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Abstract: Unmanned aerial vehicle (UAV) aerial images often present challenges such as small target
sizes, high target density, varied shooting angles, and dynamic poses. Existing target detection
algorithms exhibit a noticeable performance decline when confronted with UAV aerial images
compared to general scenes. This paper proposes an outstanding small target detection algorithm
for UAVs, named Fine-Grained Feature Perception YOLOv8s-P2 (FGFP-YOLOv8s-P2), based on
YOLOv8s-P2 architecture. We specialize in improving inspection accuracy while meeting real-time
inspection requirements. First, we enhance the targets’ pixel information by utilizing slice-assisted
training and inference techniques, thereby reducing missed detections. Then, we propose a feature
extraction module with deformable convolutions. Decoupling the learning process of offset and
modulation scalar enables better adaptation to variations in the size and shape of diverse targets. In
addition, we introduce a large kernel spatial pyramid pooling module. By cascading convolutions,
we leverage the advantages of large kernels to flexibly adjust the model’s attention to various regions
of high-level feature maps, better adapting to complex visual scenes and circumventing the cost
drawbacks associated with large kernels. To match the excellent real-time detection performance of the
baseline model, we propose an improved Random FasterNet Block. This block introduces randomness
during convolution and captures spatial features of non-linear transformation channels, enriching
feature representations and enhancing model efficiency. Extensive experiments and comprehensive
evaluations on the VisDrone2019 and DOTA-v1.0 datasets demonstrate the effectiveness of FGFP-
YOLOv8s-P2. This achievement provides robust technical support for efficient small target detection
by UAVs in complex scenarios.

Keywords: unmanned aerial vehicle; small object detection; Fine-Grained Feature; YOLOv8

1. Introduction

The rapid development and exceptional flexibility of unmanned aerial vehicle (UAV)
technology have positioned it as a critical driver across various industries. UAV target
detection, a crucial application in UAV technology, finds widespread use in scenarios
such as traffic surveillance [1], marine environment monitoring [2], and fire detection [3],
providing efficient means for real-time data collection and detection in these domains.

The definition of small targets in the COCO [4] dataset is based on an absolute scale,
where targets with a resolution smaller than 32 pixels × 32 pixels are considered small.
Another definition is based on a relative scale, where targets occupying less than 0.01% of
the original image are classified as small targets. This study categorizes targets defined by
both absolute and relative scales as small targets. Due to the constraints of the unmanned
aerial vehicle (UAV) target detection task, most targets captured from long distances are
small, with complex backgrounds often leading to scenes with dense target distributions.
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Current state-of-the-art general target detection algorithms [5–7] struggle to perform well
in such challenging datasets. The main reason is the targets’ limited pixel information,
making them susceptible to background interference, resulting in models failing to extract
high-quality feature maps containing subtle features such as small targets’ edges, textures,
and colors. While YOLOv8s achieves a mAP_50_95 score of 44.9% on the COCO validation
set, the experimental results of this study on the VisDrone2019 validation set yield only a
25.1% mAP_50_95 score. Some UAV aerial missions also require real-time detection, which
requires balancing accuracy and latency in the model. Therefore, further refinement and
optimization of target detection algorithms are still required in the UAV aerial photography
domain to enhance their applicability and performance.

In recent years, innovative solutions have emerged, focusing on multi-scale feature fu-
sion, data augmentation, and attention mechanisms, intending to enhance the performance
and robustness of small target detection in unmanned aerial vehicles (UAVs). The Feature
Pyramid Network (FPN) [8], leveraging the inherent multi-scale pyramid hierarchical
structure of deep convolutional networks, constructs high-level semantic feature maps
across all scales. This enhances the adaptability of target detection algorithms to scale
variations, emphasizing the importance of multi-scale fusion in target detection models.
Previous studies [9–12] demonstrate that well-designed fusion strategies effectively en-
hance the perceptual capabilities of models for small-sized targets, improving the accuracy
and robustness of small target detection. However, they have not effectively balanced
detection accuracy and speed.

Data augmentation techniques, incorporating geometric transformations, optical trans-
formations, and deep learning methods [13–16], provide algorithms with richer training
samples, facilitating more comprehensive learning of features representing small targets.
Addressing the scarcity of small targets in images, reference [17] improves model per-
formance by oversampling and duplicating small targets, addressing the limitations of
conventional target detection algorithms. Attention mechanisms, extensively studied in
prior literature [18–20], assist models in focusing more finely on target regions. Refer-
ences [21,22] introduces attention mechanisms tailored for small targets, demonstrating
powerful inference capabilities and enhancing the accuracy of small target detection. A dual-
path attention module is designed in [23], capturing spatial features with spatial attention
and suppressing irrelevant information with channel attention, effectively capturing critical
information of small targets while mitigating the impact of background noise. Self-attention
mechanisms, capable of perceiving global information in images rather than being limited
to local regions, have propelled Transformer models to significant achievements in small
target detection [24,25].

In this paper, we propose a UAV small target detection algorithm named FGFA-
YOLOv8s-P2, focusing on improving detection accuracy while maintaining detection speed.
Due to the insufficient pixel information for the model to learn effective patterns in UAV
small target detection, we comprehensively consider data processing, feature map extrac-
tion, and detection speed. As general object detection algorithms demonstrate excellent
detection performance for common targets, it is reasonable to expect similar effectiveness
when treating small targets as common targets. Hence, we introduce slicing-aided tech-
niques [26] for overlapping image slicing. Aerial images exhibit complex and diverse target
distributions and shapes, posing challenges to the adaptability of the feature extraction
module in general object detection algorithms. In order to address this issue, previous
research [27] introduced deformable convolution, which was further improved by [28,29]
with satisfactory results. However, we find that [29], through depth-wise separable convo-
lutions, inaccurately couples the learning of offsets and modulation scalar, hindering the
model’s ability to grasp details of small targets. Thus, we propose an improved deformable
convolution by decoupling the learning of offsets and modulation scalar to enhance detec-
tion accuracy. Jierun Chen et al. [30] proposed partial convolutions to reduce redundant
computations and memory access. However, experimental findings indicate that this
method may reduce the accuracy of small target detection by 1.6% in mAP_50_95 on the
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DOTA validation set. To meet the demand for real-time detection, we draw inspiration
from partial convolutions and design stochastic partial convolution modules, achieving
accelerated detection speed without compromising accuracy.

YOLOv8, the latest iteration in the YOLO series, is acclaimed for its lightweight net-
work architecture while maintaining high precision. However, in the domain of UAV target
detection, its performance is significantly compromised due to excessive downsampling.
To better harness the detailed information within low-level, high-resolution feature maps,
this study opts to enhance the YOLOv8s-P2 as the benchmark model. Its optimization
encompasses data processing, network structure, and model lightweighting. Validation is
conducted using the VisDrone2019 and DOTAv-1.0 datasets, and the enhancement effects
of different improvements are systematically evaluated through ablation experiments. The
FGFA-YOLOv8s-P2 achieves a mAP_50 score of 48.3% on the VisDrone2019 validation
set, with 136.4 FPS on an RTX 2080Ti GPU, outperforming other advanced small target
detection algorithms in both speed and accuracy. The main contributions of this paper are
as follows:

(1) Introduction of slicing assistance for the first time during both training and inference
phases of YOLOv8s-P2, enhancing target pixel information.

(2) Improvements in the backbone network for high-quality feature map extraction:

a: Design of the Large Kernel Spatial Pyramid Pooling Fast module, enabling high-
level feature maps to consider long-range dependencies, local dependencies, and
channel adaptability, enhancing the model’s understanding of complex scenes.

b: Design the feature extraction module with deformable convolutions, decoupling
the learning processes of offset and modulation scalar, enhancing target localiza-
tion and adaptability to targets with different scales and shapes.

(3) A Random FasterNet Block has been designed and applied to the neck network. It
introduces randomness into convolution operations and incorporates non-linear trans-
formations by adding depth-wise convolutions followed by point-wise convolutions,
enhancing the model’s robustness. This approach accelerates detection speed while
maintaining the original feature representation of convolution operations.

2. Related Work
2.1. Multi-Scale Feature Fusion

Improving feature fusion aims to provide more semantic information to lower-level
feature maps while preventing the original responses of small targets from being over-
whelmed by deeper signals. This is a nuanced consideration. Inspired by the simple yet
effective design of the Feature Pyramid Network (FPN), PANet [31] enriches feature hierar-
chies through bidirectional pathways, enhancing deeper features with precise localization
signals from the lower levels. Tan et al. [32] propose an efficient Weighted Bi-directional Fea-
ture Pyramid Network (BIFPN), introducing learnable weights for cross-scale connections
to achieve advanced feature fusion. SPPNet [33] guides relationships between adjacent
layers to direct appropriate features from deep to shallow layers, avoiding inconsistencies
in gradient calculations between different layers. If both adjacent layers detect an object,
the deep layer can provide more semantic features, optimizing simultaneously with the
next layer. Shahin et al. [34] introduce the SVA module, fusing spectral saliency feature
maps and spatial feature maps using an additive fusion function. This effectively utilizes
enhanced spectral saliency residual layers for improved detection performance, albeit at
a slower detection speed. Chai et al. [35] designed the IUDet-Fusion module, effectively
addressing information loss and scale imbalances caused by the ASPP module. By incorpo-
rating global max-pooling, global average-pooling, and dilated convolutions with dilation
rates of 1, 2, and 3, respectively, the feature information is enriched without sacrificing
information integrity.
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2.2. Data Augmentation

Appropriate data augmentation is crucial in better addressing various changes and
noise in real-world scenarios. To tackle the issue of class imbalance in the training set,
reference [36] extracts instances of minority classes and adds them to new images. Bosquet
et al. [16] propose a novel data augmentation pipeline for small target detection. They
utilize a downsampling GAN to generate large targets into more realistic small targets,
placing them into existing image backgrounds. This approach addresses the challenge of
insufficient small target samples for training. Refs. [26,37] enhances detection performance
by reducing the representation difference between small and large targets. According to
the standards of the COCO dataset, small targets account for up to 60% of the VisDrone
dataset [38]. Limitations in pixel information make targets susceptible to background
noise, posing significant challenges for detection tasks. This paper addresses this issue by
increasing the relative size of the targets, thereby providing the model with more pixel
information.

2.3. Attention Mechanism

The introduction of attention mechanisms aims to focus the model on crucial regions
of the image, thereby enhancing detection performance. Spatial attention mechanisms
deal with spatial relations by emphasizing information input from different locations,
reference [18,39–41] representing different spatial attention mechanisms. The multi-head
self-attention mechanism in [19] flexibly perceives information at different scales in the
image, enabling the network to learn more general and robust patterns than conventional
convolutions. However, it comes with a higher computational cost. Deformable convolu-
tion [27] enables the network to adaptively adjust receptive fields based on target shapes,
mitigating the gap between multi-head self-attention mechanisms and conventional convo-
lutions. Different feature channels represent distinct mapping information, and adaptive
adjustment of the weights for each channel through attention facilitates the exploration of
channel information. Following the introduction of channel attention [20], improvements
have been made in the squeeze part [42], the excitation part [43], and both squeeze and
excitation [44,45].

Building upon this previous work, researchers have proposed new methods for atten-
tion mechanisms in small target detection. Liu et al. [46] designed the context attention
module (COAM) and attention enhancement module (AEM). COAM uses the technique of
hypercolumn with steps in combination with the atrous spatial pyramid pooling (ASPP)
module to generate an attention heat map with contextual information. AEM employs a
single fully connected (FC) layer as the hidden layer to generate a channel attention ma-
trix. This matrix undergoes Hadamard product computation with the Attention Heatmap
Matrix, enhancing feature representation and mitigating the impact of background noise.
Yang et al. [47] propose the Multi-Attention Residual Network, which integrates spatial
attention, channel attention, and self-attention mechanisms. This comprehensive approach
captures spatial structures, channel correlations, and global-local relationships, thereby
improving the model’s perception of targets.

3. Improved Unmanned Aerial Vehicle Target Detection Algorithm

This paper enhances target detection performance in UAV aerial images by improving
the perception of detailed features in the targets. The optimization of data processing is
discussed in detail in Section 3.1, while Section 3.2 focuses on enhancements to the feature
extraction module of the backbone network. Simultaneously, the lightweighting of the neck
network is achieved, as elaborated in Section 3.3. By integrating these key improvements,
significant advancements are achieved in enhancing detection accuracy and balancing the
utilization of computational resources, making the improved model more practical and
efficient. Figure 1 illustrates the network architecture of the improved model, with the
softened-edged dark boxes indicating the introduced enhancement modules in this paper.
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Figure 1. Network Architecture of FGFP-YOLOv8s-P2.

3.1. Data Processing

This paper draws inspiration from the idea of slicing assistance [26] to enhance the
relative size of small targets. Both before training and during inference, slicing operations
are performed. Before training, sliding window slicing is applied to the image with
sequential overlapping based on the overlap ratio and slice size. Slices maintain aspect ratio
adjustments and are input into the model with the original image for training. The same
slicing method is used during inference, maintaining aspect ratio adjustments, and slices
are combined with the original image for inference. The prediction results of each slice are
merged with the prediction results of the entire image, and non-maximum suppression is
applied for filtering. After slicing, the feature extractor can capture more feature information
relative to the original image. Figure 2 provides an example of slicing operations.
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The overlap ratio and slice size are set as hyperparameters. To avoid compromising
the detection performance of large targets and the detection speed, one should ensure
that the slice size is not too small and that the overlap is not too considerable. Through
parameter tuning on the VisDrone2019 validation set, it is found that setting the slice size
to 360 and the overlap to 20% (the same for vertical and horizontal directions) has the most
beneficial effect on the model. Specifically, slicing is shifted to the left or upward for the
remaining images that do not meet the slice size and overlap requirements.
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3.2. Backbone
3.2.1. DC2-DCNv3-C2f

YOLOv8 utilizes traditional convolutional and C2f modules for feature extraction—
however, these modules’ fixed receptive field size results in poor feature extraction quality
for small targets. An excessively large receptive field may lead to losing details, while
one too small may fail to cover the entire target. Additionally, conventional convolutions
are insensitive to changes in the target’s position and incapable of capturing the target’s
subtle boundary features. Motivated by deformable convolutions, this paper proposes
the DC2-DCNv3-C2f module. This adaptive and refined information extraction approach
allows for better focus on target regions, reducing background interference and improving
detection accuracy.

Deformable Convnets v2 (DCNv2) is not well suited for models trained from scratch [29].
Deformable Convolution v3 (DCNv3) [29] introduces three improvements: it borrows the
idea of depth-wise separable convolution, uses modulation scalar as the depth part, and
employs point-wise convolution with shared projection weights between sampled points.
This effectively reduces the computational load of the model. With the introduction of
a multi-group mechanism, each group has independent offsets and modulation scalars,
thus giving the groups different spatial aggregation patterns and enriching the diversity of
feature expression. The normalization of the modulation scalar is adjusted by replacing
the original sigmoid element-wise normalization with softmax normalization, leading
to a more stable convergence during the training process. The formulation is expressed
as follows:

y(p0) =
G

∑
g=1

K

∑
k=1

wg·xg(p0 + pk + ∆pgk)·mgk (1)

where G represents the total number of groups, and K denotes the sampling count of regular
grids. The modulation scalar, denoted as mgk, for the kth sampling point in the gth group,
is obtained through softmax normalization along the K dimension. Here, wg represents the
weights for intra-group channel-wise fully connected connections, while ∆pgk represents
the offset of the sampled point pk corresponding to this group. xg(p0 + pk + ∆pgk) represents
the pixel value after offsetting the k-th sampling point in the regular grid within the g-th
group of feature maps. y(p0) represents a pixel value in the feature map after deformable
convolution.

Offset = FCOffset(DC1(X)) (2)

Modulation = FCmodulation(DC1(X)) (3)

Offset = FCOffset(DCOffset(X)) (4)

Modulation = FCmodulation(DCmodulation(X)) (5)

Formulas (2) and (3) state that DCNv3 utilizes the same depth convolution, DC1, to
generate shared feature maps for offset and modulation scalar. FCoffset and FCmodulation
are channel-wise fully connected operations that generate offset and modulation scalar,
respectively. The model retains specific positioning information while generating offsets
and considers adopting this information during modulation scalar generation. This sharing
approach may lead to the model’s inability to fully exploit the independence between the
two tasks, making it challenging to decouple them effectively. The improved DCNv3 in
this paper employs a more flexible approach, as illustrated in Figure 3. It introduces an
additional depth convolution operation (enclosed in the blue dashed box) alongside the
previous one. These two separate depth convolutions generate independent feature maps
of x1 and x2. Subsequently, two independent point convolution operations are employed
on these feature maps to generate offsets and modulation scalars separately. The two depth
convolution operations in Formulas (4) and (5) are DCoffset and DCmodulation, respectively.
The enhanced module is referred to as the DC2-DCNv3 module, which effectively addresses
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the issue of information loss caused by shared feature maps, contributing to the further
optimization of target positioning and shape information.
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We integrate DC2-DCNv3 with the C2f module of the backbone network. The structure
of the improved C2f module is illustrated in Figure 4b, referred to as the DC2-DCNv3-
C2f module. The DC2-DCNv3-C2f module accepts images processed by slicing-aided
techniques. It can extract adaptive, fine-grained information on feature maps with a larger
relative area of the target and more detailed information.

3.2.2. Large Kernel Spatial Pyramid Pooling Fast Module

In object detection, attention mechanisms aid the model in selectively focusing on key
information relevant to the target, such as edges, semantics, and contextual information
surrounding the target. However, models struggle to attend to these critical details in small
targets in UAV aerial images with complex backgrounds. Therefore, this paper proposes
the Large Kernel Spatial Pyramid Pooling Fast module (LSPPF).

While the introduction of Large Kernel Attention (LKA) successfully addressed com-
putational and memory usage issues associated with large kernel convolutions, detection
performance tends to saturate with increasing kernel size. Further improvements are made
by the Separable Large Kernel Attention (LSKA) [48], decomposing the large kernel into a
depth-wise convolution with a small receptive field and a dilated convolution with a large
receptive field. This approach more effectively captures local and long-range dependencies.
LSKA cleverly divides these convolutional kernels into 1×K and K×1, reducing the growth
of parameters and Floating Point Operations (FLOPs). This design allows an increase in ker-
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nel size to capture global information without imposing a significant computational burden.
The parameters and FLOPs for LSK and LSKA are defined as follows in the equation:

ParamLSK = (2d − 1)2 × C + ⌊k/d⌋2 × C + C × C (6)

ParamLSKA = (2d − 1)× C × 2 + ⌊k/d⌋ × C × 2 + C × C (7)

FLOPsLSK =
(
(2d − 1)2 × C + ⌊k/d⌋2 × C + C × C

)
× H × W (8)

FLOPsLSKA = ((2d − 1)× C × 2 + ⌊k/d⌋ × C × 2 + C × C)× H × W (9)

K represents the size of the convolutional kernel; d denotes the dilation rate; and
H, W, and C represent the input feature map’s height, width, and number of channels,
respectively. The design of this depth-wise convolution leads to savings in both the number
of parameters and FLOPs by “(2d − 1)/2,” and at the location of dilated depth-wise
convolution, the reduction in the number of parameters and FLOPs by “⌊k/d⌋/2”.

The structure of LSKA, as shown in Figure 5a, first involves input features passing
through cascaded vertical and horizontal 1D depth-wise convolutions to capture local
dependencies. Next, they undergo cascaded horizontal and vertical 1D depth-wise dilated
convolutions to capture long-range dependencies. Finally, point-wise convolutions are
applied to capture the importance of each channel.

Figure 5b illustrates the LSPPF module, which embeds the LSKA structure from (a)
into LSPPF. The input to LSKA consists of concatenated feature maps of three max-pooling
layers and a convolutional layer. After LSKA’s point-wise convolutions, the feature map is
element-wise multiplied with the input at corresponding positions, yielding a feature map
with mixed attention.
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The LSPPF module boasts two main advantages: first, it effectively utilizes large
convolutional kernels to capture long-range dependencies in the feature map, enhancing
the model’s understanding of the overall image. Secondly, it restricts the number of model
parameters, effectively avoiding a significant increase in computational load, thereby
improving performance while maintaining model efficiency. Employing the LSPPF module
in the baseline model on the Visdrone2019 dataset resulted in a 1.4% increase in mAP_50
and a 0.8% improvement in recall.

3.3. Neck

Partial convolution exploits the redundancy in the feature map by applying conven-
tional convolution only to part of the input channels. It computes the representative values
for all channels using continuous cp channels in the feature map, leaving the rest of the
channels untouched. This design significantly reduces computational workload. When the
input and output have the same number of channels, the FLOPs (floating-point operations)
for partial convolution are calculated as h × w × k2 × cp

2, where h and w are the height
and width of the input feature map, and k is the kernel size.

Assuming cp represents one-fourth of all channels, the FLOPs of partial convolution
are only one-sixteenth of those of standard convolution. The memory access of partial
convolution is calculated as follows:

h × w × 2cp + k2 × c2
p ≈ h × w × 2cp (10)

The memory access of partial convolution is only one-fourth of standard convolution.
Point convolution is placed after partial convolution to utilize information from all channels.
This decoupling method leverages redundancy between filters and further reduces FLOPs.
These two operators form the core components of FNet.

The proposed Random Partial Convolution (RPConV) is illustrated in Figure 6. In
partial convolution, the selection of channels for regular convolution involves the first cp
channels. In contrast, for random partial convolution, cp channels are randomly chosen
(Random Choice) from the input feature map for spatial feature extraction. Subsequently,
the convolution result is merged with the remaining c-cp channels (Remainder) that were
not selected. As different channels correspond to distinct semantic information and im-
age structures, the random selection of channels during convolution allows for a more
comprehensive learning of these features while reducing computational and memory over-
head. This leads to more affluent and more diverse semantic information in the output
feature map, enhancing adaptability to variations in different scenes and targets, thereby
improving overall adaptability to input data.
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Figure 6. Random Partial Convolution Structure (RPConV).

Figure 7 illustrates the structure of the Random FasterNet Block (RFNet). The RPConV
replaces the partial convolution in the FasterNet Block (FNet) [30]. A depth convolution
layer was added after the first point convolution to utilize spatial information from all
channels effectively. This layer continues the transformation introduced by the point
convolution, introducing more non-linear transformations across channels. The processing
by the depth convolution helps capture more abstract and complex feature patterns. Finally,
the subsequent point convolution reduces the number of channels, allowing the network to
focus on crucial features and alleviate the computational burden.
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Figure 7. Illustrates the structure of the Random FasterNet Block.

The RFNet replaces the bottleneck in C2f, forming the RFC2f module. The RFC2f
module is applied to the position of C2f in the neck. Experimental results demonstrate
that on the DOTA validation set, the RFC2f module achieves a mAP_50 score of 69.4%
and a mAP_50_95 score of 46.5%. Compared to the FC2f module (where FNet replaces
the Bottleneck in C2f), the mAP_50 and mAP_50_95 scores have improved by 2.5% and
2.0%, respectively. There is no significant difference in detection accuracy compared to the
baseline model, but the detection speed has increased to 170.7 FPS, a 5.8% improvement,
with a 10.9% decrease in GFLOPs. This improvement is expected to be crucial in scenarios
requiring real-time detection or lightweight models.

4. Experimental and Analysis
4.1. Dataset Setting

This paper selects the VisDrone2019 [49], DOTA [50], and GDUT-HWD [51] datasets
to validate the effectiveness of the proposed improvement model.

VisDrone2019, collected by the AISKYEYE team at the Machine Learning and Data
Mining Laboratory of Tianjin University in China, spans 14 cities across China. Thou-
sands of kilometers geographically separate these cities and exhibit distinct terrains and
urban layouts, showcasing a wide geographical diversity. The image dimensions in the
VisDrone2019 dataset are approximately 2000 × 1500 pixels, with annotations for 11 object
categories: pedestrians, people, bicycles, cars, trucks, vans, tricycles, tricycles with sun-
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shades, buses, motorcycles, and others. The dataset comprises 6471 images in the training
set, 548 in the validation set, and 1610 in the test set, totaling over 2.6 million manually
annotated bounding boxes. VisDrone2019 features varying shooting heights and camera
angles and diverse lighting conditions, such as insufficient light on rainy days, dim nights,
intense light, and glare, posing challenges for target capture. Most objects are small, densely
distributed, and prone to occlusion.

The DOTA-v1.0 dataset is a large-scale dataset for aerial image object detection, con-
sisting of 2806 aerial images collected from different sensors and platforms. The image sizes
range from 800 to 4000 pixels, with a total annotation of 188,282 instances. The dataset is di-
vided equally into training, testing, and validation sets, each containing 15 common classes:
airplane, ship, storage tank, baseball diamond, tennis court, basketball court, athletic field,
harbor, bridge, large vehicle, small vehicle, helicopter, roundabout, soccer field, and swim-
ming pool. In this study, the original rotated bounding boxes in the dataset are transformed
into horizontal bounding boxes, and the images are cropped into 1024 × 1024 patches with
a spacing of 200. This process results in 15,749 training images and 5297 validation im-
ages. Although the DOTA dataset has fewer instances with occlusion due to its top-down
perspective, it presents challenges with densely populated areas containing numerous
instances and complex backgrounds.

The GDUT-HWD dataset was collected by searching and downloading from the
internet to detect whether people wear safety helmets and identify their respective colors.
The dataset exhibits significant variations in scenes, lighting conditions, visual ranges, and
individual poses. It includes five categories of labels: blue, white, yellow, and red safety
helmets and no safety helmets, totaling 18,893 instances across 3174 images. Small objects,
as defined by the COCO dataset, are the most prevalent in this dataset. In this study, the
dataset was randomly divided into training and testing sets at a ratio of 7:3.

4.2. Experimental Setup

The experimental setup employed Ubuntu 16.04.1 as the operating system. It was
equipped with an Intel (R) Xeon (R) Gold 5218R processor running at 2.10 GHz, 64 GB of
RAM, and two GeForce RTX 2080Ti graphics processors, each with 11GB of VRAM. The
CUDA version used for accelerating deep learning tasks was 11.3. PyTorch 1.11.0 and
torchvision 0.12.0 were utilized for the deep learning model framework.

This study is based on Ultralytics version 8.0.202 of YOLOv8s-P2 for improvement.
No pre-training weights are used for any experiments to ensure fairness in comparing
models. The image input to the network in the ablation experiments is scaled equally to
a width or height of 640, and the remaining portion is filled to 640 using the background.
The important parameter settings for the training process are shown in Table 1.

Table 1. Experimental Parameter Settings.

Param Setup

Epoch 300
Batch 8

Optimizer SGD
Initial Learning Rate. 1 × 10−2

Final learning Rate 1 × 10−4

NMS IoU 0.7
Base weight decay 0.0005

Close Mosaic 0
Optimizer momentum 0.937

Warmup epochs 5
Patience 50
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4.3. Evaluation Metrics

To comprehensively assess the contribution of the proposed improvements to enhanc-
ing detection performance, we utilize mean average precision (mAP), precision, recall,
model parameters (Params), giga floating-point operations per second (GFLOPs), model
size, and frames per second (FPS) as evaluation metrics for model performance. GFLOPs
measure the algorithm’s complexity, where a higher value indicates a greater demand for
floating-point operations. Model size represents the memory occupied by the weight file
generated after model training. Precision and recall are defined by Equations (11) and (12),
respectively,

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

Taking pedestrians in the dataset as an example, TP represents the number of correctly
classified instances as pedestrians, FP represents instances of other classes misclassified as
pedestrians, and FN represents the number of pedestrians misclassified as other classes.
Precision is employed to assess the accuracy of instances classified as pedestrians, indicating
how accurate or precise the classification is. On the other hand, recall evaluates the ability to
find correctly classified pedestrians, measuring the model’s capability to identify authentic
positive samples among all actual positive instances.

AP =
∫ 1

0
P(r)dr (13)

mAP_50 =
1
N∑N

i=1 APi(IOUthresh= 0.5) (14)

mAP_50_95 =
1

10∑j
1
N∑N

i=1 APi(IoU thresh = j) (15)

In Equation (13), AP stands for Average Precision, the area under the Precision Recall
(P-R) curve, representing the average precision for detecting the pedestrian category. mAP
refers to the mean average precision calculated by averaging the AP values across all
categories. In Equation (14), mAP_50 denotes the average precision across all categories at
an Intersection over Union (IoU) threshold of 0.5. In Equation (15), mAP_50_95 represents
the average of ten mAP values calculated for ten different IoU thresholds, denoted by j,
ranging from 0.5 to 0.95 with a step size of 0.05.

4.4. Ablation Study
4.4.1. Impact of DC2-DCNv3

DCNv3 is fused with the C2f module in the same manner as shown in Figure 4b,
referred to as the DCNv3-C2f module. DCNv3-C2f, DC2-DCNv3-C2f, and C2f are used as
feature extraction modules for the backbone network in the benchmark models, and their
performances are compared on the DOTA dataset. Table 2 presents the experimental results
of the DOTA validation set.

Table 2. Influence of Different Feature Extraction Modules on the Backbone Network.

Module Precision [%] Recall [%] mAP_50 [%] mAP_50_95 [%]

C2f 75.1 65.4 69.5 46.1
DCNv3-C2f 76.7 67.9 71.0 48.2

DC2-DCNv3-C2f 77.5 68.5 72.2 49.2

Table 2 and Figure 8 reveal that the introduction of deformable convolution has
enabled the model to adaptively learn receptive fields for objects of different shapes,
effectively enhancing detection accuracy. The proposed DC2-DCNv3-C2f module in this
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paper improves mAP_50_95 by 1.0% and recall by 0.6% compared to the DCNv3-C2f
module. Furthermore, relative to the C2f module, both mAP_50_95 and recall increased
by 3.1%. By decoupling the learning process of offset and modulation scalar through two
depth-wise separable convolution operations, the precise determination of pixel offset
positions has been achieved, facilitating an accurate assessment of the extent to which each
pixel’s displacement is accepted.

Drones 2024, 8, x FOR PEER REVIEW 13 of 22 
 

 

4.4. Ablation Study 

4.4.1. Impact of DC2-DCNv3 

DCNv3 is fused with the C2f module in the same manner as shown in Figure 4b, 

referred to as the DCNv3-C2f module. DCNv3-C2f, DC2-DCNv3-C2f, and C2f are used as 

feature extraction modules for the backbone network in the benchmark models, and their 

performances are compared on the DOTA dataset. Table 2 presents the experimental 

results of the DOTA validation set. 

Table 2. Influence of Different Feature Extraction Modules on the Backbone Network. 

Module Precision [%] Recall [%] mAP_50 [%] mAP_50_95 [%] 

C2f 75.1 65.4 69.5 46.1 

DCNv3-C2f 76.7 67.9 71.0 48.2 

DC2-DCNv3-C2f 77.5 68.5 72.2 49.2 

Table 2 and Figure 8 reveal that the introduction of deformable convolution has 

enabled the model to adaptively learn receptive fields for objects of different shapes, 

effectively enhancing detection accuracy. The proposed DC2-DCNv3-C2f module in this 

paper improves mAP_50_95 by 1.0% and recall by 0.6% compared to the DCNv3-C2f 

module. Furthermore, relative to the C2f module, both mAP_50_95 and recall increased 

by 3.1%. By decoupling the learning process of offset and modulation scalar through two 

depth-wise separable convolution operations, the precise determination of pixel offset 

positions has been achieved, facilitating an accurate assessment of the extent to which 

each pixel’s displacement is accepted. 

 

Figure 8. Influence of Different Feature Extraction Modules on the Model Training Process. Figure 8. Influence of Different Feature Extraction Modules on the Model Training Process.

4.4.2. Impact of RFC2f

The FC2f and RFC2f modules are employed in the neck network and compared with
the C2f module used in the baseline model on the DOTA dataset. The experimental results
for the DOTA validation set are presented in Table 3.

Table 3. Impact of Different Lightweight Modules on the Model.

Module Precision [%] Recall [%] mAP_50 [%] mAP_50_95 [%] GFLOPs FPS

C2f 75.1 65.4 69.5 46.1 36.7 161.3
FC2f 73.6 63.4 66.9 44.5 32.5 175.6

RFC2f 74.9 66.0 69.4 46.5 32.7 170.7
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Table 3 and Figure 9 show that the FC2f module achieves lightweighting at the expense
of precision. The proposed RFC2f module introduces randomness in partial convolutions
and incorporates depth-wise convolutions to accommodate the increased non-linear trans-
formation channels resulting from the point convolutions. This enables the model to
capture richer and more abstract semantic features, deepening its understanding of the
image as a whole while utilizing convolutions with fewer channels. Compared to the
baseline model, mAP_50 decreases by 0.1%, while mAP_50_95 improves by 0.4%. Addi-
tionally, GFLOPs are reduced by 10.9%, and FPS increases by 5.8%. Overall, the model
demonstrates lightweighting without sacrificing precision, affirming the effectiveness of
the RFC2f module.
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4.4.3. Impact of Integrated Enhancements

In this study, we propose four enhancements to the baseline model, aiming to enhance
further the performance of small target detection in unmanned aerial vehicle (UAV) images.
These four improvements include (a) Slicing Assistance for dataset augmentation, (b)
replacing SPPF with LSPPF, (c) adopting the DC2-DCNv3-C2f module for the backbone
network, and (d) employing the RFC2f module for the neck network. To quantitatively
analyze the necessity of each enhancement, we conducted ablation experiments on the
VisDrone2019 dataset, and the results of the test set are presented in Tables 4 and 5.
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Table 4. The ablation study of each improvement point based on the baseline model was conducted
on the VisDrone test set.

Model Precision [%] Recall [%] mAP_50 [%] mAP_50_95 [%]

Baseline 48.6 37.3 36.2 20.8
a 49.9 38.6 38.0 21.7
b 49.7 38.1 37.6 21.4
c 50.1 38.9 38.3 21.8
d 48.5 37.6 36.1 20.9

a + b + c 51.6 39.0 40.9 23.0
a + b + d 50.6 38.8 38.5 22.3

a + b + c + d (our) 51.4 39.2 40.7 23.1

Table 5. Impact of Enhancement Point (d) on Model Lightweight Design.

Model GFLOPs FPS Params [M]

Baseline 36.7 137.0 10.6
a + b + c 36.1 128.4 11.9

d 32.7 148.2 9.2
a + b + c + d (our) 31.8 136.4 10.4

Analysis of Experimental Results in Tables 4 and 5:

1. Slicing Assistance (a): During both model training and inference stages, the use
of slicing assistance resulted in a 1.3% increase in recall, a 1.8% increase in mAP_50, and
a 0.9% increase in mAP_50_95 relative to the baseline model. This demonstrates that
slicing-aided, by enhancing the relative size of targets, effectively alleviated the issue of
missed detections, leading to the most notable improvement in detection accuracy among
the four enhancement points.

2. Integration of LSPPF with the Last Output Layer of the Backbone Network (b):
Fusion of the last output layer of the backbone network with LSPPF resulted in a 1.4%
increase in mAP_50 and a 0.6% increase in mAP_50_95. This indicates that the LSKA
attention mechanism effectively enhanced the focus on crucial information in higher-level
feature maps, improving detection accuracy.

3. Utilizing DC2-DCNv3-C2f Module in the Backbone Network (c): The use of the
DC2-DCNv3-C2f module in the backbone network led to a 1.6% improvement in recall,
a 2.1% improvement in mAP_50, and a 1.0% improvement in mAP_50_95. This module
enhanced the extraction of feature maps by the backbone network to better reflect detailed
information of various target classes, thereby improving the quality of feature maps.

4. Application of RFC2f Module in the Neck Network (d): While there was not a
significant change in accuracy, the RFC2f module resulted in a 10.9% reduction in GFLOPs,
an 8.2% increase in FPS, and a 13.2% decrease in Params. This substantial reduction in
computational load accelerated the model’s image processing speed, making the model
more lightweight.

For the Baseline + a + b + c model, GFLOPs decreased by 1.6%, FPS decreased by
6.3%, Params increased by 12.3%, mAP_50 increased by 4.7%, and mAP_50_95 increased
by 2.2%. The design of cascade convolution and DC2-DCNv3 allows the model to obtain
the benefits of large kernel convolutions with adaptive receptive fields and also reduces
the model computation to a certain extent. However, the need to merge results from
multiple slices during slicing-aided inference led to a 6.3% decrease in FPS. After integrating
enhancement point (d), the decline in inference speed was alleviated, with the FPS of our
model decreasing only by 0.4% compared to the baseline model.

The proposed model in this study achieved a 2.8% improvement in precision, 1.9%
improvement in recall, 4.5% improvement in mAP_50, and an 2.3% improvement in
mAP_50_95 while reducing GFLOPs by 13.4%, Params by 1.9%, and FPS by only 0.4%.
This enhanced detection accuracy and achieved lightweight model design, meeting the
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real-time and accuracy requirements of unmanned aerial vehicle (UAV) target detection
tasks. Specific detection samples from selected scenes are showcased in Figure 8, focusing
on enlarging positions that are difficult to observe closely.

The four images in Figure 10 contain six target categories: car, truck, bus, pedestrian,
motorcycle, and people (some of the hard-to-see areas are shown enlarged). The proposed
improved model has enhanced the detection capability of small targets across various
detection scenarios. However, targets with residual shadows, such as the motorcycle in
the bottom right corner of Figure 10a, and situations involving tiny and densely packed
targets pose significant challenges to the model, leading to inevitable instances of missed
detections. From a high-altitude perspective, the pixel information captured for trucks and
buses appears similar, resulting in potential misidentifications. In Figure 10d, a portion
outlined in the box contained four buses, with the baseline model erroneously detecting
two of them, while the improved model correctly identified all buses. This indicates that
the approach presented in this paper has mitigated this issue.
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Figure 10. Exemplary Detection Results on the VisDrone2019 Test Set. (a) Insufficient lighting, small
targets. (b) At night, small targets. (c) Insufficient lighting, small targets. (d) Complex background,
insufficient lighting, small targets.

Figure 11 illustrates the detection results of the baseline model and the proposed
enhanced model on the GUDT-HWD test dataset. The target categories for the three images
are none, yellow, red, and white. The proposed enhanced model improves detection
performance in drone scenarios and demonstrates excellent detection performance in
helmet detection tasks. This indicates that the proposed enhanced model exhibits good
robustness and applicability.
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Figure 11. Exemplary Detection Results on the GUDT-HWD Test Set.

Missed detection refers to instances where objects are present but detected as back-
ground. The miss detection rate for a certain category is calculated as the number of
missed targets divided by the total number of targets in the dataset. Table 6 indicates
that the improved model exhibits a decreasing trend in missed detection rates across all
categories, highlighting its universality across different categories. The most significant
decrease in missed detection rate is observed in trucks, followed by motorcycles, cars, and
pedestrians. These three categories have many instances in the dataset, and the targets are
tiny, indicating that the proposed improvement method effectively mitigates the problem
of missed detections for small targets.

Table 6. Miss detection rate for Various Object Categories in the VisDrone Validation Set.

Pedestrian People Bicycle Car Van Truck Tricycle Awning
-Tricycle Bus Motorcycle

Baseline 0.69 0.85 0.9 0.26 0.67 0.63 0.75 0.86 0.51 0.64
Our Method
Decrease [%]

0.65
(5.8)

0.82
(3.5)

0.86
(4.4)

0.24
(7.7)

0.64
(4.5)

0.56
(11.1)

0.71
(5.3)

0.84
(2.3)

0.49
(3.9)

0.59
(7.8)

Utilizing Grad-CAM to visualize attention regions in the network contributes to
interpreting the model’s performance. As observed in Figure 12, the improved model
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exhibits more comprehensive attention to small targets in the lower layers compared to
the baseline model. For instance, distant cars in the background of the elevated bridge in
image (a), cars under the intersecting overpass in image (b), black and white cars under the
tree in image (c), and cars in the parking lot in image (d) all receive more effective attention
in the lower layers of the improved model compared to the baseline. In the higher layers of
the improved model, attention to the targets is more extensive, with orange or even deep
red coverage in most regions containing targets. In contrast, the baseline model effectively
attends to close-range targets but fails to cover orange or even deep red regions for distant
targets. This indicates that the proposed improved model effectively prevents information
loss during the downsampling of small targets, demonstrating clear advantages in handling
small targets and overall image understanding.
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4.5. Comparative Study

To further validate the performance advantages of the proposed method for small
target detection in unmanned aerial vehicles (UAVs), a comparative study was conducted
against state-of-the-art detection models in the field, along with the relatively larger-scale
YOLOv8m as a benchmark. The performance of each model on the VisDrone2019 validation
set is presented in Table 7.

Table 7. Performance Comparison of Various Detection Algorithms.

Methods Image Size mAP_50_95 mAP_50 FPS GPU

Our 640 × 640 29.8 48.3 136.4 GeForce RTX 2080Ti
YOLOv8m 640 × 640 26.8 43.8 75.0 GeForce RTX 2080Ti

MFFSODNet [52] 640 × 640 - 45.5 70 TITAN RTX
FE-YOLOv5 [53] 640 × 640 21.0 37.0 - GeForce RTX 2080Ti
AVS-YOLO [54] 416 × 640 22.19 43.4 31.8 GeForce RTX 2080Ti

FPN+SARSA+TDA+LSRN [55] 600 × 1000 25.8 51.5 1.3 TITAN Xp
MMF-YOLO [56] 640 × 640 - 42.2 - GeForce RTX 3080Ti

Li et al. [57] 640 × 640 - 42.2 167.0 GeForce RTX 3090Ti
HR-FPN [58] 1024 × 1024 - 50.8 23.9 GeForce RTX 3090
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Table 7 indicates that our improved model achieves a 4.0% higher mAP_50_95 com-
pared to the two-stage improved model mentioned in [55]. Additionally, compared to the
larger-scale YOLOv8m model, our model demonstrates faster detection speed and higher
accuracy. It exhibits a noticeable advantage in accuracy over models based on the YOLO
series [53,54,56,57]. As the targets in the input images are relatively larger than those in the
original images, the DC2-DCNv3-C2f module of the backbone network adapts to capture
detailed features of objects of various shapes and sizes. Moreover, the final output layer
learns mixed attention features, enabling our model to perceive the details of small targets.
Although the mAP50 of [58] is slightly higher than that of our improved model, its GPU is
superior to ours, with only 23.9 FPS, about one-sixth of that of the improved model in this
paper. Overall, our improved algorithm demonstrates excellent detection performance for
UAV aerial images, exhibiting good performance in speed and accuracy. However, there is
room for improvement in detecting situations where targets are mutually occluded.

5. Conclusions

This paper proposes an aerial image detection model based on YOLOv8s-P2, overcom-
ing the challenges of detecting small, densely distributed, and poorly illuminated objects in
images captured by unmanned aerial vehicles (UAVs). While meeting real-time detection
requirements, the model significantly improves accuracy. Introducing the slicing-aided
technique at the data level increases the relative size of small targets in images, providing
richer pixel information for the model. Additionally, the proposed Large Kernel Spatial
Pyramid Pooling Fast module aims to enhance the model’s focus on critical regions in
the overall context, improving sensitivity to global semantic structures. The cascaded
convolution kernel design of LSPPF introduces no additional computational burden.

Conventional convolution with shared parameters tends to extract coarse-grained
information for fine-grained targets. The DC2-DCNv3-C2f module is introduced to address
this limitation, leveraging the advantages of deformable convolution. By decoupling the
learning process of offset and modulation scalar, the module allows the model to better
adapt to different shapes of objects, focusing on target areas and effectively reducing inter-
ference from background noise. Lastly, considering the limited computational resources of
embedded devices on UAVs, the RFNet module is proposed. By exploiting the redundancy
of feature maps, it randomly selects part of the channels for convolution, reducing compu-
tational and memory access costs while enriching feature representation. The first point
convolution introduces more non-linear transformation channels, capturing more abstract
spatial features with deep convolution, and the second point convolution reduces dimen-
sionality, allowing the network to focus on more critical features. Without compromising
model accuracy, this design provides greater flexibility in adapting to the limitations of
embedded devices.

Experiments demonstrate that our proposed method significantly reduces the missed
detection rate of small targets in UAV aerial images, even in low-light conditions at night,
accurately detecting small and dense targets. Compared to advanced UAV object detection
algorithms, our model achieves an excellent balance between speed and accuracy. This
research contributes to advancing UAV object detection algorithms, offering a substantial
solution to the problem of detecting small targets in aerial images. However, the study has
limitations; the experimental data were only validated on the VisDrone2019 and DOTA
datasets. Future work should include verifying the model’s improvement on more UAV
aerial datasets to further confirm its generality and robustness.

While this study has achieved satisfactory results in the current experimental envi-
ronment, further validation is required on detection terminals. Future work will focus on
deploying the algorithm in real-world scenarios and testing it on drone hardware to verify
its real-time processing capability and detection accuracy.
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