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Abstract: With the exponential growth of data, extracting actionable insights becomes resource-
intensive. In many organizations, normalized relational databases store a significant portion of this
data, where tables are interconnected through some relations. This paper explores relational learning,
which involves joining and merging database tables, often normalized in the third normal form. The
subsequent processing includes extracting features and utilizing them in machine learning (ML)
models. In this paper, we experiment with the propositionalization algorithm (i.e., Wordification) for
feature engineering. Next, we compare the algorithms PropDRM and PropStar, which are designed
explicitly for multi-relational data mining, to traditional machine learning algorithms. Based on the
performed experiments, we concluded that Gradient Boost, compared to PropDRM, achieves similar
performance (F1 score, accuracy, and AUC) on multiple datasets. PropStar consistently underper-
formed on some datasets while being comparable to the other algorithms on others. In summary,
the propositionalization algorithm for feature extraction makes it feasible to apply traditional ML
algorithms for relational learning directly. In contrast, approaches tailored specifically for relational
learning still face challenges in scalability, interpretability, and efficiency. These findings have a
practical impact that can help speed up the adoption of machine learning in business contexts where
data is stored in relational format without requiring domain-specific feature extraction.

Keywords: data mining; relational learning; propositionalization; machine learning; deep learning

1. Introduction

With the enormous expansion of data, the necessity for big data architectures for the
efficient, reliable, and prompt processing of this data has become more pronounced [1].
In turn, this entails efficient algorithms for optimizing cluster size and cost [2], and for
scalable feature selection and dimensionality reduction [3].

Moreover, the whole knowledge discovery process in databases, as shown in Figure 1 [4,5],
requires multiple steps, which are even more complex and time-consuming in big data
applications. Preparing relational data (i.e., data that can be represented in an Entity
Relation—ER model) in a format suitable for machine learning is a manual effort. A large
part of the data today is stored in so-called relational databases, which are stored in several
related tables with logical or physical foreign keys. Processing this kind of data requires a
good understanding of the data domain, and human experience plays a significant role. To
be able to train machine learning (ML) algorithms on data represented in normalized ER
models, it is necessary to join and merge many tables, perform manual feature engineering
and extraction, and ultimately represent the data in one wide table.
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For that reason, in this paper, we focus on the topic of relational learning [6–8], which
involves merging relational database tables into one table, extracting features, and later
using those features to train machine learning models. Aiming to automate this process
of extracting knowledge from relational databases, we perform various experiments with
different feature extraction algorithms in relational learning and machine learning models.

Figure 1. Knowledge discovery in databases consisted of acquiring data, understanding the data,
processing, transformation, data mining, and evaluation.

As shown in Figure 2, the first step of the proposed methodology is to transform rela-
tional databases into a single table. To do that, we use propositionalization [9] techniques
that generate complex features. Specifically, the wordification [10] technique is used as a
type of propositionalization algorithm. As presented in Figure 2, wordification is the first
step in the automated relational learning process, which, as a result, generates an extensive
feature set, denoted as ‘propositionalized relational database’ in the figure.

In the next step, using this very wide dataset with many features, we evaluate various
machine learning algorithms. We evaluate traditional ML algorithms (ones not explicitly
adapted for these types of tasks) and propositional learners (ML algorithms designed to
be trained on the propositional representation of the source data). Specifically, from the
propositional learners, we evaluate PropDRM [11] and PropStar [11]. PropDRM represents
a deep relational machine tailored for propositional learning, while PropStar is a feature-
based technique specifically developed for classification tasks in relational databases,
utilizing advanced feature embeddings. This comparison of propositional learners and
traditional ML algorithms aims to highlight the strengths and limitations of each set of
methods in various learning scenarios and data types.

Figure 2. Automated relational learning process.

The main contributions of this work are the following:

• We reproduce the original paper’s works studying the wordification, PropDRM, and
PropStar algorithms.
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• We examine a comparative analysis between the traditional algorithms versus Prop-
DRM and PropStar, based on the performance over various metrics.

• We demonstrate that traditional algorithms achieve similar results compared to the
PropDRM and PropStar in the common benchmark datasets.

In Section 2, we mention some existing studies related to relational learning, proposi-
tionalization approaches, and datasets used as a baseline in this topic. Then, in Section 3,
we delve into the Wordification technique and the combination of this algorithm with
various machine learning models. After that, in Section 4 we describe the datasets exam-
ined in this paper. Next, in Sections 5 and 6, we present and discuss the results from our
experiments, respectively. Finally, in Section 7, we conclude the paper and present some
ideas for future work.

2. Related Work

This section reviews the different methods and techniques analyzed in this paper.
Namely, in different organizations and enterprises, the majority of the data is stored in
relational databases consisting of dozens, hundreds, or even thousands of tables often
normalized in the third normal form [12]. Therefore, there is a need to first represent these
databases in a denormalized tabular format that ML algorithms can utilize for learning. In
the following subsections, we consider different feature extraction algorithms and learning
tasks in the pipeline represented in Figure 1.

We first performed a literature analysis to understand the general landscape of
methods in the field of relational learning to analyze potentially relevant articles to the
following topics:

• Machine learning on relational database;
• Feature engineering for relational database;
• Relational learning;
• Learning from structured data.

Figure 3 presents a visual representation of the annual occurrences of the relevant arti-
cles categorized based on the search phrases. An observation that emerges from the figure
is the growing trend of articles published between January 2012 and February 2024. This
indicates a notable surge in interest surrounding the subject of relational learning, thereby
worthy of further exploration and investigation. From the potentially relevant articles, we
considered 23 articles with methods related to the main topic of the articles. From those
23, we selected the most promising ones and reproduced the experiments published in the
original article while performing additional tests. The following subsections summarize
these methods.

Figure 3. The number of relevant articles per year from January 2012 to February 2024, grouped by
the search phrase.
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2.1. Methods for Feature Extraction from Relational Databases

LINUS [13], a pioneering propositionalization approach, was used for automated
relational feature construction. However, it had limitations, such as not allowing recursion,
existential local variables, and join queries. To address these limitations, SINUS [14],
a descendant of LINUS, incorporated more advanced feature construction techniques.
Relaggs [15] represents a method called relational aggregation. This technique, part of
propositionalization, uses the structure of a relational database as a guide for its process. It
incorporates optimization methods commonly found in relational databases, like indexing,
to aggregate and summarize data from non-target relations about specific entries in the
target table.

RollUp [16] is a basic propositionalization method that performs a depth-first search
through a data model, summarizing data from various tables onto a target table by “rolling
up” information at each level of the search until all data is aggregated at the target.

The Data Science Machine introduces Deep Feature Synthesis [17], akin to RollUp, for
automatic feature generation from relational or multi-table datasets using simple aggre-
gations. It also employs an unsupervised feature selection method using Singular Value
Decomposition (SVD) and ranks features by their relevance to the target class. This method
is part of a broader effort to automate the entire data science process, with relational feature
engineering being a key aspect.

The DARA [18] algorithm focuses on condensing information from records in a non-
target table, which is linked in a many-to-one fashion to records in a target table. It summa-
rizes these records and then integrates this summarized information into the target table.

Previously mentioned methods use simple aggregation functions sum, min, max,
mean, and count to summarise information from one to many related tables and have
shown to be effective on multi-table classification problems. A limiting problem with those
methods is that runtime and memory performance degrades when there are multiple one-
to-many relationships. These relationships necessitate the recursive creation of aggregate
features, leading to a rapid increase in the number of features. This increase, known as a
combinatorial explosion, caused by the sequential one-to-many joins or ’depth’, results in a
large number of redundant features. This redundancy can adversely affect both accuracy
and runtime.

Wordification [10] is a propositionalization method that transforms a relational database
into a corpus of text documents. It is efficient for large datasets and allows for the use of
text-mining techniques on the transformed data.

2.2. Approaches for Propositional Learning

Deep Relational Machine (DRM) [19], a deep learning neural network that excels in
capturing structural and relational information in data. The DRM learns representations
using first-order Horn clauses in the initial layer and restricted Boltzmann machines in
successive layers. However, deep relational machines were used on propositionalized data
for the first time by Srinivasan [20].

Similarly, the PropStar algorithm [11], based on the StarSpace model [21], is used
for transforming relational databases into propositionalization features. StarSpace is a
versatile neural embedding model capable of various tasks, including text classification
and multi-relational graph embedding. PropStar leverages StarSpace to create embedding
vectors that can be easily compared in latent space.

2.3. Graph Learning Methods

Knowledge Embedding with Numbers (KEN) [22] is a novel method for feature extrac-
tion from relational databases by leveraging graph embedding techniques, to effectively
encode numerical attributes. This advancement facilitates the enrichment of machine
learning models with comprehensive background information, demonstrating notable
improvements in predictive tasks across diverse datasets.
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Lifted Relational Neural Networks (LRNN) [23,24] is a framework that dynamically
generates differentiable computation graphs from relational data. This approach allows
for a unified representation of various neural models, facilitating the extension of graph
neural networks (GNNs) to achieve greater expressiveness and efficiency in relational
learning tasks.

Relational Deep Learning (RDL) [25], represents a novel approach that allows the
execution of machine learning tasks directly on relational databases, eliminating the need
for manual feature engineering. By conceptualizing databases as temporal, heterogeneous
graphs, RDL enables Graph Neural Networks to effectively learn from the intricate rela-
tionships and dynamic changes inherent in relational data.

In a recent study [26], a deep learning framework is introduced for direct end-to-
end learning from relational databases through a neural message-passing architecture
that aligns with the database’s relational structure. This framework is shown to provide
competitive performance against existing models, marking a significant step towards the
application of deep learning techniques on relational data.

While the methods described previously represent significant advancements in lever-
aging graph-based approaches for relational data, our study opts for a different direction.
The primary reason for this deviation lies in our focus on maintaining the inherent structure
of relational databases rather than transforming or interpreting this data through the lens
of graph or knowledge graph methodologies. Our decision stems from a desire to work
within the original relational database framework, as it allows for direct interaction with
the data in its native form, preserving the original semantics and relationships as defined
by the database schema.

3. Methods

Based on the review of the related work described in the previous section, in this sec-
tion, we describe the most promising approaches: Wordification [10] for feature extraction,
and the unified approaches PropDRM [11], and PropStar [11], followed by the traditional
algorithms used for learning over the propositionalized data. Therefore, the remainder of
the paper focuses on a detailed comparison of these approaches and achieved metrics.

3.1. Feature Extraction
Wordification

In this subsection, we describe in detail the Wordification method, where we demon-
strate how the algorithm works over the East–West Trains dataset [27].

Wordification [10] is a process that involves transforming a relational database into a
collection of feature vectors. Each original instance is converted into a “document” rep-
resented as a Bag-Of-Words (BOW) vector, where simple features are assigned weights
resembling “words” in the transformed BOW space. These “words” correspond to attribute-
value pairs from the target and related tables, weighted using Term Frequency-Inverse
Document Frequency (TF-IDF) or simpler schemes like term frequency (TF) or binary
presence/absence indicators. While wordification may result in some loss of information
compared to propositionalization methods, it offers advantages such as interpretability,
scalability for large databases, parallel processing, and using text mining techniques like
document clustering and word cloud visualization for multi-relational data mining. Wordi-
fication is classified as the first step in the automated relational learning process, presented
in Figure 2.

This method uses the relational database, represented as an ER model, as an input
into the wordification algorithm. To represent a table as a BOW, we treat each entry in the
table as a text document. We create synthetic words called witems by combining the table
name, column name, and its discrete value (using Equation (1)). Continuous values are
discretized before this process. Each entry’s document is formed by generating witems for
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the table and related rows based on the relational database schema. These witems are then
joined together to create the entry’s document.

witem = table_name_attribute_name_value (1)

Once we have documents for all entries, we obtain a corpus of text documents. Each
witem in the corpus is considered an attribute to create the BOW representation. The value
associated with each witem for a given entry is determined by its TF-IDF (term frequency-
inverse document frequency) weight, where TF-IDFf(wi, d) calculates the importance of the
witem in the document associated with the entry. For a given witem, w, in document d from
corpus D, the measure TF-IDF (·) is defined as follows:

t f id f (w, d) = t f (w, d)× log
|D|

|{d ∈ D : w ∈ d|} (2)

where TF (·) represents the TF, that is the number of times that witem w appears in document
d, and IDF is the logarithm of the inverse of the number of documents the witem w appears in.
Additionally, this algorithm has two more weight implementations, TF, and binary weights.

Because of simplicity, we present a sample of the Trains dataset [27] to demonstrate how
the algorithm transforms the relational database into BOW representation (Tables 1 and 2). In
Figure 4, we can see the Entity Relationship (ER) diagram from the Trains dataset, which
contains two tables: trains, which is the target table; and cars.

Table 1. Trains sample data.

Trains

Id Direction

1 East
2 West

Table 2. Cars sample data.

Cars

Id Train_Id LoadShape

1 1 Triangle
2 1 Circle
3 2 Circle
4 2 Diamond

Figure 4. Entity relationship diagram from Trains dataset.
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From our sample data, the documents that are generated from wordification are
displayed in Table 3 corresponding generated documents. After this, the documents are
transformed into the BOW representation by calculating the TF-IDF values for each word
of each document (using Equation (2)) with the class attribute column appended to the
transformed BOW table, as shown in Table 4.

Table 3. Documents generated by Wordification algorithm for each train.

Train 1: [Cars_LoadShape_Triangle, Cars_LoadShape_Circle], East
Train 2: [Cars_LoadShape_Circle, Cars_LoadShape_Diamond], West

Table 4. Calculated TF-IDF values from the sample data.

Train_Id Cars_LoadShape_Triangle Cars_LoadShape_Circle Cars_LoadShape_Diamond Direction

1 1.386 0 0 East
1 0 0.693 0 East
2 0 0.693 0 West
2 0 0 1.386 West

3.2. Relational Learning
3.2.1. PropDRM

PropDRM [11] utilizes a modified version of the DRM approach. It can directly learn
from large, sparse matrices produced by the wordification algorithm for propositionalizing
relational databases. In wordification, each instance is represented by a bag of features in
the format TableName_AttributeName_Value, treated as words in the transformed BOW
representation. In PropDRM, these words represent individual relational items using the
(table.name, column.name, value) notation.

PropDRM generates relational representations for each instance. These batches of
instances serve as input to a neural network for downstream tasks such as classification
or regression, as shown in Figure 2. Although propositionalization and learning are
conceptually separate, they can be integrated efficiently in practice. The advantage of
PropDRM is its ability to handle sparse matrices generated by the wordification algorithm.

ω = σ(WT
1 ∗ (ELU(Drop(WT

0 ∗ P + b0))) + b1) (3)

PropDRM employs dense feed-forward neural networks (Equation (3)) with dropout
regularization and ELU activation function on intermediary weights. The sigmoid function
is used for output weights to obtain binary predictions. Additionally, W1 and W0 are weight
matrices and the superscript T denotes the transpose of a matrix, b1 and b0 are bias vectors,
and P is the input feature matrix. The training procedure utilizes binary cross-entropy
loss, referred to as Loss, which is defined in Equation (4). The loss function returns the
probability pij of an instance i belonging to a class j, where yij is a binary value (0 or 1)
indicating whether class j is the correct class label assigned to instance i, and C is a set of
all the target classes. Each output neuron, for the total number of classes |C|, produces a
single probability pij for the associated class j within the complete set of classes C. During
the training of the neural networks using small batches, the results of the loss function are
averaged to compute the overall loss of a given batch of instances.

LossCE(i) = ∑
j∈C

yij ∗ log pij (4)

Overall, PropDRM combines Wordification, neural networks, and binary cross-entropy
loss to learn from relational databases and make predictions effectively.

3.2.2. PropStar

In this subsection, we review the PropStar [11] approach that is based on the StarSpace
algorithm [21]. PropStar is a feature-based approach for classification in relational databases
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using feature embeddings. This approach uses embedding vectors to represent the features
of the dataset. In comparison with the PropDRM approach, this algorithm is different in the
sense that representations are not learned for individual instances (as is the case of DRMs).
Instead, they are learned for every single relational feature that is the output of the selected
propositionalization algorithm, for example in our case that is Wordification.

The PropStar involves two steps: transforming the relational database into sets of
features using the Wordification method and utilizing these sets of relational items as input
for the StarSpace entity embedding algorithm. Embeddings are computed by efficient C++
implementation, and the resulting representations are learned for individual relational
items. It is worth mentioning that the embeddings are computed for each distinct rela-
tional feature, including the label. In an intuitive sense, embedding construction can be
interpreted as identifying the positions of relational items in latent space by considering
their patterns of co-occurrence with other items across all training instances, as shown
in Figure 2. Since the relational features and labels are present in the same latent space,
predicting the label for a given relational bag can be done by direct comparison. Let M
represent a novel instance to be classified, where M is represented as a multiset of relational
items. StarSpace averages the representations of relational features, present in a given input
instance (a bag). The representation is normalized and compared to label embeddings in
the common space. The representation of a relational bag eM (defined in Equation (5)) is
calculated as

eM =

⊕
fi∈M

e fi√
|Munique|

(5)

where e fi
denotes the embedding of the i-th relational feature within instance M, and eM

is the resulting d-dimensional, real-valued vector that represents the bag. The ⊕ operator
indicates an element-wise summation over all unique relational feature embeddings con-
sidered in instance M. The set Munique contains all the unique relational features present
in M. The computed vector eM is then compared to label embeddings in the same space
(displayed in Equation (6)). Therefore, ec represents the embedding of class label c, and
the similarity between eM and each ec is calculated using the cosine similarity function
sim(e1, e2), a measure that is very efficient when it comes to comparing high-dimensional
data. The label whose embedding is most similar to eM, as determined by this similarity
metric, is selected as the label for the instance.

label(eM) = arg max
c∈C

[sim(eM, ec)] (6)

The spatial complexity for this algorithm is linear. The complexity of predicting a
single relational bag is O(|C|), where C is the number of unique labels.

Overall, PropStar represents features as embedding vectors, allowing for the direct
classification of new instances based on the proximity of their feature representations to
class label embeddings in a latent space.

3.2.3. Traditional Machine Learning Algorithms

In addition to those specialized methods for realtional learning mentioned earlier in
this subsection, we also consider traditional machine learning algorithms. Specifically, we
consider the following algorithms because of their versatility and proven performance of
diverse machine learning tasks. What is common about them is that they rely on a training
dataset presented in a tabular format where one of the columns is the target label.

While numeric data is commonly used in machine learning, many real-world issues
involve dealing with discrete forms of data such as graphs, relationships, texts, or electronic
health records. To apply numeric-based deep learning methods to these types of data,
it is imperative to transform the nominal data into a numeric format that is compatible
with these learning algorithms. Numerical representations are beneficial even in discrete
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domains, as they allow symbolic learners to make generalizations based on the similarity
of objects.

To utilize the full potential of contemporary machine learning algorithms like Ad-
aBoost, ExtraTrees, GradientBoost, and RandomForest, alongside deep neural networks, it
is essential to convert discrete data into numeric vectors. These vectors should effectively
preserve and convey object similarities as distances within the numeric space. The proposi-
tional learners are the second step in the automated relational learning process, presented
in Figure 2.

AdaBoost [28], short for Adaptive Boosting, is a powerful ensemble technique. Ad-
aBoost combines multiple weak classifiers to form a strong classifier by adjusting the
weights of incorrectly classified instances so that subsequent classifiers focus more on them.

RandomForest [29] is a popular ensemble learning method that operates by construct-
ing a set of decision trees during training. For classification tasks, it outputs the class which
is the mode of the classes of the individual trees.

ExtraTrees [30], or Extremely Randomized Trees, is an ensemble learning method
that is similar to the RandomForest algorithm. It differs by the way it splits nodes, using
random thresholds for each feature rather than searching for the most optimal thresholds.

GradientBoost [31,32] is an ensemble method that constructs the model progressively,
stage by stage. It is a form of boosting that optimizes a loss function, and each new model
incrementally reduces the errors made by the previous models.

4. Datasets

In this section, we describe the datasets, displayed in Table 5, that were used for
evaluating the performance of the algorithms:

• The Trains dataset [27] is commonly used in the well-known ILP East–West trains
challenge problem. This challenge involves predicting a train’s direction (eastbound
or westbound) based on the cars’ characteristics in each direction. The trains can have
various cars, each with different shapes and carrying different loads.

• The Carcinogenesis task [33] focuses on predicting whether a diverse range of chemical
compounds is carcinogenic. The dataset used for this task involved conducting experi-
ments on rodents, which spanned several years and involved hundreds of animals.
The dataset comprises 329 compounds, with 182 of them identified as carcinogens.

• The Mutagenesis task [34] focuses on predicting the mutagenicity of aromatic and
heteroaromatic nitro compounds. This task is important as it is closely related to
predicting carcinogenesis. The dataset consists of 230 compounds, with 138 labeled
as ‘active’ indicating positive mutagenicity and the remaining compounds labeled as
‘inactive’ serving as negative examples. Data present in the original paper were split
into two subsets: 188 compound dataset and a smaller dataset with 42 compounds.

• IMDB database http://www.webstepbook.com/supplements/databases/imdb.sql
(accessed on 27 February 2024) contains tables of movies, actors, movie genres, di-
rectors, and director genres. The dataset used in our experiments encompasses only
movies whose titles and years of production appear in the IMDB’s top-250 and bottom-
100 charts (Snapshot taken on 2 July 2012). The snapshot contains 166 movies and all
their actors, genres, and directors. Movies present in the IMDB top-250 chart were
labeled as positive examples, and those in the bottom-100 as negatives.

• The MovieLens dataset https://relational-data.org/dataset/MovieLens (accessed on
27 February 2024), available in the UC Irvine machine learning repository, is similar to
the IMDB dataset mentioned earlier but significantly larger. It contains over 1.2 million
instances in total. This task aims to predict the gender of users in the movie database.

http://www.webstepbook.com/supplements/databases/imdb.sql
https://relational-data.org/dataset/MovieLens
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Table 5. Original datasets summary information.

Database Table No. Rows No. Attributes

Trains Trains 20 2
Cars 63 10

Carcinogenesis

atom 9064 5
canc 329 2

sbond_1 13,562 4
sbond_2 926 4
sbond_3 12 4
sbond_7 4134 4

Mutagenesis 42

atoms 1001 5
bonds 1066 5
drugs 42 7

ring_atom 1785 3
ring_strucs 279 3

rings 259 2

Mutagenesis 188

atoms 4893 5
bonds 5243 5
drugs 188 7

ring_atom 9330 3
ring_strucs 1433 3

rings 1317 2

IMDB

actors 7118 4
directors 130 3

directors_genres 1123 4
movies 166 4

movies_directors 180 3
movies_genres 408 3

roles 7738 4

MovieLens

actors 99,129 3
directors 2201 3
movies 3832 5

movies2actor 152,532 3
movies2directors 4141 3

u2base 946,828 3
users 6039 4

5. Results
5.1. Classification Performance Evaluation

This section presents the results from the examined methodologies over the pro-
posed datasets. In our comprehensive experimental setup, we tried to reproduce the
experiments from the original paper [11] and embarked on a systematic examination of a
suite of machine learning algorithms across multiple datasets to assess their performance
and generalizability. The algorithms under scrutiny included traditional models like Ad-
aBoost, ExtraTrees, RandomForest, and GradientBoost, as well as two propositionalization
algorithms, PropDRM and PropStar. To ensure a thorough evaluation, each algorithm
was subjected to an extensive range of hyper-parameters, thereby facilitating a robust
exploration of their respective predictive capabilities. We used a 10-fold cross-validation
approach consistently across all datasets to ensure our evaluation was reliable and uniform.

This cross-validation not only enhanced the validity of our results by reducing the poten-
tial for over-fitting but also allowed us to extrapolate our findings with greater confidence.

In evaluating the comparative effectiveness of traditional machine learning algorithms
against proprietary models across multiple datasets, our analysis reveals noteworthy trends,
which are represented in Table 6, where the highlighted cells show the best performing
algorithm per metric and dataset. A more visual representation of the same results is
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presented in Figure 5. The traditional algorithms AdaBoost, ExtraTrees, RandomForest,
and GradientBoost demonstrated consistent performance, with GradientBoost frequently
achieving superior accuracy and F1 scores. This trend was particularly evident within the
‘Carcinogenesis’ and ‘IMDB’ datasets.

Figure 5. Wordification performance of different datasets and algorithms.

Table 6. Wordification performance of different datasets and algorithms.

Dataset Classifier Accuracy F1-Score AUC

Trains

AdaBoost 0.650 0.693 0.600
ExtraTrees 0.550 0.533 0.625

GradientBoost 0.700 0.687 0.725
RandomForest 0.650 0.627 0.675

PropDRM 0.550 0.507 0.650
PropStar 0.550 0.667 0.650

Carcinogenesis

AdaBoost 0.508 0.584 0.442
ExtraTrees 0.511 0.622 0.456

GradientBoost 0.541 0.652 0.469
RandomForest 0.511 0.642 0.424

PropDRM 0.611 0.692 0.640
PropStar 0.562 0.591 0.523

Mutagenesis 42

AdaBoost 0.717 0.160 0.611
ExtraTrees 0.717 0.100 0.767

GradientBoost 0.669 0.067 0.746
RandomForest 0.667 0.080 0.593

PropDRM 0.742 0.380 0.729
PropStar 0.742 0.267 0.407
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Table 6. Cont.

Dataset Classifier Accuracy F1-Score AUC

Mutagenesis 188

AdaBoost 0.766 0.828 0.804
ExtraTrees 0.767 0.836 0.851

GradientBoost 0.766 0.837 0.843
RandomForest 0.713 0.804 0.741

PropDRM 0.792 0.846 0.843
PropStar 0.766 0.833 0.692

IMDB

AdaBoost 0.724 0.814 0.707
ExtraTrees 0.768 0.866 0.747

GradientBoost 0.777 0.856 0.742
RandomForest 0.768 0.866 0.670

PropDRM 0.776 0.868 0.845
PropStar 0.759 0.862 0.768

MovieLens

AdaBoost 0.717 0.835 0.466
ExtraTrees 0.717 0.835 0.466

GradientBoost 0.717 0.835 0.466
RandomForest 0.717 0.835 0.478

PropDRM 0.717 0.835 0.494
PropStar 0.717 0.835 0.507

Notes: The best score for each dataset and metric is in bold.

5.2. Statistical Evaluation

To assess whether some classifiers are consistently better than others across the datasets
for each metric separately, we used statistical tests. Given that we are comparing multiple
groups (classifiers) across multiple independent samples (datasets), the most suitable
approach is to use the Analysis of Variance (ANOVA) test for each metric. Before applying
ANOVA, it is important to note that it assumes the following:

• The residuals are normally distributed (or approximately normally distributed).
• Homogeneity of variances (equal variances across groups).
• Independent observations.

The results of the ANOVA analysis for each metric are as follows:

• Accuracy: F-statistic = 34.95, p-value < 0.00001.
• F1-Score: F-statistic = 99.86, p-value < 0.00001.
• AUC: F-statistic = 17.20, p-value < 0.00001.

All metrics show highly significant p-values in their respective ANOVA tests, indicat-
ing that there are statistically significant differences in performance among the classifiers
for each metric. Since the p-values are much lower than the typical alpha level of 0.05,
we reject the null hypothesis of equal means and conclude that not all classifiers perform
equally across the datasets for each metric.

6. Discussion

Conversely, the proprietary algorithms, PropDRM and PropStar, showed a divergent
pattern of results. PropDRM exhibited exceptional F1-scores, most notably in the ‘Mutage-
nesis 188’ dataset, suggesting a robustness in performance that occasionally surpassed the
traditional models. PropStar, however, did not consistently manifest a competitive advan-
tage in any of the measured metrics. It is worth mentioning that the ‘MovieLens’ dataset
demonstrated clear signs of overfitting despite various attempts to rectify it; therefore, its
performance data were not considered in our conclusions to maintain the accuracy of our
overall analysis.

Compared to the initial study [11] that focused solely on accuracy, this research
incorporates additional metrics such as the F1 score and ROC-AUC to provide a more
comprehensive evaluation of the performance of the proposed methodologies, PropDRM
and PropStar. This is because relying solely on accuracy can be deceptive, especially in
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imbalanced datasets where it can disproportionately reflect the majority class’s influence,
failing to account for the model’s ability to correctly predict the minority class. In contrast
to the initial study, which employed a range of propositionalization techniques (Aleph,
RSD, RelF, and Wordification) and machine learning algorithms (J48 and Support Vector
Machine), our effort to replicate the original paper’s experiments concentrates exclusively
on the Wordification algorithm. This approach is paired with a variety of traditional
machine learning algorithms (AdaBoost, RandomForest, ExtraTrees, Gradient Boost) and
propositional learners (PropDRM and PropStar). Despite our efforts to reproduce the initial
study’s results, our findings generally fell short of the original benchmarks regarding the
Accuracy metric.

Given the comprehensive statistical analysis across three key performance metrics
(Accuracy, F1-Score, and AUC) and considering the findings from the statistical tests, no
single classifier consistently outperforms others across all metrics. The choice of the “best”
classifier depends on the specific needs of the task at hand and the importance of each
metric. However, we can make some general observations.

GradientBoost shows significant improvements in Accuracy compared to several
other classifiers, indicating strong overall performance in correctly predicting outcomes.
However, it has a notable disadvantage in F1-Score, suggesting it may not balance precision
and recall as effectively as some other models, particularly in imbalanced datasets.

RandomForest exhibits strong performances across multiple metrics, with particularly
significant improvements in Accuracy and AUC compared to several classifiers. This
suggests it is not only good at making correct predictions but also effective in ranking
predictions with confidence across diverse scenarios. Its performance in F1-Score is also
competitive, making it a robust choice for various applications.

PropDRM stands out in F1-Score, showing it can effectively balance precision and
recall, which is crucial in scenarios where class imbalance is a concern. Its performance in
Accuracy and AUC is also competitive, though it is not always the top performer. PropDRM
could be preferred in scenarios where the F1-Score is prioritized, indicating its strength in
handling imbalanced data effectively.

7. Conclusions and Future Work

This paper, explored the current state of relational learning, a topic that involves
learning models or patterns from relational data. We discussed terms that are specific to
this topic such as propositionalization techniques which are applicable for transforming
relational databases into a single table format. One of the techniques that are examined in
this paper is Wordification, which transforms the relational database into BOW features.
Furthermore, we proceed with propositional learners such as PropDRM and PropStar, along
with traditional machine learning algorithms—approaches that are highly compatible and
perform effectively when integrated with the Wordification method.

In this paper, we reproduced the implementation from [11] and experimented with
the previously mentioned techniques and algorithms. As discussed in Section 5, we can
conclude that the traditional machine learning algorithms hold their ground with reliable
performance compared to the propositionalization algorithms PropDRM and PropStar. It
is worth mentioning that PropDRM demonstrated exceptional performance as an overall
result; however, the PropStar algorithm showed a divergent pattern of results that cannot
be taken for granted. Finally, the results indicate that the performance of these specific
methods is not prominent difference when measured against traditional algorithms.

The topic of relational learning is experiencing increasing momentum with promising
advancements achieved thus far. However, there is an opportunity to enhance existing
concepts and consider alternative approaches that offer fresh perspectives.

In future work, we plan to explore adjusting weights in the Wordification algorithm.
We believe that focusing on features directly related to the predicted label may improve
outcomes. Since the success of DRMs largely depends on feature quality, refining this could
significantly enhance the PropDRM method. Additionally, our studies indicate that dataset
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selection is crucial to algorithm performance. Hence, we intend to experiment with a wider
variety of datasets, including more complex and challenging ones, to better understand the
effectiveness of different approaches in real-world data situations.
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14. Lavrač, N.; Flach, P. An extended transformation approach to Inductive Logic Programming. ACM Trans. Comput. Log. 2000, 2,
458–494. [CrossRef]

15. Krogel, M.A.; Wrobel, S. Transformation-Based Learning Using Multirelational Aggregation. In Proceedings of the International
Conference on Inductive Logic Programming, Strasbourg, France, 9–11 September 2001.

16. Knobbe, A.J.; de Haas, M.; Siebes, A. Propositionalisation and Aggregates. In Proceedings of the European Conference on
Principles of Data Mining and Knowledge Discovery, Freiburg, Germany, 3–5 September 2001.

17. Kanter, J.M.; Veeramachaneni, K. Deep feature synthesis: Towards automating data science endeavors. In Proceedings of the 2015
IEEE International Conference on Data Science and Advanced Analytics (DSAA), Paris, France, 19–21 October 2015; pp. 1–10.

18. Alfred, R. The Study of Dynamic Aggregation of Relational Attributes on Relational Data Mining. In Proceedings of the
International Conference on Advanced Data Mining and Applications, Harbin, China, 6–8 August 2007.

19. Lodhi, H. Deep Relational Machines. In Proceedings of the International Conference on Neural Information Processing, Daegu,
Republic of Korea, 3–7 November 2013.

20. Srinivasan, A.; Vig, L.; Bain, M. Logical Explanations for Deep Relational Machines Using Relevance Information. J. Mach.
Learn. Res. 2018, 20, 130:1–130:47.

21. Wu, L.Y.; Fisch, A.; Chopra, S.; Adams, K.; Bordes, A.; Weston, J. StarSpace: Embed All The Things! arXiv 2017,
arXiv:abs/1709.03856.

22. Cvetkov-Iliev, A.; Allauzen, A.; Varoquaux, G. Relational data embeddings for feature enrichment with background information.
Mach. Learn. 2023, 112, 687–720. [CrossRef]

23. Sourek, G. Deep Learning with Relational Logic Representations. In Proceedings of the International Joint Conference on
Artificial Intelligence, Macao, China, 10–16 August 2019.

24. Sourek, G.; Železny̌, F.; Kuželka, O. Beyond graph neural networks with lifted relational neural networks. Mach. Learn. 2020,
110, 1695–1738. [CrossRef]

25. Fey, M.; Hu, W.; Huang, K.; Lenssen, J.E.; Ranjan, R.; Robinson, J.; Ying, R.; You, J.; Leskovec, J. Relational Deep Learning: Graph
Representation Learning on Relational Databases. arXiv 2023, arXiv:abs/2312.04615.

26. Zahradník, L.; Neumann, J.; Šír, G. A Deep Learning Blueprint for Relational Databases. In Proceedings of the NeurIPS 2023
Second Table Representation Learning Workshop, New Orleans, LA, USA, 10–16 December 2023.

27. Michie, D.; Muggleton, S.H.; Page, D.L.; Srinivasan, A. To the International Computing Community: A New East-West Challenge;
Oxford University Computing Laboratory: Oxford, UK, 1994.

28. Freund, Y.; Schapire, R.E. A decision-theoretic generalization of online learning and an application to boosting. In Proceedings of
the European Conference on Computational Learning Theory, Barcelona, Spain, 13–15 March 1995. [CrossRef]

29. Liaw, A.; Wiener, M.C. Classification and Regression by randomForest. R News 2022, 2, 18–22.
30. Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [CrossRef]
31. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
32. Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [CrossRef]
33. Srinivasan, A.; King, R.D.; Muggleton, S.H.; Sternberg, M.J.E. Carcinogenesis Predictions Using ILP. In Proceedings of the ILP,

Prague, Czech Republic, 17–20 September 1997.
34. Debnath, A.K.; de Compadre, R.L.L.; Debnath, G.; Shusterman, A.J.; Hansch, C. Structure-activity relationship of mutagenic

aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity. J. Med. Chem.
1991, 34, 786–97. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/BFb0017020
http://dx.doi.org/10.1145/383779.383781
http://dx.doi.org/10.1007/s10994-022-06277-7
http://dx.doi.org/10.1007/s10994-021-06017-3
http://dx.doi.org/10.1007/3-540-59119-2_166
http://dx.doi.org/10.1007/s10994-006-6226-1
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1016/S0167-9473(01)00065-2
http://dx.doi.org/10.1021/jm00106a046

	Introduction
	Related Work
	Methods for Feature Extraction from Relational Databases
	Approaches for Propositional Learning
	Graph Learning Methods

	Methods
	Feature Extraction
	Relational Learning
	PropDRM
	PropStar
	Traditional Machine Learning Algorithms


	Datasets
	Results
	Classification Performance Evaluation
	Statistical Evaluation

	Discussion
	Conclusions and Future Work
	References

