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1. Relation between DIV theory and effective-dimension theory

In this supplement we will verify both the Effective-dimension theory[1] and the
dangerous irrelevant variable(DIV) theory[2] have compeletly same dynamics scaling form
and finite-size scaling(FSS)[3,4]. We set out to the langevin equation of ϕ4 model

∂ϕ(x, t)
∂t

= −λ
δH

δϕ(x, t)
+ ζ (S1)

with

H =
∫

ddx[
1
2

τϕ(x, t)2 +
1
2
(∇

σ
2 ϕ(x, t))2 − hϕ(x, t) +

1
4

uϕ(x, t)4] (S2)

Where H is effective Hamitonian, kinetic coefficient λ is positive, u and τ represent cou-
pling constant and reduced temperature corresponding to distance between T and critical
temperature Tc respectively. ∇σ/2 represents spatial long-range interactions algebraically
decaying with an exponent d + σ[5]. For σ = 2, short-range interaction is recovered. The
Gaussian noise ζ in Eq.(S1) is satisfied with

< ζ(x, t) >= 0,

< ζ(x, t)ζ(x′, t′) >= 2λδ(x − x′)δ(t − t′).
(S3)

Correspondingly, integrating over the noise ζ and introduing the auxiliary field ϕ̃(x, t), the
effective Lagrangian L including t is well known as[6–9]

L =
∫

ddxdtϕ̃(x, t)[
∂ϕ(x, t)

∂t
+ λ

δH
δϕ

− λϕ̃(x, t)ϕ̃(x, t)], (S4)

Given the dimensions of the coordinate or correlation length as [x] = [ξ] = −1 and
assuming that L is dimensionless, we can determine the dimensions of other variables, []
denotes dimension, as

[τ] = σ, [ϕ] =
d − σ

2
, [ϕ̃] =

d + σ

2
,

[u] = 4 − 2σ, [h] =
d + σ

2
, [t] = −σ.

(S5)

due to the shadow relation
[ϕ] + [ϕ̃] = d, (S6)

the dimensional analysis for L is equivalent to the dimensional analysis for H. The mean-
field exponents is only recovered and equal to the Gaussian exponents at the upper critical
dimension d = dc, where dc = 2σ. The upper critical dimension is derived from dimension-
less of u and solely depends on the σ of spatial interaction. According to the definitions
ξ = τ−ν, for d = dc the relations between critical exponents and the dimensions of variables
are given as:

[τ] =
1
ν

, [ϕ] =
β

ν
, [h] =

βδ

ν
, [t] = −z, (S7)
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where ν, β, and δ are critical exponents. The remaining exponents, such as α, γ, and η, can
also be obtained through scaling laws[10]. z is the dynamic exponent. Above the upper
critical dimension, due to the influence of the DIV u, the Gaussian exponents no longer
align with the mean-field exponents, and hyperscaling law breaks down[11]. Neither the
Gaussian exponents nor the mean-field exponents match the numerical results obtained
through FSS[12]. DIV theory is a method to unveil the critical properties above the upper
critical dimension by introducing a transformation ϕ′ = u1/4ϕ, the others also have the
transformations[2]

τ′ = u− 1
2 τ, h′ = hu− 1

4 . (S8)

After transformations, the dimension of variables can be expressed as

[τ′] =
d
2

, [ϕ′] =
d
4

, [h′] =
3d
4

(S9)

according to Eq.(S9), the scaling function of free energy density and FSS can be expressed
as:

f (τ′, h′, L−1) = b−d f (τ′b
d
2 , h′b

3d
4 , L−1b), (S10)

for b = L, we can obtain the FSS

f (τ′, h′) = L−d f (τ′L
d
2 , h′L

3d
4 ). (S11)

Applying the transformations along the lines of DIV theory to the dynamic part yields a
corresponding translation as ϕ̃′ = u1/4ϕ̃, thus, the transformation also derives t′ = tu1/2

corresponding to the form u−1/2∂ϕ′/∂t in L. The scaling function of free energy density
including t′ instead ot t for L → ∞ can be expressed as

f (τ′, h′, t′) = b−d f (τ′b
d
2 , h′b

3d
4 , t′b−

d
2 ), (S12)

where the scaling form of t′ is derived from [t′] = −d/2, by setting the scaling factor as
b = t′2/d, Eq.(S12) becomes

f (τ′, h′, t′) = t′−2 f (τ′t′, h′t′
3
2 , 1). (S13)

Eq.(S13) is dynamics scaling above the upper critical dimension, the scaling form is inde-
pendent with σ and spatial dimension d.

Another method to solve the argument about mean-field theory and FSS is Effective-
dimension theory. In this theory, the effective spatial dimension are still fixed at upper
critical dimension when d > dc. It replaces the corrections of the scale field with corrections
of spatial dimension by using the following transformations

ϕ′ = u
1
2 ϕ, ϕ̃′ = u

1
2 ϕ̃, h∗ = hu

1
2 . (S14)

Correspongly, the Hamitonian H and Lagrangian L become

H = u−1
∫

ddx[
1
2

τϕ′(x, t)2 +
1
2
(∆

σ
2 ϕ′(x, t))2

−h∗ϕ′(x, t) +
1
4

ϕ′(x, t)4],

L = u−1
∫

ddxdtϕ̃′(x, t)[
∂ϕ′(x, t)

∂t
+ uλ

δH
δϕ′

−λϕ̃′(x, t)ϕ̃′(x, t)],

(S15)
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As shown in Eq.(S15), the temporal integral
∫

dt is not influenced by u, but the integrals
for space change to u−1

∫
ddx. Since FSS is dominated by the zero wave-number mode,

and finite wave-number modes are damped by gradients for d > dc[13], this leads to an
effective-dimension of d + [u] = dc, corresponding to the dimension of u−1

∫
ddx, and the

effective volume is V′ = Vu−1. Thus, L′ = Lu−1/d and [L′] = dc/d. Therefore, the scaling
function for free energy density and FSS are given by

f (τ, h, t, L′−1) = b−dc f (τbσ, h∗b
3σ
2 , tb−σ, L′−1b

dc
d ),

f (τ, h∗) = L′−d f (τL′ d
2 , h∗L′ 3d

4 ).
(S16)

FSS derived from Effective-dimension theory is also agreement with QFSS, QFSS suggests
that the correlation length is no longer directly proportional to the system size L, but
instead, it is represented as L ∝ ξd/dc [14]. Compare Eq.(S16) and Eq.(S11), both DIV theory
and Effective-dimension theory have indentical FSS form. On other hand due to t is not
influenced by u−1, setting b = t1/σ, the dynamic scaling form of free energy density is
described as

f (τ, h, t) = t−
dc
2 f (τt, h∗t

3
2 , 1). (S17)

Since dc = 2σ, Eq.(S17) is the same as Eq.(S13). As results of scaling analysis about FSS and
dynamics scaling form, the same FSS and dynamics scaling form have been obtained by
Effective-dimension theory and DIV theory, this phenomena also result in the same values
about β, γ, δ and α.

2. Landau-Ginzburg model for the fractal time process

In order to verify the critical exponents above upper critical dimension, we simulate
2D Landau-Ginzburg model with temporal fractional derivatives as

C
t0

Dθ
t ϕ(x, t) = −λ

δH
δϕ(x, t)

+ ζ, (S18)

where

H =
∫

ddx[
1
2

τϕ(x, t)2 +
1
2
(∇ϕ(x, t))2 − hϕ(x, t) +

1
4

uϕ(x, t)4]. (S19)

since λ and u are constant, their values will not affect the critical exponents, therefore
we set λ = u = 1 for convenience, τ = τ0 + Rt where R is heating rate. Moreover, the
fractional order θ should be smaller than 0.5, we choose θ = 0.2. The left of Eq.(S18) is
Caputo fractional derivative and can be expressed as

C
t0

Dθ
t ϕ(t) =

1
Γ(1 − θ)

∫ t

t0

dt̃
ϕ̇(t̃)

(t − t̃)θ
. (S20)

We discretize the integral of t̃ from t0 to t uniformly as t1, t2, t3...ti...tN , set N∆t = t − t0
and ∆t = ti − ti−1 = 0.01θ , where N = 40 is cut-off, according to linear interpolation we
can obtain

1
Γ(1 − θ)

∫ t

t0

dt̃
ϕ̇(t̃)

(t − t̃)θ
=

1
Γ(1 − θ) ∑

i

∫ ti

ti−1

ϕ̇(t̃)
(t − t̃)θ

dt̃, (S21)

where

ϕ̇(t̃) =
ϕ(ti)− ϕ(ti−1)

∆t
. (S22)
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Insert Eq.(S22) into Eq.(S21) can obtain

1
Γ(1 − θ) ∑

i

∫ ti

ti−1

ϕ̇(t̃)
(t − t̃)θ

dt̃ =
ϕ(ti)− ϕ(ti−1)

Γ(1 − θ)∆t ∑
i

∫ ti

ti−1

1
(t − t̃)θ

dt̃, (S23)

since the interal of t̃ can be solved in Eq.(S23), then the left of Eq.S20 becomes

C
t0

Dθ
t ϕ(t) =

1
Γ(2 − θ)

N

∑
i

ϕ(ti)− ϕ(ti−1)

∆t
[(t − ti−1)

1−θ − (t − ti)
1−θ ], (S24)

due to tN = t, we can obtain the finite difference scheme of Caputo fractional derivative as

C
t0

Dθ
t ϕ(t) =

1
Γ(2 − θ)

ϕ(t)
∆tθ

+
1

Γ(2 − θ)
f1 +

1
Γ(2 − θ)

f0, (S25)

where

f1 =
N−1

∑
i

ϕ(ti)

∆tθ
[(N − 1 − i)1−θ − (N − i)1−θ ]− [(N − i)1−θ − (N + 1 − i)1−θ ],

f0 =
ϕ(ti)

∆tθ
[(N − 1)1−θ − N1−θ ].

(S26)

If N is big enough, f0 also can be expressed as

f0 = 1 −
N−1

∑
i
[(N − 1 − i)1−θ − (N − i)1−θ ]− [(N − i)1−θ − (N + 1 − i)1−θ ]. (S27)

In addition to the form on the left of the Eq(.S18), the evolution of ϕ(t) also depends on the
state on the right side of the previous moment, δH/δt is expressed as

δH
δt

∣∣∣∣
t=tN−1

= τϕ(tN−1) + uϕ(tN−1)
3 +∇2ϕ(tN−1), (S28)

For 2D model, ∇2ϕ is expressed as

∇2ϕ(x, y) = ϕ(x + 1, y) + ϕ(x − 1, y) + ϕ(x, y + 1) + ϕ(x, y − 1)− 4ϕ(x, y), (S29)

where (x, y) is spatial coordinate, thus the ϕ(t) can be obtained by the past value of ϕ and
expressed as

ϕ(t) = Γ(2 − θ)
√

∆tθ PP − ∆tθ f1 − ∆tθ f0 − Γ(2 − θ)∆tθ δH
δt

∣∣∣∣
t=tN−1

, (S30)

where PP is random number derived from Gaussian distribution.

3. Ising model with temporal long-range interactions

We also simulate Ising model with temporal long-range interactions as

H = −J ∑
t1<t

∑
<i,j>

si(t)sj(t1)

(t − t1)1+θ (S31)

where J is a positive constant and fixed as 1, si(t) = ±1 denotes spin at i site and t
time, the interactions not only include the nearest-neighbor coupling in space which
is completely same as standard Ising model but also consider the temporal long-range
interactions decaying as (t − t1)

1+θ where 0 < θ < 1. In order to avoiding divergence we
just account for the interactions until t1 < t. Subsequently, we obtain the magnetization
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and susceptibility which are defined as M =< m > and χ = (< m2 > − < m >2)Ld,
where L is lattice size and m = ∑i si/Ld, respectively.

Another model we simulate is Ising model with temporal long-range interactions
decaying as

H = −J ∑
t1<t

∑
<i,j>

si(t)sj(t1) exp(− t − t1

T0
) (S32)

where T0 is characteristic time, the stronger the connection with the past, the greater T0.
Although the latter’s interaction takes a completely different form from the former, they
both take into account temporal long-range impacts. Above the upper critical dimension, to
demonstrate that the critical exponents caused by time merely take into account the effect of
time as a background and are independent of the specific form, we suggest an interactions
form for exponential decay. Metropolis Monte carlo is a method of simulating random
processes through a random number and is widely used to describe equilibrium states and
dynamic processes[15–18]. In model(S31) and model(S32) the flipping probability P of spin
si is satisfied with

P = exp(
−∆H

KT
) (S33)

where ∆H is the energy difference between before and after spin flipping, K is Boltzmann
constant and T is temperature. Although Metropolis Monte carlo has argument about
simulating interactions including t, it is just a method to assist in verifying that the critical
exponents is independent with specifics of temporal interactions. If the results show that
both of model(S31) and (S32) are consistent with theoretical prediction and similar to the
results of Landau-Ginzurg model with fractal time process, then our relatively casual
simulations are also quite convincing.
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