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Abstract: The precise categorization of brief texts holds significant importance in various applications
within the ever-changing realm of artificial intelligence (AI) and natural language processing (NLP).
Short texts are everywhere in the digital world, from social media updates to customer reviews
and feedback. Nevertheless, short texts’ limited length and context pose unique challenges for
accurate classification. This research article delves into the influence of data sorting methods on
the quality of manual labeling in hierarchical classification, with a particular focus on short texts.
The study is set against the backdrop of the increasing reliance on manual labeling in AI and NLP,
highlighting its significance in the accuracy of hierarchical text classification. Methodologically, the
study integrates AI, notably zero-shot learning, with human annotation processes to examine the
efficacy of various data-sorting strategies. The results demonstrate how different sorting approaches
impact the accuracy and consistency of manual labeling, a critical aspect of creating high-quality
datasets for NLP applications. The study’s findings reveal a significant time efficiency improvement
in terms of labeling, where ordered manual labeling required 760 min per 1000 samples, compared to
800 min for traditional manual labeling, illustrating the practical benefits of optimized data sorting
strategies. Comparatively, ordered manual labeling achieved the highest mean accuracy rates across
all hierarchical levels, with figures reaching up to 99% for segments, 95% for families, 92% for
classes, and 90% for bricks, underscoring the efficiency of structured data sorting. It offers valuable
insights and practical guidelines for improving labeling quality in hierarchical classification tasks,
thereby advancing the precision of text analysis in AI-driven research. This abstract encapsulates
the article’s background, methods, results, and conclusions, providing a comprehensive yet succinct
study overview.

Keywords: multiclass hierarchical classification; inter annotator agreement (IAA); automated data
labeling; manual data labeling; hierarchical classification; zero-shot learning; short text classification;
data annotation techniques; labeling process optimization; hierarchical data organization

1. Introduction

In the rapidly evolving field of AI and NLP, the accurate classification of short texts
plays a pivotal role in various applications [1,2]. Among the myriad of techniques used
for data annotation, manual labeling stands out as a fundamental approach for enhancing
the performance of AI models [3,4]. While extensive research has been conducted on
manual labeling techniques and their impact on text classification, a critical gap remains in
understanding the influence of data sorting methods on the quality of manual labeling for
hierarchical classification tasks [5,6].

While manual labeling is typically associated with extensive texts or well-structured
data, the significance of short-text manual labeling is often overlooked [7]. Short texts are
ubiquitous in today’s digital landscape, ranging from social media posts to product reviews
and customer feedback [8]. However, short texts’ limited length and context pose unique
challenges for accurate classification. Investigating the influence of data sorting on manual
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labeling quality, specifically for short texts, is essential for uncovering strategies that can
maximize the performance of hierarchical classification models on this data type [9].

Manual labeling is critical in training AI models, especially when automated tech-
niques are insufficient. Understanding how data sorting strategies impact the quality of
manual labeling is essential in order to optimize the labeling process and ensure that the
labeled data captures the actual underlying characteristics of the short texts [10]. This
knowledge can lead to improved training data, subsequently enhancing the performance
of hierarchical classification models [11].

Short texts are prone to data sparsity, causing building robust and generalized AI
models to be challenging [12]. Manual labeling enables annotators to provide additional
information, such as entity linking, topic categorization, and sentiment annotations, which
enrich the training data and augment the model’s capacity to handle unseen instances and
improve generalization [13].

The existing scientific literature has extensively explored the challenges and method-
ologies surrounding manual labeling, particularly in the context of traditional text clas-
sification [14]. Numerous studies have examined crowdsourcing, active learning, and
annotation guidelines to improve annotation quality and efficiency [15]. However, the
specific area of data sorting techniques and their influence on short text manual labeling
quality for hierarchical classification tasks has received limited attention, leaving a crucial
research gap that must be addressed [16].

In light of the abovementioned gap, this research aims to investigate the influence
of data sorting methods on the quality of short text manual labeling for hierarchical
classification [17]. The research task is to evaluate the data sorting technique in order to
determine the impact on the accuracy and consistency of manual labeling. The object of
this study is the process of labeling short textual data used for hierarchical classification,
and the subject is manual labeling methods and approaches [18].

The primary purpose of this work is to shed light on the importance of data sorting
techniques in the manual labeling process for hierarchical classification tasks. By address-
ing this research gap, we aim to enhance the understanding of how sorting methods can
contribute to more effective and reliable manual labeling in short text classification scenar-
ios [19]. The main tasks of this research include analyzing the influence of data sorting
on annotation quality, investigating the impact of sorting methods on the inter-annotator
agreement, and proposing guidelines for the optimization of the data sorting process in
hierarchical text classification.

A detailed description of relevant research will be provided in Section 2. In Section 3,
we described types of data labeling and compared different hierarchical classification
types (Multiclass Classification, Multilabel Classification, and Multi-tag Classification).
Additionally, we derive the Multiclass Hierarchical Classification as the preferable type of
classification for this task. Also, in Section 3, we have a detailed description of the dataset
and metrics used in this research. Therefore, the mean accuracy and inner-annotator
agreement were chosen as the most indicative metrics for this task. The methodology of
research was described in Section 4. The different methods used in the study are zero-
shot learning for automated data labeling, ordering data before manual labeling, and
the manual labeling process. Subsequently, in Section 5, we present the results of four
different experiments, including the mean accuracy and inner-annotator agreement. Finally,
concluding remarks are presented in Section 6.

2. Relevant Research

Recent research by Gilardi et al. [20] sheds light on the challenges and considerations
associated with ChatGPT’s reliability and consistency in such tasks. To ensure accuracy
and reliability, it is recommended that ChatGPT’s outputs are validated by comparing
them with human-annotated reference data [21]. Validation is crucial in measuring what
researchers intend to measure and instilling confidence in the results.
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Several issues arise when using ChatGPT for data labeling. Inconsistency in classi-
fication output is a notable concern, as even minor changes in prompts or repeating the
same input can yield varying results. The randomness of ChatGPT’s outputs, influenced
by temperature settings and its black-box nature, further hampers the reliability of its
classification and annotation results [22]. Thorough validation, including comparisons
against human-annotated reference data, is imperative in addressing these concerns and
ensuring the accuracy and reliability of ChatGPT’s outputs for data labeling. Therefore,
crafting clear and precise instructions for data labeling tasks is paramount [23].

The study concludes that the unsupervised use of ChatGPT for data labeling should
be avoided. It highlights the necessity of validation and caution to ensure the reliability
and validity of ChatGPT’s outputs. Considering the issues of inconsistency, randomness,
the need for validation, the sensitivity to instruction variations, and the recommendation
against unsupervised use, it becomes evident that ChatGPT for data labeling tasks poses
significant challenges and limitations [24].

The article on data cascades in high-stakes AI by [24] sheds light on the importance of
accurate data annotation and the consequences of poor data documentation. The study high-
lights instances where inadequate cross-organizational documentation and the neglect of data
documentation led to the costly discarding of datasets or the need for data re-collection [25].
The lack of metadata and changes in the schema without understanding the context re-
sulted in the loss of valuable medical robotic data collection. These examples underscore the
significance of precise and comprehensive data annotation in preventing data cascades.

The research also emphasizes the need for customizable dataset collection and labeling
tools in order to enhance data quality. Such tools can ensure consistent and accurate data
annotation, mitigating the risk of data cascades. However, the study identifies upstream
challenges in defining dataset requirements, and downstream challenges in monitoring
incoming live data and measuring impacts, which often receive insufficient attention.
Therefore, there is a pressing need for improved tools and standards to address data
annotation challenges and enhance data quality in developing AI systems.

In [26], several important aspects of data labeling are discussed. The debate surround-
ing expert annotators versus non-expert annotators is highlighted, with arguments for the
effectiveness of both approaches. Quality assurance techniques, including gold standard
test questions and various models, are proposed to address low-quality contributions in
crowdsourcing. Consistency is identified as a reliable proxy variable in the annotation
process, acknowledging that the system may exhibit inconsistency due to varying difficulty
levels and the non-uniform performance of annotation workers. The article explores differ-
ent approaches to annotating, such as one-grader, double-graded with conflict resolution,
N-graded, and dynamic automatic conflict resolution, each with its own advantages and
limitations. The impact of ambiguity in annotation tasks is discussed, emphasizing the po-
tential loss of information and the increased measurement error if ambiguity is ignored [27].
The article also presents a method for estimating the latent inaccuracy of crowdsourcing
annotation processes based on the proportion of requests receiving identical labels. Finally,
the importance of assumptions for accurate labeling, including a singular ground truth
label, the absence of systematic confusion, and memoryless behavioral stability, is empha-
sized. Overall, the article underscores the need to consider annotator expertise, quality
assurance techniques, consistency, and handling ambiguity in order to ensure accurate and
reliable data annotations.

The article [28] discusses the measurement of annotator agreement in text classification
tasks. The main concept for text classification inner annotator agreement is to measure
the level of agreement or disagreement among multiple annotators when assigning labels
or categories to text documents. This agreement is important for assessing the reliability
and consistency of the annotations, and can provide insights into the difficulty of the
classification task and the quality of the annotation guidelines. Various metrics, including
Krippendorff’s alpha and Cohen’s kappa, are utilized to measure the agreement.
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Overall, this article contributes to the understanding and implementing of measuring
annotator agreement in complex structured, multi-object, and free-text annotation tasks.

The article [29] highlights the importance of considering disagreements in data label-
ing for relevant research. Disagreements among annotators can significantly impact the
quality and reliability of the labeled data. When annotators have conflicting judgments, it
introduces ambiguity and uncertainty into the labeling process, leading to inconsistent and
unreliable labels.

One consequence of disagreements is difficulty in establishing a “correct” label for a
given instance, as reaching a consensus becomes challenging. This lack of consensus can
result in inconsistency in model training and evaluation, as different annotators may have
varying interpretations or criteria for labeling.

Disagreements also introduce noise into the labeled data, making distinguishing
between genuine linguistic phenomena and annotation errors or inconsistencies harder.
This noise negatively affects model performance, as they may learn from incorrect or
inconsistent labels.

Furthermore, disagreements shed light on the subjective nature of certain NLP tasks,
such as sentiment analysis or hate speech detection. These tasks often involve subjective
judgments influenced by individual biases and perspectives. Disagreements among anno-
tators reflect the diversity of opinions and interpretations, thus emphasizing the need for
robust and inclusive models that can handle different perspectives.

Considering and addressing disagreements in data labeling is crucial to improve the
reliability and quality of labeled data. Understanding the impact of disagreements can
enhance the performance and generalizability of NLP models in various applications.

3. Materials and Methods
3.1. Types of Data Labeling

The distinction between labeled and unlabeled data becomes important when con-
sidering the machine learning model that is being used. Text classification, for example,
involves assigning labels to blocks of text based on the sentiment or topic. Data labeling
can be performed manually or automatically, with manual labeling involving inspecting
and tagging each piece of data via the use of data labeling software.

There are two main approaches to data labeling: automated data labeling and manual
data labeling. Manual data labeling allows for close control over the labeled data and the
ability to refine the labeling taxonomy. However, it can be highly time-consuming and
prone to human error.

Data labeling experts also use AI models for auto-labeling, where a human verifies
and corrects the labels generated by the AI. The corrected data are then used to re-train the
auto-label AI, which is eventually added to the pool of labeled training data.

In machine learning and classification tasks, hierarchical class labels are used to organize
and represent complex relationships between different classes or categories. Instead of
having a flat structure where each class is independent, hierarchical class labels introduce a
hierarchical or tree-like structure that captures the hierarchical relationships between classes.

3.2. Hierarchical Classification Types

Hierarchical class labels can be applied to different types of classification problems,
such as multiclass, multilabel, and multi-tag classification.

3.2.1. Multiclass Classification

In multiclass classification, each instance or example is assigned to one and only
one class from a set of mutually exclusive classes. Hierarchical class labels in multiclass
classification can be organized into a hierarchy, where each class is a parent or child of
other classes [4]. For example, in a classification problem related to animals, we could have
a hierarchy with classes like “Animal” as the parent class, and subclasses like “Mammal”,
“Bird”, and “Reptile”.
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3.2.2. Multilabel Classification

Multilabel classification deals with instances that can belong to multiple classes si-
multaneously. Hierarchical class labels in multilabel classification can represent multiple
levels of class relationships [30]. An example of this in a hierarchical context could be
classifying academic papers into different research areas. The hierarchy could be structured
with “Science” at the top level, followed by “Physics”, “Chemistry”, “Biology”, etc. at
the next level, and then specific subfields like “Quantum Physics”, “Organic Chemistry”,
“Molecular Biology”, etc. at the bottom level. Each paper could be associated with multiple
research areas, and the hierarchical structure allows these associations to be captured across
different levels of granularity.

3.2.3. Multi-Tag Classification

Multi-tag classification is similar to multilabel classification, but this method allows
multiple tags to be assigned to each instance, rather than considering them as classes [31].
Hierarchical class labels in multi-tag classification can capture the complex relationships
between different tags [32]. An example of this in a hierarchical context could be tagging
posts on a social media platform. The hierarchy could be structured with broad categories
like “Sports”, “Entertainment”, “Technology”, etc. at the top level, followed by more
specific categories like “Football”, “Movies”, “Smartphones”, etc. at the next level. Each
post could be associated with multiple tags, and the hierarchical structure allows for these
associations to be captured across different levels of specificity [33].

In all these types of classification, the hierarchical structure of class labels provides
a way in which we can model and utilize the relationships and dependencies between
different classes, thus enhancing the interpretability and flexibility of the classification
model. In this article, we discuss Multiclass Hierarchical Classification.

3.3. Dataset

For hierarchical classes, we use the Global Product Classification (GPC) [34]. It is a
standardized system developed by GS1 https://www.gs1.org/ (accessed on 15 January
2024), a global standards organization, in order to classify products and services for efficient
communication and data exchange in supply chains. The GPC provides a hierarchical struc-
ture, categorizing products into segments, families, classes, bricks, and attributes/attribute
values (Table 1).

Table 1. Dataset example.

Brick Name Product Description

Air Fresheners/Deodorizers (Non Powered) Air Wick Aqua Mist Tropical Bliss Air Refresher
Air Fresheners/Deodorizers (Non Powered) Air Wick Fresh Matic Spring Blossoms Automatic Ultra Spray Refill
Air Fresheners/Deodorizers (Non Powered) airBoss Air Freshener Rainfresh
Air Fresheners/Deodorizers (Non Powered) airBoss Closet Odor Eliminator
Air Fresheners/Deodorizers (Non Powered) Aura Cacia Aromatherapy Diffuser Refill Pads

Alcoholic Pre-mixed Drinks Mike’s Harder Black Cherry Lemonade
Alcoholic Pre-mixed Drinks Mike’s Harder Black Cherry Lemonade—4 CT
Alcoholic Pre-mixed Drinks Mr & Mrs T Non-Alcoholic Lemon Tom Collins Mix
Alcoholic Pre-mixed Drinks Mr. & Mrs. T Non-Alcoholic Pina Colada Mix
Alcoholic Pre-mixed Drinks Mr. & Mrs. T Non-Alcoholic Strawberry Daiquiri-Margarita Mix

Apple/Pear Alcoholic Beverage—Sparkling Crispin Honey Crisp Hard Cider
Apple/Pear Alcoholic Beverage—Sparkling Crispin Honey Crisp Hard Cider
Apple/Pear Alcoholic Beverage—Sparkling Hornsby’s Hard Cider Amber Draft—6 PK

Bakeware/Ovenware/Grillware (Non Disposable) Pyrex Vintage Charm Bowl Set Birds Of A Feather—3 CT
Bakeware/Ovenware/Grillware (Non Disposable) Pyrex Vintage Charm Bowl Set Rise N’ Shine—3 CT
Bakeware/Ovenware/Grillware (Non Disposable) Rachael Ray 2 Piece Set Ceramic Bakeware Oval Bakers 1 ea BOX
Bakeware/Ovenware/Grillware (Non Disposable) Rachael Ray Baker 1 ea BOX
Bakeware/Ovenware/Grillware (Non Disposable) Rachael Ray Bakerware 1 ea CARD
Bakeware/Ovenware/Grillware (Non Disposable) Rachael Ray Bakeware 1 ea BOX

https://www.gs1.org/
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An example of a taxonomy for milk can be found in the GPC system. In the GPC, milk
falls under the segment “Food and Beverage Products” (Segment ID: 10000000). Within
this segment, milk is classified under the family “Dairy Products” (Family ID: 10000001).
The specific class for milk may vary depending on the GPC version and language, but it is
typically categorized under the class “Liquid milk” (Class ID: 10000002).

In our study, we utilize a unique dataset derived from web scraping activities on the
DirectionsForMe website [35]. Each data entry in this dataset comprises a textual product
description and a corresponding category label, termed a ‘brick’, from the GPC [36]. Our
dataset provides a rich source of information for analyzing product descriptions and
their associated GPC categories, offering valuable insights into product classification and
consumer behavior patterns.

In order to rigorously evaluate the performance of different methods, we partitioned our
dataset into three distinct groups (dataset-1, dataset-2, dataset-3), each containing an equal
number of samples per brick (10 samples). These groups spanned 3 segments (Beauty/Personal
Care/Hygiene, Food/Beverage/Tobacco, and Kitchenware and Tableware), 14 families,
32 classes, and 100 bricks, resulting in 1000 samples per group. This stratified sampling
approach ensures a balanced representation of each category across all three groups, thereby
enabling a fair and robust comparison of the methods being tested [37].

Using ground truth labels in our dataset is paramount for our research. Ground truth
labels, in this case, the GPC ‘brick’ labels, serve as the definitive, known classifications
for each product description. These labels provide a reliable standard against which the
annotation of our tested methods can be compared and evaluated. By having a ground truth,
we can objectively measure the accuracy of each method in labeling product descriptions,
identify their strengths and weaknesses, and guide the refinement of these methods.

3.4. Metrics

Measuring the accuracy of our labeling approaches at each level of the GPC (i.e.,
segment, family, class, and brick) is crucial for a comprehensive understanding of the
performance of our methods. Accuracy (1) is an especially suitable metric for our study
due to the nature of our dataset and our research objectives [38]. As our dataset is balanced,
with an equal number of samples per brick, accuracy avoids the potential pitfalls associated
with imbalanced datasets, where a high accuracy can be achieved by simply predicting the
majority class. Furthermore, our goal is to evaluate the overall correctness of our labeling
methods across all categories, rather than focusing on the performance within specific
categories or the balance between precision and recall. In this context, accuracy provides a
straightforward and intuitive measure of performance, reflecting the proportion of product
descriptions that are correctly classified. While other metrics, such as the F1 score, might
be more suitable in cases where false positives and false negatives have different costs or
where the dataset is imbalanced, the simplicity and interpretability of accuracy make it an
ideal choice for our study.

Accuracyannotator =
correct labels
all samples

, (1)

Each level of the GPC hierarchy provides a different granularity of product categoriza-
tion, and the accuracy at each level can shed light on how well our methods can handle
different levels of specificity. For instance, high accuracy at the ‘segment’ level but lower ac-
curacy at the ‘brick’ level may indicate that our methods are better at broad categorization,
but need help with fine-grained classification [39]. We can pinpoint where improvements
are needed by evaluating the accuracy at each level, tailoring our methods accordingly.

Calculating the mean accuracy (2) across all annotators provides a holistic view of the
performance of our labeling methods. This metric averages the accuracy of each annotator,
giving us a single measure that encapsulates the overall effectiveness of our methods at
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different levels of product categorization. It allows us to identify which levels our annotators
are most accurate at and where they struggle, guiding us in refining our labeling process.

Mean Accuracy =
1
n∑1

n Accuracyn annotator (2)

On the other hand, the inter-annotator agreement measures the consistency between
different annotators or labeling methods. In our study, it serves as an indicator of the
reliability and reproducibility of our labeling process. A high inter-annotator agreement
suggests that our labeling methods are robust and yield consistent results, regardless of the
specific method or annotator used.

Fleiss’ Kappa (k) is a statistical measure used to assess the reliability of agreement between
multiple raters when assigning categorical ratings to a number of items or classifying items
(3). It is an extension of Cohen’s Kappa, which is used for the same purpose, but only works
for two raters. Fleiss’ Kappa, on the other hand, works for any fixed number of raters.

k =
pa − pe

1 − pe
(3)

where pa—the observed proportion of agreement, and pe—is the expected proportion due
to chance agreement.

Like most correlation coefficients, k ranges from 0 to 1, where

• 0 is no agreement (or agreement that you would expect to find by chance),
• 1 is a perfect agreement.

This is particularly important in research, as it provides our findings with credibility,
ensuring that they can be reliably replicated in future studies. Furthermore, by comparing inter-
annotator agreement and accuracy, we can gain insights into the trade-off between consistency
(agreement) and correctness (accuracy), guiding us in refining our labeling approaches.

4. Methodology
4.1. Zero-Shot Learning for Automated Data Labeling

Zero-shot learning presents a promising approach to the challenge of automatic label-
ing in short text datasets [40]. This technique, which allows a machine learning model to
classify data accurately that it has never seen before, is particularly well suited to short text
data’s dynamic and diverse nature [41,42]. One of the most powerful tools for zero-shot
learning in NLP is the Bidirectional and Auto-Regressive Transformers (BART) model from
Hugging Face, specifically the ‘bart-large-mnli’ variant [43].

The BART model is a denoising autoencoder for pretraining sequence-to-sequence mod-
els [44]. It works by corrupting the input text and then learning to reconstruct the original
data [45]. The ‘bart-large-mnli’ model is trained on the Multi-Genre Natural Language Infer-
ence (MNLI) dataset, a large-scale, crowd-sourced collection of sentence pairs annotated with
textual entailment information [46].

In the context of short text dataset labeling, the BART model can be used to predict
the label of a given text based on its semantic similarity to predefined label descriptions.
The model treats the task as a textual entailment problem, where the goal is to determine
whether a given label description ‘entails’ the meaning of the text. This approach allows the
model to assign labels to texts based on their inherent semantic content without requiring
any labeled examples of each class in the training data [47].

In conclusion, the ‘bart-large-mnli’ model from Hugging Face offers a powerful and
flexible tool for automatically labeling short text datasets. Its ability to perform zero-shot
learning enables it to easily adapt to new tasks and labels, making it a valuable asset in the
rapidly evolving field of NLP [48].

Employing the ‘bart-large-mnli’ model for zero-shot learning in short text dataset labeling
removes the need for inter-annotator agreement measures [44]. The labeling, performed by
a single deterministic model, ensures consistency, simplifying the evaluation process [49].
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The primary metric becomes accuracy, providing a straightforward measure of the model’s
performance. However, to ensure the highest level of accuracy, it is beneficial to incorporate
a ‘human in the loop’ approach. This allows for the manual reviewing and correcting of the
model’s predictions, further enhancing the quality and reliability of the labeling.

4.2. Ordering Data before Manual Labeling

In our study, we explored the impact of leaf ordering in hierarchical clustering on
the accuracy of our labeling process. Leaf ordering is a technique used in this context to
rearrange the leaves in the resulting dendrogram to reveal the underlying structure of the
data more clearly [50].

Leaf ordering can significantly impact labeling accuracy in text data. By rearranging
the leaves, we can group similar texts more closely together [51]. This not only orders
texts with similar meanings (and thus similar ‘bricks’) close to each other, but also helps
assign more accurate labels, especially when the labels are hierarchical. This is particularly
relevant in our case, where we deal with hierarchical class labels from the GPC system.

We used BART for text embedding to facilitate the clustering and labeling process.
These representations capture the semantic content of the text, allowing us to measure the
similarity between different texts and group them accordingly.

Combining BART embeddings with leaf ordering in hierarchical clustering enhanced
the accuracy of our labeling process and maximized inner-annotator agreement. Therefore,
this combination of techniques provided a powerful tool for the manual labeling of our
short text dataset.

The introduction of leaf ordering in hierarchical clustering within our study is primar-
ily motivated by its ability to improve data interpretability for manual labeling. Arranging
similar items closely in the cluster tree aids labelers in recognizing patterns more efficiently,
thereby enhancing the accuracy of manual labeling. We selected this approach for its adapt-
ability across various hierarchical classification tasks, as we appreciated its potential to
streamline the labeling process in diverse contexts. It is important to note that selecting the
best ordering algorithm was not the aim of our article; instead, we focused on showcasing
how data ordering can benefit manual labeling in hierarchical classification.

4.3. Manual Labeling Process

The labeling tool we use is Label Studio, with a custom XML configuration reflecting
our taxonomy.

<View>
<Text name=“text” value=“$text”/>
<Taxonomy name=“taxonomy” showFullPath=“true” leafsOnly=“true” maxUsages=“1”

toName=“text”>
<Choice value=“FoodBeverageTobacco”>
<Choice value=“Food”>
<Choice value=“Bakery”>
<Choice value=“Bread”/>
<Choice value=“Pastries”/>
<Choice value=“Cakes”/>
</Choice>
<Choice value=“Dairy”>
<Choice value=“Milk”/>
<Choice value=“Cheese”/>
<Choice value=“Yogurt”/>
</Choice>
<Choice value=“FruitsVegetables”>
<Choice value=“Fruits”/>
<Choice value=“Vegetables”/>
<Choice value=“Herbs”/>
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</Choice>
</Choice>
</Choice>
Instructions for Data Labeling

1. Set up Label Studio with the XML configuration adjusted to match the GPC standard
taxonomy (Segment, Family, Class, and Brick).

2. Import the dataset (ordered or not), which consists of text samples that require
annotation (Figure 1).

3. When labeling item descriptions based on the GPC standard, following the hierarchi-
cal structure of Segments, Families, Classes, and Bricks is essential. Here is a detailed
step-by-step guide on how to label item descriptions using the GPC (Figure 2):
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3.1. Understand the item description: Carefully read the item description and note any
critical information, such as ingredients, materials, intended use, or other relevant
attributes. This information will help you determine the most suitable GPC categories.

3.2. Identify the Segment: Start by selecting the Segment (top-level category) that best
describes the item. Segments are broad categories that cover a wide range of products.
Examples of Segments include Food and Beverage, Cleaning Products, and Self Care.
Choose the Segment that is most relevant to the item description.

3.3. Select the Family: Within the Segment, identify the Family (subcategory) to which the
item belongs. Families are more specific than Segments and provide a narrower scope
of categorization. For example, within the Food and Beverage Segment, you may
have Families like Dairy, Bakery, and Processed Meat Products. Choose the Family
that best matches the item description.

3.4. Determine the Class: Identify the Class (sub-subcategory) under which the item falls
within the selected Family. Classes further subdivide Families, providing a more
refined categorization. For example, you may have Cheese, Milk, and Yogurt Classes
within the Dairy Products Family. Select the Class that corresponds most closely to
the item description.

3.5. Choose the Brick: Finally, within the chosen Class, select the Brick (finest level of
categorization) that best describes the item. Bricks represent the most specific and
granular level of the GPC taxonomy. For instance, within the Cheese Class, you may
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have Bricks like Blue Cheese, Cheddar Cheese, and Mozzarella Cheese. Choose the
Brick that accurately represents the item based on the description.

3.6. Maintain consistency: Ensure you follow the GPC structure and guidelines consis-
tently throughout the labeling process. Each item should be labeled with one Brick. In
cases where multiple Bricks may seem applicable, choose the one that best represents
the item’s primary characteristics or intended use.

3.7. Quality control: Regularly review your labeling progress and check for any inconsis-
tencies or errors. If necessary, correct any mistakes and ensure that the labeled dataset
is accurate and consistent with the GPC standard.

3.8. When encountering unknown items or items that do not seem to fit into the existing
GPC taxonomy, follow these steps to handle them:
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• Re-examine the item description: Carefully reread the item description and ensure
you have not missed any crucial information that could help identify the appropriate
category. Sometimes, important details might be overlooked in the initial review.

• Research the item: If the item is unfamiliar, conduct some research in order to gain a
better understanding of the product. This may include searching the internet, referring
to product catalogs, or consulting with experts. The additional information gathered
can help determine the most suitable category.

• Flag the item: If you are unable to determine an appropriate category even after
researching and considering related categories, flag the item for further review. This
can be completed using a specific label, such as “Unknown” or “Requires Review”.
These flagged items can then be revisited and discussed with your team, supervisor,
or subject matter expert to determine the best course of action.
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5. Results and Discussion

In order to compare the accuracy of the proposed approaches to data labeling, a series
of experiments was conducted.

5.1. Experiment 1: Zero-Shot Learning

We applied zero-shot learning to label dataset-1 in the first experiment automatically.
We utilized the ‘bart-large-mnli’ model from Hugging Face, which is capable of classifying
texts into categories based on their inherent semantic content without requiring any labeled
examples of each class in the training data. This experiment served as a baseline, providing
an initial measure of the feasibility and effectiveness of automatic labeling for our dataset.
Zero-shot learning, central to our methodology, allows for the dynamic classification of text
based on conceptual similarity and context rather than relying on a pre-defined label set,
thus significantly enhancing the flexibility and scalability of the manual labeling processes
in hierarchical classification tasks.

The hierarchical application of zero-shot learning, from the broadest categories at the
Segments level down to the more specific entities at the Bricks level, enables a nuanced
and layered approach to classification. By applying zero-shot learning in this top-down
manner, we ensure that each subsequent level of classification is informed by the context
and categorizations established at the higher levels, thereby optimizing the coherence and
accuracy of the labeling process across the hierarchy.

5.2. Experiment 2: Manual Labeling

We employed a manual labeling process for dataset-2 in the second experiment. Five
annotators independently assigned labels to each text in the dataset. This experiment
allowed us to assess the reliability and consistency of manual labeling, as measured by the
inter-annotator agreement, and to compare its accuracy with that of the automatic labeling
from the first experiment.

5.3. Experiment 3: Manual Correction

We introduced a ‘human in the loop’ approach in the third experiment. The same five
annotators from the second experiment manually reviewed and corrected the labels that
dataset-1 assigned via the automatic method used in the first experiment. This experiment
aimed to combine the strengths of automatic and manual labeling, leveraging the former’s
speed and consistency with the latter’s nuance and expertise.

In our combined approach of manual checks on zero-shot automatic labeling, the
decision to incorporate manual intervention is guided by the principle of using the zero-
shot model’s output as a suggestion rather than a definitive classification. This approach
acknowledges the inherent limitations of even the most advanced AI models in capturing
the full context and nuances of hierarchical classification tasks, especially in domains with
highly specialized or nuanced categories.

This flexible combined methodology allows us to leverage the efficiency and scalability of
zero-shot learning while maintaining the accuracy and nuance afforded by human expertise. It
offers a practical framework for researchers applying similar methods, balancing the strengths
of automated and manual labeling processes to achieve high-quality data classification.

5.4. Experiment 4: Manual Labeling with Ordered Data

In the fourth and final experiment, we again employed manual labeling by the same
five annotators, but this time on dataset-3, which had been ordered using leaf ordering in
hierarchical clustering. This experiment aimed to assess the impact of data ordering on the
labeling process. By grouping similar texts, we hypothesized that the annotators would be
able to assign labels more accurately and consistently.

Through these four experiments, we aimed to explore different approaches to labeling,
assess their strengths and weaknesses, and identify the most effective methods for our
specific task.
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The results of our experiments highlight the trade-offs between different labeling
approaches in terms of the labeling time per 1000 samples (Table 2).

Table 2. Time trade-offs between different labeling approaches.

Labeling Approach Labeling Time (per 1000 Samples), mins

Zero-shot automatic labeling 37
Manual check zero-shot automatic labeling 600

Manual labeling 800
Ordered manual labeling 760

The fastest approach was the zero-shot automatic labeling, which took only 37 min
to label 1000 samples. This underscores the efficiency of automatic labeling, which can
process large volumes of data quickly due to the lack of manual intervention.

However, when a manual check was introduced to the zero-shot automatic labeling
in the third experiment, the labeling time increased significantly to 600 min. This increase
reflects the additional time required for human annotators to review and correct the labels
assigned by the automatic method. Despite this increase, the combined automatic–manual
approach was still faster than pure manual labeling.

In the second experiment, pure manual labeling took the longest time, at 800 min for
1000 samples. This result highlights the time-consuming nature of manual labeling, which
requires human annotators to read and understand each text and assign an appropriate label.

In the fourth experiment, the manual labeling of ordered data was slightly faster than
pure manual labeling, taking 760 min for 1000 samples. This suggests that ordering the data
can improve the efficiency of manual labeling, likely by grouping similar texts together,
thereby reducing the cognitive load on the annotators.

4. The zero-shot automatic labeling approach was the least accurate, but was also the
fastest. Manual labeling significantly improved the accuracy across all GPC hierarchy
levels (Table 3). The manual checking of zero-shot automatic labeling further increased
the accuracy, suggesting that combining automatic and manual methods can balance
speed and accuracy (Figure 3).
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Finally, ordered manual labeling achieved the highest accuracy, indicating that data order-
ing can enhance manual labeling efficiency and accuracy. Thus, the optimal labeling method
may depend on the specific balance between speed and accuracy required for the task.
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Table 3. Mean accuracy per experiment.

Approach
Mean Accuracy (%)

Segments Families Classes Bricks

Zero-shot automatic labeling 68 61 57 51
Manual labeling 96 91 86 81

Manual check zero-shot automatic labeling 98 93 89 85
Ordered manual labeling 99 95 92 90

The inter-annotator agreement results provide insight into the consistency of the
labeling process across different annotators (Table 4).

Table 4. Inner-annotator agreement per experiments.

Approach Inner-Annotator Agreement

Manual labeling 0.82
Manual check zero-shot automatic labeling 0.87

Ordered manual labeling 0.91

Manual labeling resulted in an agreement score of 0.82, indicating a high level of
consistency among the annotators. The manual check of zero-shot automatic labeling
further improved the agreement to 0.87, suggesting that combining automatic and manual
labeling can enhance consistency. Finally, ordered manual labeling achieved the highest
agreement score of 0.91, indicating that ordering the data can not only enhance accuracy, as
seen in the previous results, but can also improve the consistency of manual labeling.

6. Conclusions

This research explored various approaches to labeling short text datasets, specifically
focusing on using zero-shot learning, manual labeling, and a combination of both. The results
highlighted the trade-offs between speed, accuracy, and consistency in the labeling process.

Zero-shot automatic labeling, while the fastest method, achieved the lowest accuracy
and did not require inter-annotator agreement measures. Manual labeling, although time-
consuming, significantly improved the accuracy and demonstrated high inter-annotator
agreement, thus emphasizing the value of human expertise in the labeling process.

Combining automatic and manual labeling, where manual checks were introduced
to zero-shot automatic labeling, provided a balance between speed and accuracy. This
approach also improved the inter-annotator agreement, indicating enhanced consistency in
the labeling process.

The introduction of leaf ordering in hierarchical clustering for manual labeling further
improved both the accuracy and inter-annotator agreement. This suggests that data order-
ing can enhance the efficiency and consistency of manual labeling, making it a promising
strategy for optimizing the labeling process.

In conclusion, the optimal labeling method depends on the specific requirements of
the task. While automatic labeling offers speed, manual labeling provides higher accuracy
and consistency. A combined approach or the use of data ordering techniques can offer a
balance between these factors, enhancing the overall effectiveness of the labeling process.
Future research may explore these methods in more depth or investigate other strategies
for optimizing the labeling of short-text datasets.

This article underscores the critical role of data sorting, while also acknowledging
the inherent limitations and obstacles tied to our proposed methodologies. Variations
in the nature of the data, particularly across different textual domains, might impact the
efficacy of sorting strategies due to the distinct characteristics of each domain. Furthermore,
the embedding methods employed for sorting warrant careful consideration, as their
effectiveness can differ based on the specific requirements of the text being analyzed.
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Additionally, the need for significant computational resources to execute complex sorting
and embedding processes could pose challenges, especially for those with constrained
computational access. By discussing these limitations, we aim to provide a more rounded
perspective on our methodology, paving the way for future research to address these issues.

To address the practical implications of our research findings for real-world appli-
cations, it is essential to emphasize how the methodologies explored in this study can
be seamlessly integrated into various operational environments to enhance the efficiency
and accuracy of short-text dataset labeling. Our exploration of zero-shot learning, manual
labeling, and their combination, alongside the use of leaf ordering in hierarchical clustering,
provides a comprehensive toolkit that can be adapted to improve data processing work-
flows in different industries, ranging from customer service and social media monitoring
to content categorization and sentiment analysis.
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