN algorithm on mobile devices. They have claimed that they
obtained a speed-up of 127x over the software implementation.

Almomany, Abedalmuhdi et al. [13] proposed an improved KNN algorithm based
on class contribution and feature weighting (DCT-KNN) implemented in FPGA using
OpenCL, which is a high-level parallel programming tool. According to the authors of
this research, their design and FPGA implementation are 44 times faster than CPU-based
computing techniques.

Marquez-Viloria, David et al. [14] implemented two versions of the KNN algorithm
using FPGA. The normal KNN algorithm was applied successfully for inter-channel inter-
ference mitigation in a 3 × 16 Gbaud 16-QAM Nyquist WDM system. In the modified KNN
algorithm, the main focus is to reduce the comparison of symbols by using the rule of the
eight connected clusters used for image processing to find the closest neighbor. The modi-
fied KNN algorithm gives a reduction of 47.25% in computational time as opposed to the
original KNN algorithm.

A novel hardware architecture for the BV FHE scheme is proposed in [15]. The paper
also covers the simulation of FPGA-based design using the Questasim simulator and
implementation in Intel FPGA using the Quartus tool. Similarly, the FPGA-based design
architecture for the LWE scheme is presented in [16]. The authors claim that the time taken
for various operations such as key generation, encryption, and decryption operation is
much lower compared to software implementation. They found that the throughput of
32 butter-fly is 15× compared to a single butter-fly.

The design of an FPGA-based accelerator with bootstrappable FHE is given by
Agrawal, Rashmi et al. in [17] for the first time. This design is not a memory-bound
design compared to the previous design which consumed more resources and was taking
more execution time. Their design gives better performance of 213× compared to CPU
and 1.5× compared to GPU. They have applied it to train a logistic regression model over
encrypted data.

As the popularity of ML increases in the cloud computing environment, privacy
and security of the data become a great concern for cloud users. To overcome these
problems, the researchers have given different methods for the application of homomorphic
encryption in machine learning in the paper [18–23].

The hardware implementation and acceleration of FHE on encrypted data are thor-
oughly explained by Nikola Samardzic [24]. The first FHE programmable accelerator [25]
whose performance is 17,000× compared to software performance can be used for deep
learning in the cloud as claimed by the authors. More researchers are concentrating on
hardware implementation and simulation of FHE to make it practically implementable in
real-time scenarios [26–31].

2.1. Research Gap

Considering the current state of research and technology in the fields of FPGA acceler-
ation, the KNN algorithm, and Fully Homomorphic Encryption (FHE), there is still much
space for improvement, and the following are some possible research gaps in this field.

One of the biggest obstacles is that FHE operations are very computationally expensive,
making it difficult to implement KNN on FHE data in realtime. Another challenge is that
FHE data are much larger than plaintext data, which can make it difficult to store and
process on FPGAs.

Cryptography 2024, 8, 8 4 of 28

The following are a few areas where research is lacking:

• Developing more efficient FHE algorithms and implementations that are specifically
optimized for FPGAs.

• Designing FPGA-based architectures that can efficiently process large amounts of
FHE data.

• Creating innovative techniques for reducing the size of FHE data without sacrificing accuracy.
• Evaluating the performance and energy efficiency of FPGA-based KNN accelerators

for FHE data.
• The integration of FHE in machine learning tasks is driven by the need for secure

computation of sensitive data. Research should explore the security and privacy
implications of FPGA-accelerated KNN on FHE-encrypted data, including potential
vulnerabilities and mitigation strategies.

• FPGA devices have limited resources, including memory and processing elements.
Research should investigate how to effectively allocate and utilize these resources to
optimize the acceleration of KNN while maintaining FHE security.

• Establishing standards and best practices for FPGA-based acceleration in the context
of FHE-protected machine learning can be beneficial for researchers and practitioners.

• Developing user-friendly programming models and tools for designing and deploying
FPGA-accelerated KNN on FHE-encrypted data can be a significant research gap.
Simplifying the development process can encourage wider adoption.

2.2. Objectives

This research explores the fusion of hardware acceleration through FPGAs with the
transformative capabilities of CKKS FHE while referring to the KNN technique. The main
motive is to develop a novel system that accelerates the KNN algorithm while preserving data
privacy through FHE, unlocking a new paradigm for privacy-preserving machine learning.

Our work focuses on several key aspects. First, we design and optimize FPGA-based
hardware implementations of the CKKS scheme, enhancing computational efficiency and
enabling real-time or large-scale applications. Simultaneously, we integrate FHE into the
KNN workflow, allowing for computations to be performed on encrypted data without
revealing sensitive information, thus addressing the ever-growing need for data privacy.

We showcase the performance and scalability of our FPGA-accelerated, FHE-protected
KNN system through thorough benchmarking and evaluation. We evaluated the logic
resources, latency, execution time, and throughput of computation while comparing it
against existing non-encrypted and encrypted methods. Furthermore, we explore practical
applications in healthcare where privacy-preserving machine learning is paramount due to
regulatory and security constraints.

Overall, the objective of this research is to create a practical and efficient solution
that leverages FPGA technology and FHE to enable privacy-preserving KNN algorithm
processing on sensitive data, with the potential for real-world applications in privacy-
conscious domains.

2.3. Our Contribution

This paper aims to design a novel hardware architecture for applying the KNN classifi-
cation algorithm to encrypted data. This design is implemented and simulated using FPGA.
In this work, the CKKS homomorphic encryption scheme is used for the computation of
encrypted data. The CKKS-KNN block receives the data and the complex data are con-
verted into a real polynomial using a systolic array based on QR decomposition for matrix
inversion. In this research work, the bitonic sorting method is used for sorting the distance
in the KNN module. After extensive simulation in Python and implementation in FPGA, it
is evident that, with the proposed architecture with 32 parallel channels and enhancing the
clock performance from 196 MHz to 300 MHz, i.e., 1.5 times, the computational time has
been brought down to 1/40 of CKKS-KNN (0.85 ms) on encrypted data to a realistic value
in the order of the KNN classification algorithm over plaintext (0.518 ms).

Cryptography 2024, 8, 8 5 of 28

Outline of this paper: The organization of this paper is given here. Section 1 briefly in-
troduces the CKKS FHE scheme, KNN algorithms, and the motivation behind this research.
Section 2 presents a brief overview of related work carried out by various researchers in this
field. This section also presents the research gap and the objective of our research in this
field with our contribution. Section 3 explains the theoretical context of CKKS, Ring Learn-
ing with Error (RLWE), Number Theoretic Transform (NTT) for polynomial multiplication,
the KNN algorithm, and the application of the CKKS scheme in machine learning. Section 4
illustrates the proposed method and design architecture. The different algorithms such as
KNN classifier, encoding, encryption, decryption, decoding, and evaluation function on
encrypted data are given in Section 5. Software implementation of the proposed method
using Python and hardware implementation using FPGA are given in Section 6. The logic
resource utilization results such as computational time, latency, and throughput of KNN
on the plaintext, CKKS-KNN with a single channel and 32 parallel channels, are discussed
in Section 7. Section 8, concludes this paper with the observed result. The future work that
can be carried out in this emerging field is given in Section 9.

3. Theoretical Background
3.1. Cheon–Kim–Kim–Song (CKKS) Scheme

CKKS is a homomorphic encryption (HE) algorithm that allows for operations to be
performed on ciphertext, without the need to first decrypt the data. When sensitive data
need to be processed without being made public to the parties conducting the computation,
this can be helpful. CKKS is a type of HE that is designed to work with real-valued numbers,
as opposed to the integers that are typically used in other HE schemes. For machine learning
and other numerical computations, this makes it effective.

3.2. Application of CKKS Scheme in Machine Learning

Here are some applications of the CKKS Scheme in machine learning:

• Privacy-Preserving Predictive Analytics: Assume a financial institution wishes to
develop a predictive model to evaluate its clients’ creditworthiness but is averse to
disclosing client information to outside parties. CKKS can be used to encrypt customer
financial data, train the predictive model on the encrypted data, and then apply
the model to encrypted queries from customers to determine their creditworthiness
without revealing their sensitive financial details.

• Collaborative Machine Learning: In a scenario where multiple organizations want
to jointly train a machine learning model on their combined datasets without shar-
ing the data, CKKS can be employed. Each organization can encrypt its data and
share the encrypted inputs with a central entity. The central entity can then perform
model training on the encrypted data and provide the model without ever seeing the
raw data.

• Privacy-Preserving Health Data Analysis: Hospitals and medical research institutions
may collaborate on medical research without sharing individual patient health records.
CKKS can be used to encrypt patient data, allowing for secure joint analysis of the
data for medical research, clinical trials, or disease pattern analysis while preserving
patient privacy.

• Privacy-Preserving Recommendations: Online platforms that provide personalized
recommendations (e.g., e-commerce, streaming services) can use CKKS to protect
user data. User behavior data can be encrypted, and recommendation models can
be trained and applied to the encrypted data, ensuring that users’ preferences and
histories remain confidential.

• Encrypted Machine Learning on IoT Devices: IoT devices may generate sensitive
data that need to be analyzed for various purposes, such as anomaly detection in
industrial settings. CKKS can be employed to perform machine learning on encrypted
IoT data locally on the devices or in a secure gateway, ensuring data privacy.

Cryptography 2024, 8, 8 6 of 28

• Secure Natural Language Processing (NLP): In a scenario where a cloud-based NLP
service wants to analyze text data from users while keeping the text content private,
CKKS can be applied. Users can encrypt their text, send it to the cloud service,
and receive encrypted NLP analysis results. The cloud service provider can process
the encrypted text and return encrypted insights without seeing the plaintext.

These examples illustrate how CKKS can enable various machine learning applications
while maintaining data privacy and security. CKKS’s homomorphic encryption properties
allow for computations to be performed on encrypted data, making it a valuable tool for
privacy-preserving machine learning in various domains.

3.3. Overview of CKKS Method

The overall view of the CKKS algorithm is shown in Figure 1. Sender A has the
original message M, which is a vector of values. This message is encoded and converted
into plaintext P, which is a polynomial. This plaintext is encrypted using the public key
encryption method and the resultant ciphertext C is stored in the cloud server. Any
computation function “f” is applied to this ciphertext and the result will be a ciphertext C’.
This resultant ciphertext C’ is decrypted and it will give the output as plaintext P’. Finally,
this plaintext P’ is decoded to obtain the resultant message M’.

Figure 1. Block diagram of CKKS method.

The CKKS method given in paper [32] is used to perform homomorphic computation
on real data. It is also known as HEAAN (Homomorphic Encryption for the Arithmetic
of Approximate Numbers). A noise or error “e” is added with the message “M” to form
the plaintext “P”, i.e., (M + e), which we want to encrypt. Here, error “e” is added as part
of the RLWE scheme for security purposes. The input to the encryption process is (M + e)
and it will generate a ciphertext which is the approximate value of the message “M” in the
encrypted form. Computers use fixed-point or floating-point representations to handle real
data. Some real data cannot be represented using this system. Therefore, we will take their
approximate value using some predefined functions such as truncation or rounding off.
This approximation results in errors that can accumulate and expand during computation.
But, in a realistic situation, these errors are not very significant, so the final result will be
satisfactory. Therefore, we can think of the RLWE error in the encrypted domain as similar
to a truncate or rounding error in the plain domain. The process of re-scaling is used to make
plaintext smaller. The MODSWITCH concept is used for re-scaling. Y. Su et al. [33] provided
the hardware architecture both for the keyswitch and modswitch modules to implement
a leveled BGV scheme. Cheon, Jung Hee et al. [34] presented a variant of approximate
homomorphic encryption that uses RNS decomposition of cyclotomic polynomials and
the NTT conversion on each of the RNS components. Lee, Eunsang et al. [35] proposed

Cryptography 2024, 8, 8 7 of 28

a method to find the degrees of component polynomials optimized for the RNS-CKKS
scheme. The ciphertext in CKKS [32], BGV [3], BFV [2,6], and BV [5] contains a pair of
polynomials. One polynomial is used for message information and the other is used for
decryption. The coefficients of these polynomials are bound by integer q, which is known
as the ciphertext coefficient modulus.

The procedure for plaintext encoding in the CKKS method is to multiply the number
by a scaling factor ∆ and round to the nearest integer. This process will shift the LSB (lowest
significant bit) of message M to the left far away from “e”. Here, the assumption is that the
LSB of M, which is distorted by adding “e”, is not very significant. The decoding procedure
is to divide the encoded number by the same scaling factor ∆ used for encoding. Here, we
will explain it with an example.

Let M = Π = 3.14159265358979323846, e = 20, and ∆ = 106
The encoded message P is: P = ∆*M + e = 3141592 + 20 = 3141612
The decoded message M is: M = 3141612/106 = 3.141612
Plaintext and Ciphertext spaces: In the CKKS method, the plaintext space is the set of

real numbers that can be represented with a fixed level of precision. This set of numbers
is transformed into a fixed-point representation through the plaintext encoding process.
The plaintext space is typically represented by a polynomial ring.

The ciphertext space, on the other hand, is the set of numbers that are obtained
after encrypting the plaintext. In the CKKS method, these numbers are represented by
polynomials with complex coefficients, which are obtained by applying an encryption
algorithm to the plaintext. The encryption algorithm used in the CKKS method is generally
based on the polynomial version of the Number Theoretic Transform (NTT).

The plaintext and the ciphertext spaces in CKKS are almost the same. The elements
are from the polynomial ring given in (1).

Rq = Zq[x]/ f (x) (1)

Here, q is an integer which is known as coefficient modulus and f (x) is a polynomial
which is known as polynomial modulus. All the elements of Rq are polynomials whose
degree is bounded by the degree of f (x) and coefficients are integers bounded by q.

Normally, f (x) = xn + 1 and n = 2k, where k is any positive integer and n is known
as the ring dimension.

In the homomorphic encryption scheme, lattice-based cryptography schemes’ popular-
ity is increasing because they cannot be easily broken by quantum computers. Some of the
works are based on Learning With Error (LWE) and some are based on Ring Learning With
Errors (RLWE) given in [7,8,10,33]. To design a homomorphic encryption scheme, CKKS
implements Ring Learning with Errors (RLWE). It enables the calculation of complex value
vectors including real values. Until recently, only integers could be used for homomorphic
computing. This moves us a step closer to practical uses for machine learning that protect
privacy. It supports approximately adding and multiplying encrypted messages, as well as
a novel re-scaling method for controlling the size of plaintext. Before going into a detailed
explanation of the CKKS method, we will explain the RLWE method.

3.4. Ring Learning with Errors (RLWE)

RLWE, which stands for Ring Learning With Errors, is a mathematical problem that
forms the basis for some cryptography schemes, particularly lattice-based encryption and
homomorphic encryption. It is a variant of the Learning With Errors (LWE) problem,
adapted for the ring structure of certain mathematical objects called polynomial rings.
V. Lyubashevsky et al. [36] introduced an algebraic variant of LWE which is called RLWE.
It is considered hard to solve, which makes it suitable for cryptography applications. Let
us explain RLWE with some mathematical equations. RLWE is typically defined over a
polynomial ring denoted as Rq, where q is a prime number. Elements of Rq are polynomials

Cryptography 2024, 8, 8 8 of 28

with integer coefficients modulo q. For example, a polynomial f (x) in Rq can be represented
as given in (2).

f (x) = a0 + a1 ∗ x + a2 ∗ x2 + ... + an ∗ xn(mod q) (2)

The RLWE problem [36] is defined over a polynomial ring Rq given in (3).

Rq = Z[x]/xn + 1 (3)

where n is a power of 2, and the goal is to find a secret polynomial s in Rq that is close to
a given polynomial a in Rq, subject to the constraint that the coefficients of s are chosen
from a small set, such as {0, 1, . . . , q − 1} for some prime q. The security of the RLWE
problem and its variants is based on the assumption that it is hard to approximate the
coefficients of s to within a small error, even if one has access to many samples of the form
(a, as + e = b(mod q)) for a randomly chosen a in Rq and a small error e in Rq. Here, (a, b)
are elements of a ring Rq and are part of the public key.

The complete algorithm for CKKS operations where the RLWE concept is used is given
in Section 5.

3.5. Polynomial Multiplication and Number Theoretic Transform

Here is a high-level explanation of polynomial multiplication and the use of the
Number Theoretic Transform (NTT) in the context of the CKKS FHE scheme.

Polynomial Multiplication: In the CKKS scheme, plaintexts are represented as polyno-
mials with coefficients. For example, if m1 and m2 are plaintexts represented as polynomials
given in (4) and (5), respectively.

m1(x) = a0 + a1 ∗ x + a2 ∗ x2 + ... + a(n−1) ∗ x(n−1)(mod q) (4)

m2(x) = b0 + b1 ∗ x + b2 ∗ x2 + ... + b(n−1) ∗ x(n−1)(mod q) (5)

The product of these polynomials, m1(x) and m2(x) is given in (6).

mprod(x) = c0 + c1 ∗ x + c2 ∗ x2 + ... + c(2n−2) ∗ x(2n−2)(mod q) (6)

Polynomial multiplication can be performed using various methods, and the NTT is
one such method that provides computational efficiency.

Number Theoretic Transform (NTT): The Number Theoretic Transform (NTT) is a
mathematical technique that transforms a polynomial from its coefficient representation
into a different representation called the frequency or point-value representation. It is a
generalization of the Fast Fourier Transform (FFT) and is particularly useful in algebraic
number fields and finite fields, which are relevant in the context of certain cryptographic
algorithms, including fully homomorphic encryption schemes like CKKS.

The NTT involves evaluating the polynomial at the nth roots of unity. In other words, let
ω be a primitive nth roots of unity. The values ω, ω2, ..., ω(n−1) are used in the transformation.

The forward NTT transforms the polynomial coefficients a0, a1, ..., an−1 into a set of
values A(ω), A(ω)2, ..., A(ω)(n−1) using a specific formula given in (7).

A(k) =
n−1

∑
j=0

aj.ω jk(mod q) (7)

This transformation converts the polynomial from its coefficient representation to its
frequency representation.

Cryptography 2024, 8, 8 9 of 28

The inverse NTT transforms the frequency representation back to the coefficient
representation. It takes the values A(ω), A(ω)2, ..., A(ω)(n−1) and computes the coefficients
a0, a1, ..., an−1 using another formula given in (8).

aj = 1/n
n−1

∑
k=0

A(k).ω−jk(mod q) (8)

This transformation allows for the recovery of the original polynomial from its fre-
quency representation. In the context of fully homomorphic encryption schemes like CKKS,
the NTT is often used to perform efficient polynomial multiplications, which are crucial
for various homomorphic operations. The efficiency gains from the NTT contribute to the
practicality of homomorphic encryption in real-world applications.

3.6. KNN Algorithm

This approach for supervised machine learning can be applied to challenges related to
regression and classification. A new data point should be categorized based on the majority
class of the k-nearest data points, which may be found by using a distance metric to locate
the k-closest data points. This is the basic idea behind KNN.

When classifying a sample, the method first determines its unknown class by com-
paring it using a distance metric to the k samples in the training set that are the closest to
it. The majority class among these k-nearest neighbors is then assigned to the unknown
sample. The basic pseudocode for the KNN algorithm for classification is given in Section 5.

Given a dataset with labeled examples (xi, yi), xi represents the feature vector of the
ith data point and yi is the corresponding class label and a new data point Xu for which the
class label needs to be predicted.

Mathematically, the KNN algorithm for classification is given in (9).

ŷ = argmaxj

k

∑
i=1

I(yi = j) (9)

where

• ŷ is the predicted class label for the new data point Xu.
• k is the number of nearest neighbors to consider.
• yi is the class label of the ith nearest neighbor.
• I(.) is the indicator function, which equals 1 if the condition inside is true and

0 otherwise.
• argmaxj finds the class label with the highest count among the k-nearest neighbors.

The KNN algorithm can also be used for regression tasks, wherein the goal is to
predict a continuous target variable. In this case, the prediction for the new data point
Xu is calculated as the average (or weighted average) of the target values of its k-nearest
neighbors. The mathematical form for the regression equation is given in (10).

yu = 1/k
k

∑
i=1

yi (10)

where

• yu is the predicted target value for the new data point Xu.
• yi is the target value of the ith neighbor.

Theoretically, the data points used in KNN can be encrypted using CKKS, protecting
the privacy of the data while enabling the KNN algorithm to operate on it. However,
the massive datasets and real-time computations needed for useful machine learning
applications cannot be handled by the current implementation of CKKS due to its lack of

Cryptography 2024, 8, 8 10 of 28

efficiency. More research and development are needed to make CKKS more efficient and
practical for use in KNN and other machine learning algorithms.

4. Proposed Method

This section explains the overall design diagram of the proposed method that will be
simulated using FPGA.

4.1. System Architecture

Different modules of the proposed architecture are given in Figure 2 and the functions
of all the modules are as follows:

Figure 2. Proposed system architecture.

• The dataset for classification is transferred through the Ethernet interface of a Hard
Processor System (HPS). Received data by HPS are stored in BRAM (Block Random
Access Memory) inside FPGA for classification.

• The CKKS encryption module contains two sub-modules, an encoder, and an en-
cryption module. It reads the input dataset from BRAM and performs the encoding
operation. The encryption operation is applied to the encoded data and gives the
output as the encrypted text.

• The KNN classification module performs the classification operation on the encrypted
text and also on the plaintext. The input to the KNN module is controlled by MUX.
The encrypted text is chosen if the control signal is 1; otherwise, the plaintext is chosen.

• The CKKS decryption module takes the input as classified encrypted text. Two sub-
modules are included in it: one for decryption and the other for the decoder. The en-
crypted classified text is decrypted by the decryption module; then, it is decoded to
obtain the plaintext.

• The hard processor system (HPS) of the FPGA contains the controller and the compar-
ison module. The controller gives the control signal to the MUX, to select the input.
The comparison module compares two classified results. The KNN classification is
applied to the encrypted text in one instance, and to the plaintext in another. Finally,
the comparison result is stored in the BRAM.

Cryptography 2024, 8, 8 11 of 28

4.2. Design Architecture to Implement CKKS in Intel Agilex SoC FPGA

Figure 3 shows the design architecture to implement CKKS in FPGA. The dataset for
classification is transferred through the Ethernet interface of HPS (ARM processor) and
stored in a block RAM inside FPGA via AMBA-AXI Bus. BRAM1 and BRAM2 are used
in a ping-pong fashion to have a continuous flow of data. The CKKS-KNN block receives
the data and the complex data are converted into a real polynomial using a systolic array
based on QR decomposition for matrix inversion. Polynomial coefficients are encrypted to
apply the KNN algorithm. The distance calculation and sorting operation of KNN on the
encrypted data are also implemented in FPGA. The encrypted sorted data are decrypted
and decoded using matrix multiplication in FPGA. The final K clustering (voting) was
carried out in the software residing in HPS.

Figure 3. Design architecture to implement CKKS in Intel Agilex SoC FPGA.

In the subsequent sections, a detailed explanation of the CKKS module and KNN
classification module is given with the design diagram.

Different parameters, which are used in the CKKS FHE scheme, are tabulated in
Table 1.

Table 1. CKKS FHE parameters and their description.

Parameter Description

M Original Message
e Noise (Very small in magnitude)
P Plaintext (M + e)
∆ Scaling factor
q An integer coefficient modulus

f(x) A polynomial modulus
n Ring modulus
L Level of freshly encrypted ciphertext
ql Coefficient modulus at level l, where 1 ≤ l ≤ L
a A random polynomial sampled uniformly from RqL

Sk
Secret key sampled from a polynomial of degree “n” with coefficients in

{−1, 0, 1}
V Vadermonde matrix
m Polynomial modulus degree
d Number of datasets
N Size of the message after encoding

e1, e2
Small value compared to message and it is generated using Gaussian

distribution. It is in the field of qL.
u A sampled polynomial with coefficients in {−1, 0, 1}

4.3. FPGA-Based Architecture for the CKKS Method

The hardware architecture to speed up the CKKS FHE technique is presented in
this section. CKKS operates on a polynomial ring, using a technique called polynomial

Cryptography 2024, 8, 8 12 of 28

encoding. The plaintext data are represented as coefficients of a polynomial, and encryption
involves transforming these coefficients into a polynomial with encrypted coefficients.

The hardware design architecture for different blocks, as well as the NTT and INTT
for polynomial operations, evaluation of encrypted data, encoding, decoding, encryption,
and decryption, are addressed in the sections that follow.

The proposed FPGA-based architecture for the CKKS method, as shown in Figure 4,
is divided into three sub-modules. Key generation, encryption, and decryption are all
handled by separate blocks. The encoder block is included in the encryption module
and the decoder block is included in the decryption module. This section explains the
functioning of these modules.

Figure 4. FPGA-based architecture for the CKKS method.

For encryption operation in CKKS, we need a secret key Sk and two public keys
PK1 and PK2. The secret key Sk is generated by a sample polynomial generator with
coefficients in {−1, 0, 1}. A uniform random polynomial generator with coefficient modulus
qL generates the “a”, which is a random polynomial. The noise sampler generates the
noise “e” sampled from discrete Gaussian distribution χ. Two public keys PK1 and PK2,
which are two polynomials, are calculated as follows using a polynomial multiplier, adder,
and modulus modules given in (11) and (12), respectively.

PK1 = (−a ∗ Sk + e) mod qL (11)

PK2 = a (12)

To encrypt a plaintext message P, i.e., (M + e), three random polynomials u, e1, and e2
are generated. Ciphertexts C = (C1, C2) are generated as given in (13) and (14), respectively.

C1 = (PK1 ∗ u + e1 + M) mod ql (13)

C2 = (PK2 ∗ u + e2) mod ql (14)

The polynomial adder, multiplication, and modular reduction modules perform addi-
tion, multiplication, and modular operations, respectively.

Decryption is performed by evaluating the input ciphertext in level l on the secret key
to generate an approximate value of the plaintext message as given in (15).

M̄ = (C1 + C2 ∗ Sk) mod ql (15)

Cryptography 2024, 8, 8 13 of 28

This approximate value is decoded to obtain the original message.

4.4. Design Diagram for Encoder and Decoder

Encoding and decoding operation in CKKS involves matrix inversion. Here, FPGA-
friendly QR decomposition is used for matrix inversion. Figure 5 shows the block diagram
for QR decomposition and back substitution. The CKKS-KNN block receives the data
and the complex data are converted into a real polynomial using a systolic array based
on QR decomposition for matrix inversion. The systolic array to find the inverse of the
64 × 64 matrix is shown in Figure 6. In the context of a systolic array, each processing
element (PE) is responsible for computing a part of the QR decomposition. Each processing
element in the systolic array can be designed to handle polynomial computations, such as
multiplication, addition, and other operations required during the matrix inversion process.
The working concept of each processing element is shown in Figure 7 and explained below.

The QR decomposition algorithm [37] is first used to transform the Vadermonde
matrix V into an upper triangular matrix R (N × N matrix) and the vector M into another
vector u, as shown in (16) and (17). The coefficient vector P is computed using a procedure
called back substitution (18) and (19). Table 2 gives the details of logic utilization for QR
decomposition when it is implemented on Agilex7 FPGA (AGFB014R24B2E2V).

VP = M (16)

RP = u (17)

PN = uN/RNN (18)

Pi = 1/Rii(ui −
N

∑
j=i+1

RijPj); i = N − 1, ..., 1 (19)

Figure 5. QR decomposition and back substitution block diagram.

Figure 6. Systolic array to find the inverse of 64 × 64 matrix.

Cryptography 2024, 8, 8 14 of 28

Table 2. FPGA resource utilization of CKKS encoder/decoder.

Family Agilex7 FPGA
Device AGFB014R24B2E2V

LUT (ALMs) 69,228
Block memory (in bits) 557,136

DSP Block 72

Figure 7. Vectoring mode and rotation mode of QR decomposition.

The vectoring operation converts rectangular coordinates into polar coordinates.
The rotating block rotates any complex number by θ degrees. The oval-shaped block
of the systolic array represents the vectoring block and the rectangular block represents the
rotation block for QR decomposition.

4.5. Design Diagram for Number Theoretic Transform

The design diagram for NTT from our previous work [15] is shown in Figure 8.
The entire data stream is split into three blocks, as seen in the figure. The Butterfly Unit, Bit
Reverse Block, and Dual-Port Memory are these blocks. The entered data are simply saved
in the dual-port memory. That keeps all n coefficients of the polynomial. It is easier to
read and write simultaneously with this dual-port memory, which facilitates our proposed
architecture’s pipeline structure.

The two input and output data buses of this dual port memory are represented by the
upper and lower data paths of the butterfly unit. It can handle two readings and two writes
in a cycle. Both modular addition and modular multiplication are handled by the butterfly
unit. The Butterfly computation is then carried out by providing the dual-port memory
with the output of the Butterfly unit. The bit reverse block ultimately executes a bit reverse
operation to reverse the bits of the NTT operation output since the input values are in
natural order while the index of NTT values is in bit reverse order.

Figure 8. Design diagram for number theoretic transform.

Cryptography 2024, 8, 8 15 of 28

4.6. Design Diagram for KNN Classifier Module

In this proposed design, the KNN classifier module is divided into four submodules.
These submodules are normalization, calculating the distance, sorting the calculated dis-
tance, and assigning the classes. The detailed internal architecture is explained here with
the diagram.

4.6.1. Normalization Process

Normalization is an important step in KNN classification before calculating the dis-
tance. Since the dataset contains values of different ranges and magnitudes, the normaliza-
tion process is applied to make the features of data points a similar range. To perform this,
we selected the MIN-MAX normalization process. This method will scale the features of
data points within the range of 0–1 using the following formula given in (20):

Xnorm = X−min(X)/(max(X)−min(X)) (20)

where X is the original value of the feature, min(X) is the minimum value of the feature
from the dataset, max(X) is the maximum value of the feature from the dataset, and Xnorm
is the new normalized value of X in the range 0–1.

The circuit diagram to find the max and min values from the array of vectors is shown
in Figure 9.

Figure 9. Finding maximum/minimum values from array of vectors.

The array of vectors is stored in the BRAM. Initially, register2 contains a minimum
value of 0 as the first element for A. One element is read from BRAM and stored in register1.
It is assigned to B. The comparator circuit will compare A and B; if A > B, then the output
is 1; otherwise, it is 0. If it is 1, then register2 contents will not change. Otherwise, B’s value
will be stored in register2. This process will continue until all the elements are compared.
Finally, the contents of register2 will be the maximum value. The final max value will be
stored in the D flip-flop.

To find the minimum element from the array, register2 will be initialized with a large
value. When A < B, the comparator will give the output as 1; otherwise, it will be 0. If it is
0, then B’s value will be stored in register2. Repeat the process until all the elements are
compared. In the end, the minimum element will be in register2 and will be transferred to
D flip flop.

The comparison operations are given in (21) and (22).

GT(A, B) =

{
1, if A > B;
0, otherwise

(21)

Cryptography 2024, 8, 8 16 of 28

LT(A, B) =

{
1, if A < B;
0, otherwise

(22)

4.6.2. Novel Hardware Architecture for KNN Classification

The KNN classification hardware architecture computes the distance and sorting of dis-
tances in FPGA. The voting and classification are performed in HPS software. The hardware
architecture diagram is shown in Figure 10.

Figure 10. Hardware architecture for KNN classification.

The next step in KNN classification is calculating the distance between training data
and test data. There are different distance calculation algorithms commonly used in
KNN classification such as Euclidean distance, Manhattan distance, Minkowski distance,
and Cosine similarity.

In this work, the Euclidean distance method is used to calculate the distance. The Eu-
clidean distance formulae are shown in (23).

D(X, Y) =
N

∑
i=1
|Xi −Yi|2 (23)

BRAMX contains the training dataset, and BRAMY contains the testing dataset.
The subtractor module finds the value of Xi −Yi. The output of the MUX will be a mod of
Xi −Yi, i.e., |Xi −Yi|. A multiplier is used to find the square of this value. We have used the
squared distance instead of the square root for distance calculations. Since the computation
of the square root on encrypted data is more complex, the calculated distances are sorted
using a bitonic sorting algorithm.

Bitonic sorting [38] is a parallel sorting algorithm that was designed to efficiently sort
sequences in a parallel processing environment. Bitonic sorting is particularly suitable for

Cryptography 2024, 8, 8 17 of 28

parallel architectures like systolic arrays and other parallel computing systems. The al-
gorithm works by recursively building a bitonic sequence and then repeatedly sorting
the sequence in a bitonic manner until the entire sequence is sorted. Figure 11 shows
the structure of a bitonic sorting network for a dataset of 512 values. The first step is
repeatedly dividing the sequence into two halves and sorting each half in a bitonic manner.
After constructing a bitonic sequence, the algorithm performs bitonic merges to sort the
entire sequence. The bitonic merge step is repeated until the entire sequence becomes
sorted. The number of stages required to sort 512 data values is log2512 = 9. The RTL view
of bitonic sort in FPGA is shown in Figure 12. The FPGA resource utilization of the bitonic
sort is presented in Table 3.

Figure 11. Bitonic sorting network for 512 data values.

Figure 12. FPGA simulation of bitonic sorting for 512 data values.

Table 3. FPGA resource utilization of bitonic sorting.

Family Agilex7 FPGA
Device AGFB014R24B2E2V

LUT (ALMs) 268,560
Logic Register 410,400

Cryptography 2024, 8, 8 18 of 28

5. Algorithm

This section gives the step-by-step process of performing all the operations in the
form of the algorithms. The pseudo-code for the KNN classification algorithm is given in
Algorithm 1. The breast cancer dataset is used as input to predict whether the cancer is
benign or malignant. It gives the class label as benign or malignant for a new data point
depending on the K neighbors.

Algorithm 1 KNN Algorithm for Classification

Input: Given a dataset with labeled data points: D = (x1, y1), (x2, y2), ..., (xn, yn), where xi
represents the feature vector of the ith data point and yi is its corresponding class label.

Output: Prediction of the class label for the given data point Xu.
1: Compute the distance between the new data point Xu and every data point in the

training dataset. The commonly used distance metric is Euclidean distance given
in (23).

2: Sort the distances in ascending order and select the K data points (k neighbors) with
the smallest distances to Xu.

3: Count the occurrences of each class label among the k neighbors.
4: Assign the class label that occurs most frequently as the predicted class label for the

new data point Xu.
5: return Class Label

The secret key and the public key generation steps are shown in Algorithm 2. The input
parameter n is the ring modulus, q is the coefficient modulus, and it is a power of 2.

Algorithm 2 Algorithm for CKKSKeyGeneration

Input: n, q, qL, χ
Output: Sk, PK1, PK2

Initialization: Here, the parameters n, q, qL selected based on the security parameter λ
and q, qL, n are the powers of 2. L is the level of recently encrypted ciphertext. Each
level is associated with a coefficient modulus ql .

1: Secret key Sk is a polynomial of degree n with coefficients in {−1, 0, 1}
Sk ← {−1, 0, 1}n

2: Public key PK is a pair of polynomials (PK1, PK2)
PK = (PK1, PK2)

3: e← χ
4: PK2 = a← RqL
5: PK1 ← (<− a ∗ Sk>+ e) mod qL
6: return Secret key Sk, Public Key PK = (PK1, PK2)

Algorithm 3 shows the steps for encoding the original message into real values.
The input will be a n/2 vector of complex numbers and it will be expanded by adding its
complex conjugate. Then, it will be multiplied by the scaling factor ∆. The output will be a
single plaintext P.

Algorithm 3 Algorithm for CKKSEncoder

Input: n/2 vector of complex numbers Z ∈ Cn/2

Output: A single plaintext P ∈ R
1: Expands a vector of complex numbers Cn/2 by expanding it with its complex conjugate.

It is denoted as π−1Z.
2: Multiply it by ∆ for precision.
3: return P = ENCODE(Z, ∆) = ⌊∆ ∗ π−1Z⌉

Algorithm 4 shows the steps for decoding to obtain the original message back. In this
step, it will be divided by the scaling factor ∆.

Cryptography 2024, 8, 8 19 of 28

The encryption algorithm is given in Algorithm 5. The output of the Algorithm 3
is the input for this algorithm as plaintext and the public key generated by Algorithm 2.
The output will be a pair of ciphertexts.

Algorithm 4 Algorithm for CKKSDecoder

Input: A single plaintext P ∈ R
Output: n/2 vector of complex numbers Z ∈ Cn/2

1: Z = DECODE(P, ∆) = π(1/∆ ∗ P)
2: return Z

Algorithm 5 Algorithm for CKKSEncryption

Input: Plaintext P which is the encoded form of the original message M, public key PK,
three sample random polynomials u, e1, e2.

Output: Ciphertext C ← (C1, C2)
Initialization: The plaintext P ∈ Rql will be encrypted using the public key (PK1, PK2),
a sample vector u← {−1, 0, 1}n, and e1, e2 ← χ.

1: C1 ← {(PK1.u + e1 + P)}mod ql .
2: C2 ← {(PK2.u + e2)}mod ql .
3: return ciphertext C ← (C1, C2)

The decryption algorithm is given in Algorithm 6. The evaluation algorithm for
performing different operations on the ciphertext is given in Algorithm 7.

Algorithm 6 Algorithm for CKKSDecryption

Input: C, Sk
Output: Plaintext P

1: P← {(C1 + C2.Sk)}mod ql .
2: return Plaintext P

Algorithm 7 Algorithm for Evaluation

Input: The cipher-texts CT1, CT2
Output: Evaluated output

Initialization: Operations on the cipher-texts
1: Homomorphic Addition:
2: EvalAdd (CT1,CT2) = ((CT11 + CT21) mod ql , (CT12 + CT22) mod ql) = (CT31, CT32)

= CT3
3: return CT3

6. Implementation

This section gives the implementation details of the proposed method. Initially,
the CKKS scheme and KNN algorithm are implemented in Python. The computational
time is calculated. To program the Agilex7 FPGA, VHDL language is used. Both the CKKS
scheme and KNN algorithm are simulated using Agilex7 FPGA. The KNN classification
algorithm is applied both on plaintext and ciphertext. The details of the datasets and
simulation results are given in Section 7.

The length of the original message M is 32. For encoding to real coefficients, the
message has to be replicated twice with its complex conjugate values N = 64. This process
is called canonical embedding. Therefore, the size of the data matrix P after encoding is
64 × 1. The size of the Vadermonde Matrix V used for encoding is 64 × 64. To encrypt the
encoded message P, a secret key Sk, and a public key PK(PK1, PK2) are generated, each of
size 64.

After encryption, the ciphertext C(C1, C2) is generated whose size is (64,64). The size
of the polynomial modulus degree m is 64.

Cryptography 2024, 8, 8 20 of 28

Implementation on FPGA Platform

To validate the above claim, the Agilex7 FPGA board from Intel is used.
The board has the following FPGA (Intel Agilex 7 FPGA, AGFB027R24C2E2V) components:

• 2,692,760 Logic Elements (LE).
• 912,800 Adaptive Logic Elements (ALM).
• 13,272 M20K Blocks.
• 45,640 MLABs.
• 8528 DSP Blocks.
• 17,056 18 × 19 Multipliers.
• 744 GPIOs.
• 372 LVDS.

All the CKKS operations such as encoding, encryption, decoding, and decryption of
the dataset, and the distance calculation of KNN, are implemented in FPGA as per the
diagrams given in Figures 4 and 10. The libraries, called IP blocks in platform designer
of Quartus tools of Intel, such as multipliers, DSP block, memory(RAM, ROM), dual port
RAM, and FIFO, are used. We designed a partitioned dataset to 32 groups and paralleled
the CKKS, but the distance calculation of KNN is performed on all of the data. The details of
hardware realizations with utilization of multipliers, LUTs (Lookup Table), ALM, and speed
performance with a max clock frequency of operation were tabulated. These results are
given in Section 7.

7. Result and Discussion

To test the proposed design model, a breast cancer dataset is used as input to predict
whether the cancer is benign or malignant. This dataset is taken from the breast cancer Wis-
consin (diagnostic) dataset and can also be found in the UCI machine learning repository. It
contains 30 features computed from a digitized image of a breast mass. The dataset contains
569 entries. Each sample contains the following attributes: (1) Patient id, (2) Radius_mean,
(3) Texture_mean, (4) Perimeter_mean, (5) Area_mean, (6) Smoothness_mean, (7) Com-
pactness_mean, (8) Concavity_mean, (9) Concave points_mean, (10) Symmetry_mean,
(11) Fractal_dimension_mean, etc. All the attribute values are real numbers except the
patient ID. We have labeled malignant (M) as “0” and benign (B) as “1”. This dataset
contains 37.26% patient diagnoses labeled as malignant and 62.74% patient diagnoses
labeled as benign.

The KNN algorithm is applied to classify this dataset for different K values and the
percentage of accuracy is calculated. The dataset is encrypted using the CKKS method
and KNN classification is applied to the encrypted data. The percentage of accuracy is
calculated. Both the results are tabulated and shown in Table 4.

Table 4. Percentage of accuracy for different K values.

K Value Accuracy in %Age (Without Encryption) Accuracy in %Age (With Encryption)

3 91.23 64
5 93.86 65
7 94.74 68
8 94.74 63

10 94.74 66
11 96.49 68
13 96.49 74
14 96.49 75
21 96.49 75
40 95.61 75
120 90.35 77
242 82.46 71

Cryptography 2024, 8, 8 21 of 28

7.1. Computational Complexity

The computational complexity is calculated for the proposed model for CKKS oper-
ation and KNN is applied on encrypted data for classification. A detailed description is
given in the following subsections.

7.1.1. CKKS Operation

CKKS encryption involves additional computation of encoding complex numbers to
real coefficient polynomials, which involves matrix inversion. The polynomial multiplica-
tions consume maximum resources, mainly the number of multipliers. The computational
complexity of the CKKS method is calculated for different operations such as Encoding,
Key generation, Encryption, Decryption, and Decoding. This computational complexity is
calculated concerning the number of multiplications, additions, polynomial multiplications,
and memory storage for different operations of CKKS. This computational complexity is
shown in Table 5.

Here, NTT(Sk) can be pre-computed and stored to reduce the number of multiplica-
tions. Therefore, the number of polynomial multiplications is reduced to 2n× log2n in
place of 3n× log2n.

Table 5. Computational complexity of CKKS.

Encoding Key Generation Encryption Decryption Decoding

Data Dimension 64 × 1 64, (64,64) (64,64) 64 × 1 64 × 1

Operation P = V−1M Sk,Pk (Pk1, Pk2) C = (C1, C2) P = C1 + C2 ∗ Sk M = VP

Multiplication d× (m×m) d×m d×m, d×m d×m d × (m×m)

Addition d × (m×m) d×m d× 2m, d×m d×m d × (m×m)

Polynomial
Multiplication 0 d× 2m× log2m∗ d× 3m× log2m,

d× 3m× log2m d× 2m× log2m 0

Memory Storage 570× 64× 16b 570× 64× 16b,
570 × 64× 16b

570 × 64× 52b,
570 × 64× 52b 570 × 64× 52b 570 × 64× 16b

7.1.2. KNN on Ciphertext

Table 6 shows the computational complexity for calculating the distance on ciphertext
concerning the number of multiplication, addition, and memory storage.

Table 6. Computational complexity of applying KNN on encrypted data.

Distance Calculation ∑m,d
i=1,j=1(Cij − CTij)

2

Multiplication d×m
Addition d× 2m

Memory Storage 570 × 52b

7.2. FPGA Resource Utilization

In FPGA, mathematical computations can be conducted sequentially or in parallel.
Sequential operation takes less resources but it takes more time. On the contrary, parallel
schemes utilize more resources with faster computation. Figure 13 shows the single-channel
diagram for implementing the proposed CKKS-KNN model in FPGA. The input to the
model is the dataset which contains 570 patient data elements with 32 attributes (570× 32).
In this work, the single-channel CKKS-KNN is implemented in FPGA. The resource utiliza-
tion and computational time of a single channel were carried out. However, we proposed a
32-channel CKKS-KNN which can be implemented in a larger FPGA available from Intel.

Cryptography 2024, 8, 8 22 of 28

Figure 13. Single-channel CKKS-KNN.

For a typical sequential implantation scheme, the utilization of Logical resources
such as LUTs, the number of dedicated registers, block memory, RAM blocks, DSP blocks,
and frequency required for all the operations are tabulated and given in Table 7.

Table 7. FPGA resource utilization of single-channel CKKS-KNN in Intel Agilex FPGA.

Operation LUT (ALMs) No. of Dedicated Registers Block Memory (in Bits) RAM Blocks DSP Blocks Fmax

Encoding 69,228 0 557,136 0 72 196 MHZ
Encryption 87,912 110,028 479,232 288 960 196 MHZ

KNN 268,560 410,400 29,640 48 160 196 MHZ
Decryption 29,304 36,676 159,744 96 320 196 MHZ
Decoding 69,228 0 557,136 0 72 196 MHZ

The design partition of CKKS-KNN in 32 parallel channels each for 18 data elements
to speed up the computation is shown in Figure 14.

Figure 14. The 32-channel CKKS-KNN.

Table 8 details the resource utilization summary of 32-channel implementation in FPGA.
Each channel caters to the encryption and decryption of 18 data elements, i.e., a total of
18× 32 = 570. After the 32 parallel encryption, the classification is carried out over 570 data
elements. Then, 32 parallel decryption is carried out. The utilization of LE, ALM, and DSP
blocks is increased by 32 times but the memory utilization remains the same.

Table 8. FPGA resource utilization of 32-channel CKKS-KNN in intel Agilex FPGA.

Operation LUT (ALMs) No. of Dedicated Registers Block Memory (in Bits) RAM Blocks DSP Blocks Fmax

Encoding 2,215,296 0 17,828,352 0 2304 300 MHZ
Encryption 2,813,184 3,520,896 479,232 288 30,720 300 MHZ

KNN 268,560 410,400 29,640 48 160 300 MHZ
Decryption 937,728 1,173,632 159,744 96 10,240 300 MHZ
Decoding 2,215,296 0 17,828,352 0 2304 300 MHZ

The resource utilization of FPGA for plaintext KNN is tabulated in Table 9.

Cryptography 2024, 8, 8 23 of 28

Table 9. FPGA resource utilization of plaintext KNN in Intel Agilex FPGA.

Operation LUT (ALMs) No. of Dedicated Registers Block Memory (in Bits) RAM Blocks DSP Blocks Fmax

Max Cal-
culation 0 12,348 0 0 0 350 MHZ

Min Calcu-
lation 0 12,345 0 0 0 350 MHZ

Distance 0 26,392 18,240 4 8 350 MHZ
Decision 0 1231 3400 0 0 350 MHZ

7.3. Computational Time, Latency, and Throughput

The computational time is calculated in milliseconds (41.726 ms) and the latency in
milliseconds for all the operations such as encoding, key generation, encryption, KNN
on ciphertext, decryption, and decoding. Table 10 summarizes the computation time
and memory usage for the calculation of Latency, for the single-channel CKKS-KNN.

Table 10. Calculation of latency and computational speed for the single-channel CKKS-KNN.

Encoding Key
Generation Encryption KNN Decryption Decoding

Computational
Time (ms) 18.67 0.819 2.311 0.437 0.819 18.67

Latency (ms) 0.146 0.291 0.583 0.146 0.146 0.146

Table 11 summarizes the computational time and latency for plaintext KNN in Intel
Agilex FPGA.

Table 11. Calculation of latency and computational time for plaintext KNN.

Max Calculation Min Calculation Distance Decision

Computational
Time (µs) 54.88 54.88 174 235

Latency (µs) 1.624 1.624 2.57 5.6

The computation time of the 32-channel parallel scheme is given in (24).

CTp =
CTs

Nch
∗ fs

fp
(24)

where CTp is the computation time of parallel architecture, CTs is the computation time
of a single channel, Nch is the number of channels, fs is the clock speed of the single
channel, and fp is the clock speed of the parallel channel. The parallel computational time
of CKKS-KNN is 0.85 ms.

The summary of computational time for single-channel CKKS-KNN, 32-channel CKKS-
KNN, and plaintext KNN in FPGA implementation is tabulated in Table 12.

Table 12. Summary of computational time.

Single-Channel CKKS-KNN 32-Channel CKKS-KNN Plain Text-KNN

41.72 ms 0.85 ms 0.518 ms

Cryptography 2024, 8, 8 24 of 28

7.4. Comparison with State-of-the-Art Research

CKKS-KNN is implemented in Agilex7 FPGA. In the literature [39,40], CKKS homo-
morphic encryption is implemented in Xilinx Virtex Ultrascale FPGA. The comparison is
not easy due to the following differences:

• FPGAs are from different make (Intel and Xilinx).
• CKKS applied on machine learning algorithm only vis-a-vis CKKS encryption

and decryption.

To conduct the comparison, the resource utilized by KNN is excluded. It is assumed
that LUT, FF of Xilinx Vertex-Ultrascale FPGA is similar to ALM and dedicated registers
of Intel Agilex FPGA. The hardware resource utilization of the proposed work is com-
pared with the state-of-the-art research [39,40] and the summary is shown in Table 13.
The comparison in Table 13 is conducted using the following parameters: N (length of the
polynomial), LUT, No. of Registers, BRAM, DSP blocks, Frequency, and Latency.

It is observed that the main resource-consuming block of encryption and decryption is
the polynomial multiplier and the length of the polynomial. The polynomial length in [39]
is 214 and in [40] it is 216. In this work, the polynomial length is 26 due to the features of
the dataset. It is found that the resource utilization of the CKKS (single-channel) of the
proposed work is lesser compared to the CKKS of [39,40]. However, for 32-channel CKKS,
the resource utilization is higher.

Since the encoder/decoder (matrix inversion) and bitonic sort for KNN are imple-
mented in FPGA, the suggested architecture’s logic utilization to implement the whole
CKKS-KNN over 570 × 32 datasets is greater. Moreover, 32-channel CKKS-KNN con-
sumes more logic resources to accelerate the execution comparable to KNN calculation on
plaintext. The frequency achieved for 32-channel CKKS-KNN is 300 MHZ, which is faster
compared to the 196 MHZ of single-channel and 250 MHZ of [39,40].

Table 13. Comparison of FPGA resource utilization of CKKS-KNN in Intel Agilex FPGA for encryp-
tion and decryption operation.

Operation Related Work Device N LUT No. of
Registers BRAM DSP

Blocks
Frequency

(MHZ)
Latency

(ms)

Encryption

[39] 2023 Xilinx Virtex Ultrascale
XCU250 FPGA 214 883 K 897 K 1563 6042 250 0.1021

[40] 2023 Xilinx Virtex Ultrascale
XCU250 FPGA 216 1179 K 1036 K 828.5 12,288 250 16.869

Proposed Work
(Single Channel) Agilex7 FPGA 26 87.9 K 110.028 K 288 960 196 0.583

Proposed Work
(32 Channel) Agilex7 FPGA 26 2813.184 K 3520.896 K 288 30,720 300 0.018

Decryption

[40] 2023 Xilinx Virtex Ultrascale
XCU250 FPGA 216 10.7K 6.9K 3 133 250 3.937

Proposed Work
(Single Channel) Agilex7 FPGA 26 29.3 K 36.6 K 96 320 196 0.146

Proposed Work
(32 Channel) Agilex7 FPGA 26 937.728 K 1173.632 K 96 10,240 300 0.0045

NTT-based polynomial multiplications for FPGA implementation have been published
in [15,41,42] to speed up the encryption and decryption process. Polynomial multiplication
is a computationally demanding technique that is frequently employed in homomorphic
encryption and decryption operations.

The FPGA used in [41] is Zynq Ultrascale+ and Virtrex 7 is used in [42]. We have used
Agilex 7 FPGA in our previous work [15] and in this current work. However, an attempt
has been made to compare logic utilization and latency. The state of the art for polynomial
multiplication using NTT is given in Table 14 for the polynomial length N = 1024.

It is observed that the logic utilization and latency of similar-length polynomials are
of the same order. The logic utilization of the proposed NTT utilizes fewer LUT and DSP
resources compared to [41,42]. The proposed NTT-based polynomial uses a single butter-fly
taking the time of 19.76 µs compared to 27.71 µs of [41] and 2.6 µs of [42]. The LUT used

Cryptography 2024, 8, 8 25 of 28

for NTT in [41] is 4.4 times more and the LUT used for NTT in [42] is 14.2 times more
compared to this current work.

Table 14. Comparison of NTT performance.

Related Work Device N LUT No. of Dedicated
Registers BRAM DSP Blocks Frequency

(MHZ)
Latency

(µs)

[41] 2023 Zynq
Ultrascale+ 1024 3168 1440 19.5 42 185 27.71

[42] 2022 Virtex 7 1024 10,272 6704 87 80 250 2.60
Proposed Work Agilex 7 1024 720 1159 96 3 259 19.76

Since the butter-fly consumes less LUT in the proposed work, it requires more memory
to store. Therefore, the BRAM used here is 96 compared to 87 in [42] and 19.5 in [41].
The number of DSP blocks used in [41] is 14 times higher and in [42] it is 26.6 times higher
compared to the proposed work. The frequency achieved here is 259 MHZ, which is faster
compared to 250 MHZ in [42] and 185 MHZ in [41].

Throughput for Single and Parallel Channel

The throughput is calculated using the formulae given in (25).

TPs =
1

CTs
∗ DS (25)

where TPs is the throughput for a single channel, CTs is the computation time for a single
channel, and DS is the data size to be sent during the computation time. The throughput is
6.99 Gbits/s per single and 280 Gbits/s for the parallel channel.

8. Conclusions

In this work, FPGA-based programmable logic architecture is designed to implement
the KNN algorithm on an encrypted training dataset using the CKKS fully homomorphic
encryption scheme. For this experiment, a dataset consisting of 570 numbers of patients
with 32 attributes is used to compare the KNN on encrypted data for the execution in the
cloud and the plaintext KNN. We implemented a flexible design architecture where one
can choose the fully serial, fully parallel, and mix-serial and parallel architecture to meet
the real-time execution of KNN on encrypted data in a cloud computing environment.
Specifically, the logic resources, latency, execution time, and throughput of computation are
calculated. The throughput of the system is 6.99 Gbits/s. The time execution of KNN on
plaintext (570× 32) was taken as a reference and, using the new programmable architecture,
one can achieve the speed of execution in a similar order of KNN in FPGA. For the FPGA
implementation, we used the Intel Agilex7 FPGA (AGFB014R24B2E2V) development
board and validated the speed of computation, latency, throughput, and logic utilization.
The KNN on encrypted data (computational time of 41.72 ms) is 80 times slower than the
KNN on plaintext (computational time of 0.518 ms). The main computation time for CKKS
FHE schemes is 41.72 ms. In this work, the single-channel CKKS-KNN is implemented in
FPGA. The resource utilization and computational time of a single channel were carried
out. However, we proposed a 32-channel CKKS-KNN which can be implemented in a
larger FPGA available from Intel. With the proposed architecture of 32-channel parallel
encryption hardware and achieving 300 MHz speed, we could make the computational
time of CKKS-based KNN 0.85 ms. Resource utilization and speed are easily achieved in
Intel Agilex FPGA of higher density.

After extensive simulation in Python and implementation in FPGA, it is evident
that, with the proposed architecture with 32 parallel channels and enhancing the clock
performance from 196 MHz to 300 MHz, i.e., by 1.5 times, the computational time has been

Cryptography 2024, 8, 8 26 of 28

brought down to 1/40 of CKKS-KNN (0.85 ms) on encrypted data to a realistic value in the
order of the KNN classification algorithm over plaintext (0.518 ms).

9. Future Work

In future work, it is planned to develop new architectures of FHE encryption to
implement in Intel FPGA for different machine and deep learning algorithms. Furthermore,
a demonstration of the FHE framework for cloud and edge computation on Intel Agilex Dev.
Board is planned. As the FHE is a recent field, it has tremendous potential for theoretical
research to develop new algorithms. Our future work will be dedicated to developing new
hardware architectures for new FHE schemes and to improve the computation speed and
implementation in re-configurable hardware such as FPGA.

Author Contributions: Conceptualization, methodology, software, validation, formal analysis, inves-
tigation, resources, data curation, writing, original draft preparation, S.B.; writing, review, and editing,
J.R.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: In this research work, a breast cancer dataset is used. Here is the
publicly available link: https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data?
resource=download (accessed on 20 February 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Gentry, C. A Fully Homomorphic Encryption Scheme. Ph.D. Thesis, Stanford University. Available online: https://crypto.

stanford.edu/craig/ (accessed on 20 February 2024).
2. Fan, J.; Vercauteren, F. Somewhat Practical Fully Homomorphic Encryption. Cryptology ePrint Archive, Paper 2012/144, 2012.

Available online: https://eprint.iacr.org/2012/144 (accessed on 20 February 2024).
3. Zvika, B.; Craig, G.; Vinod, V. (Leveled) fully homomorphic encryption without bootstrapping. ACM Trans. Comput. Theory

(TOCT) 2014, 6, 1–36.
4. Ilaria, C.; Nicolas, G.; Mariya, G.; Malika, I. TFHE: Fast fully homomorphic encryption over the torus. J. Cryptol. 2020, 33, 34–91.
5. Zvika, B.; Vinod, V. Efficient fully homomorphic encryption from (standard) lwe. SIAM J. Comput. 2014, 43, 831–871.
6. Zvika, B. Fully homomorphic encryption without modulus switching from classical GapSVP. In Proceedings of the Advances in

Cryptology-CRYPTO 2012, 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, 19–23 August 2012; pp. 868–886.
7. Zvika, B.; Vinod, V. Lattice-based FHE as secure as PKE. In Proceedings of the 5th Conference on Innovations in Theoretical

Computer Science, Princeton, NJ, USA, 12–14 January 2014; pp. 1–12.
8. Zvika, B.; Vinod, V. Fully homomorphic encryption from ring-LWE and security for key dependent messages. In Proceedings of

the Annual Cryptology Conference, Santa Barbara, CA, USA, 14–18 August 2011; pp. 505–524.
9. Majedah, A.; Liu, H.; Washington, C. Homomorphic encryption algorithms and schemes for secure computations in the

cloud. In Proceedings of the 2016 International Conference on Secure Computing and Technology, Washington, DC, USA,
4–5 November 2016.

10. Craig, G. Fully homomorphic encryption using ideal lattices. In Proceedings of the Forty-First Annual ACM Symposium on
Theory of Computing, Bethesda, MD, USA, 31 May–2 June 2009; pp. 169–178.

11. Craig, G.; Halevi, S.; Smart, N.P. Better bootstrapping in fully homomorphic encryption. In Proceedings of the International
Workshop on Public Key Cryptography, Berlin/Heidelberg, Germany, 21 May 2012; pp. 1–16.

12. Mohsin, M.A.; Darshika, G.P. An FPGA-based hardware accelerator for K-nearest neighbor classification for machine learning
on mobile devices. In Proceedings of the 9th International Symposium on Highly-Efficient Accelerators and Reconfigurable
Technologies, Toronto, ON, Canada, 20–22 June 2018; pp. 1–7.

13. Abedalmuhdi, A.; Ayyad, W.R.; Jarrah, A. Optimized implementation of an improved KNN classification algorithm using Intel
FPGA platform: Covid-19 case study. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 3815–3827.

14. David, M.; Luis, C.; Neil, G. A modified KNN algorithm for high-performance computing on FPGA of real-time m-qam
demodulators. Electronics 2021, 10, 627.

15. Sagarika, B.; Rani, P.J. Design of Novel Hardware Architecture for Fully Homomorphic Encryption Algorithms in FPGA for
Real-Time Data in Cloud Computing. IEEE Access 2022, 10, 131406–131418.

16. Behera, S.; Prathuri, J.R. FPGA-Based Design Architecture for Fast LWE Fully Homomorphic Encryption. In Proceedings of the
Cyber Security and Digital Forensics: Proceedings of ICCSDF 2021, Springer, The NorthCap University, Gurugram, Haryana,
India, 3–4 April 2021; pp. 575–584.

https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data?resource=download
https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data?resource=download
https://crypto.stanford.edu/craig/
https://crypto.stanford.edu/craig/
https://eprint.iacr.org/2012/144

Cryptography 2024, 8, 8 27 of 28

17. Agrawal, R.; de Castro, L.; Yang, G.; Juvekar, C.; Yazicigil, R.; Chandrakasan, A.; Vaikuntanathan, V.; Joshi, A. FAB: An FPGA-
based accelerator for bootstrappable fully homomorphic encryption. In Proceedings of the IEEE International Symposium on
High-Performance Computer Architecture (HPCA), Montreal, QC, Canada, 25 February–1 March 2023; pp. 882–895.

18. Lee, J.W.; Kang, H.; Lee, Y.; Choi, W.; Eom, J.; Deryabin, M.; Lee, E.; Lee, J.; Yoo, D.; Kim, Y.S.; et al. Privacy-preserving machine
learning with fully homomorphic encryption for deep neural network. IEEE Access 2022, 10, 30039–30054.

19. Yogachandran, R. Privacy-preserving similarity calculation of speaker features using fully homomorphic encryption. arXiv 2022,
arXiv:2202.07994.

20. Al Badawi, A.; Louie, H.; Fook, M.C.; Kim, L.; Mi, A.K.M. Privft: Private and fast text classification with homomorphic encryption.
IEEE Access 2020, 8, 226544–226556.

21. Behera, S.; Prathuri, J.R. Application of homomorphic encryption in machine learning. In Proceedings of the 2020 2nd Ph.D.
Colloquium on Ethically Driven Innovation and Technology for Society (Ph.D. EDITS), IEEE, Bangalore, India, 8 November 2020;
pp. 1–2.

22. Haokun, F.; Quan, Q. Privacy-preserving machine learning with homomorphic encryption and federated learning. Future Int.
2021, 13, 94.

23. Behera, S.; Rekha, B.; Pandey, P.; Vidya, B.; Prathuri, J.R. Preserving the Privacy of Medical Data using Homomorphic Encryption
and Prediction of Heart Disease using K-Nearest Neighbor. In Proceedings of the 2022 IEEE International Conference on Data
Science and Information System (ICDSIS), IEEE, Malnad College of Engineering, Hassan, India, 29–30 July 2022; pp. 1–6.

24. Nikola, S. Making Computation on Encrypted Data Practical through Hardware Acceleration of Fully Homomorphic Encryption.
Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2022.

25. Nikola, S.; Axel, F.; Aleksandar, K.; Srinivas, D.; Ronald, D.; Christopher, P.; Daniel, S. F1: A fast and programmable accelerator
for fully homomorphic encryption. In Proceedings of the MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, Athens, Greece, 18–22 October 2021; pp. 238–252.

26. Sadegh, R.M.; Kim, L.; Blake, P.; Wei, D. HEAX: An architecture for computing on encrypted data. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems, Lausanne,
Switzerland, 16–20 March 2020; pp. 1295–1309.

27. Lei, J.; Qian, L.; Nrushad, J. Matcha: A fast and energy-efficient accelerator for fully homomorphic encryption over the torus. In
Proceedings of the 59th ACM, IEEE Design Automation Conference, San Francisco, CA, USA, 10–14 July 2022; pp. 235–240.

28. Can, M.A.; Sunmin, K.; Youngsam, S.; Donghoon, Y.; Yongwoo, L.; Sinha, R.S. Medha: Microcoded Hardware Accelerator for
Computing on Encrypted Data. Cryptology ePrint Archive, Paper 2022/480. Available online: https://eprint.iacr.org/2022/480
(accessed on 20 February 2024).

29. Tian, Y.; Kuppannagari, S.R.; Kannan, R.; Prasanna, V.K. Performance modeling and FPGA acceleration of homomorphic
encrypted convolution. In Proceedings of the 2021 31st International Conference on Field-Programmable Logic and Applications
(FPL), IEEE, Dresden, Germany, 30 August–3 September 2021; pp. 115–121.

30. Cao, X.; Moore, C.; O’Neill, M.; O’Sullivan, E.; Hanley, N. Accelerating fully homomorphic encryption over the integers with
super-size hardware multiplier and modular reduction. Cryptol. Eprint Arch. 2013.

31. Sinha, R.S.; Turan, F.; Jarvinen, K.; Vercauteren, F.; Verbauwhede, I. FPGA-based high-performance parallel architecture for
homomorphic computing on encrypted data. In Proceedings of the 2019 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), Washington, DC, USA, 16–20 February 2019; pp. 387–398.

32. Cheon, J.H.; Kim, A.; Kim, M.; Song, Y. Homomorphic encryption for the arithmetic of approximate numbers. In Proceedings of
the Advances in Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory and Applications of Cryptology
and Information Security, Hong Kong, China, 3–7 December 2017; pp. 409–437.

33. Su, Y.; Yang, B.; Yang, C.; Tian, L. Fpga-based hardware accelerator for leveled ring-lwe fully homomorphic encryption. IEEE
Access 2020, 8, 168008–168025.

34. Cheon, J.H.; Han, K.; Kim, A.; Kim, M.; Song, Y. A full RNS variant of approximate homomorphic encryption. In Proceedings of
the Selected Areas in Cryptography–SAC 2018: 25th International Conference, Calgary, AB, Canada, 15–17 August 2018; Springer:
Cham, Switzerland, 2019; pp. 347–368.

35. Lee, E.; Lee, J.W.; Kim, Y.S.; No, J.S. Optimization of homomorphic comparison algorithm on rns-ckks scheme. IEEE Access 2022,
10, 26163–26176.

36. Vadim, L.; Chris, P.; Oded, R. On ideal lattices and learning with errors over rings. J. ACM (JACM) 2013, 60, 1–35.
37. Colin, R.G. 13 Computation using the QR decomposition. Handb. Stat. 1993, 9, 467–508.
38. Peters, H.; Schulz-Hildebrandt, O.; Luttenberger, N. A novel sorting algorithm for many-core architectures based on adaptive

bitonic sort. In Proceedings of the 2012 IEEE 26th International Parallel and Distributed Processing Symposium, IEEE, Shanghai,
China, 21–25 May 2012; pp. 227–237.

39. Nguyen, T.T.; Kim, J.; Lee, H. CKKS-Based Homomorphic Encryption Architecture using Parallel NTT Multiplier. In Proceedings
of the 2023 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE, Monterey, CA, USA, 21–25 May 2023; pp. 1–4.

40. Lee, J.; Duong, P.N.; Lee, H. Configurable Encryption and Decryption Architectures for CKKS-Based Homomorphic Encryption.
Sensors 2023, 23, 7389. [CrossRef]

https://eprint.iacr.org/2022/480
http://doi.org/10.3390/s23177389

Cryptography 2024, 8, 8 28 of 28

41. Stefano, D.M.; Lo, G.M.; Sergio, S. VLSI Design and FPGA Implementation of an NTT Hardware Accelerator for Homomorphic
SEAL-Embedded Library. IEEE Access 2023, 11, 72498–72508.

42. Su, Y.; Yang, B.L.; Yang, C.; Yang, Z.P.; Liu, Y.W. A highly unified reconfigurable multicore architecture to speed up NTT/INTT
for homomorphic polynomial multiplication. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2022, 30, 993–1006.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Relevant Work
	Research Gap
	Objectives
	Our Contribution

	Theoretical Background
	Cheon–Kim–Kim–Song (CKKS) Scheme
	Application of CKKS Scheme in Machine Learning
	Overview of CKKS Method
	Ring Learning with Errors (RLWE)
	Polynomial Multiplication and Number Theoretic Transform
	KNN Algorithm

	Proposed Method
	System Architecture
	Design Architecture to Implement CKKS in Intel Agilex SoC FPGA
	FPGA-Based Architecture for the CKKS Method
	Design Diagram for Encoder and Decoder
	Design Diagram for Number Theoretic Transform
	Design Diagram for KNN Classifier Module
	 Normalization Process
	Novel Hardware Architecture for KNN Classification

	Algorithm
	Implementation
	Result and Discussion
	Computational Complexity
	CKKS Operation
	KNN on Ciphertext

	FPGA Resource Utilization
	Computational Time, Latency, and Throughput
	Comparison with State-of-the-Art Research

	Conclusions
	Future Work
	References

