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Abstract: In this study, we investigated the use of functionalized deep eutectic solvents (DESs) as a medium
for CO2 capture integrated with CO2 desorption and biofixation in microalgal culture, as an approach
for carbon capture, utilization, and storage (CCUS). The newly devised DES formulation—comprising
choline chloride, ethylene glycol, and monoethanolamine—demonstrated a significant advancement
in CO2 absorption capacity compared with conventional solvents. Effective CO2 desorption from
the solvent was also achieved, recovering nearly 90% of the captured CO2. We then examined
the application of the functionalized DESs to promote microalgal cultivation using a Chlorella sp.
strain. The experimental results indicated that microalgae exposed to DES-desorbed CO2 exhibited
heightened growth rates and enhanced biomass production, signifying the potential of DES-driven
CO2 capture for sustainable microalgal biomass cultivation. This research contributes to the growing
field of CCUS strategies, offering an avenue for efficient CO2 capture and conversion into valuable
biomasses, thereby contributing to both environmental sustainability and bioresource use.
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1. Introduction

CO2 capture using deep eutectic solvents (DESs) is a promising technology that
involves the use of a low-cost and environmentally friendly solvent to selectively capture
CO2 from flue gasses. A DES is a type of low-transition temperature mixture (LTTM)
that is formed by mixing two or more solid and/or liquid components at a specific molar
ratio to form a composition that should have a lower melting point than its individual
components [1]. The lower melting point is obtained through the formation of hydrogen
bonds between at least one component acting as a hydrogen bond donor (HBD) and one
component acting as a hydrogen bond acceptor (HBA).

For understanding and the optimal use of DESs, it is essential to recognize their cus-
tomizable nature for specific applications. These solvents offer a range of potential uses,
such as effective organic solvents for reactions [2], cosmetic applications [3], and biotrans-
formations [4]. DESs have several advantages over conventional solvents, including low
volatility, high solubility, and low toxicity (depending on the nature of their components) [5].
These properties render them ideal candidates for CO2 capture [6–10] as they can effectively
capture CO2 from flue gasses, with a lower energy cost and smaller environmental footprint.
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DESs can be easily regenerated; thus, they are suitable for multiple cycles of CO2 capture
and release.

CO2 capture using DESs [6,8,11–17] is a promising technology that can significantly
contribute to the reduction of greenhouse gas emissions and mitigate climate change.
Further research and development are required to optimize the process and increase its
economic feasibility for large-scale industrial applications [18].

Carbon capture, utilization, and storage (CCUS) are a set of technologies and tech-
niques that aim to reduce CO2 emissions [19] from industrial processes and power gen-
eration by capturing CO2 and either using it for various purposes (such as enhanced oil
recovery, chemical production, or concrete production) or storing it underground in geo-
logical formations [20,21]. The goal of CCUS is to reduce greenhouse gas emissions and
mitigate the impacts of climate change whilst maintaining energy security and supporting
economic growth.

A promising application of CCUS is CO2 use for microalgal growth [18,22–29]. This
involves using CO2 as a carbon source for photosynthesis in microalgae. Microalgae convert
CO2 into organic matter through photosynthesis, which can then be used as feedstock for
various applications such as biofuels, animal feed, and pharmaceuticals. Microalgae are
capable of capturing and fixing large amounts of CO2 from various sources, including
industrial exhaust gasses, thus contributing to the mitigation of greenhouse gas emissions.
Using CO2 to cultivate microalgae can reduce the cost of microalgae production because
CO2 is typically a waste product in many industrial processes. CO2 use for microalgal
growth is a promising approach for the sustainable production of valuable products whilst
mitigating climate change.

Several drawbacks limit the application of microalgae cultivation for CO2 fixation
from emissions of industrial processes [30,31]. One of these drawbacks is related to high
CO2 content in industrial emissions, the presence of nitric and sulfur oxides, and limited
rates of CO2 fixation by microalgae [30]. One solution to these drawbacks is to capture CO2
in a solvent and further release it for microalgae cultivation [32].

A category of solvents that could be used for such an integrated capture–desorption–
biofixation process is DESs. A key advantage of DESs lies in their capacity for function-
alization or customization [14,33–35]. Within this framework, CO2 is captured within the
eutectic cage formed by hydrogen bonding between the HBA and HBD through weak
physical, i.e., van der Waals, interactions [8].

Ethaline (a DES based on choline chloride (ChCl) as an HBA and ethylene glycol (EG)
as an HBD at a ratio of 1:2) has demonstrated CO2 capture capacity but at high pressure
(60 bar) [36–38]. Monoethanolamine (MEA) is known to be highly reactive with CO2,
forming carbamate, but it has the drawback of being corrosive [39–41]. Our groups [42]
and others’ groups have demonstrated that incorporating MEA into DESs significantly
reduces the corrosiveness of MEA. In a previous study, it was demonstrated that mixtures
of ethaline and amines such as MEA had a similar CO2 absorption capacity to aqueous
solutions of amines, but at lower pressures [41]. Most of the studies investigating DESs as
CO2 solubilizers have focused on the process of CO2 capturing and desorption in DESs,
with less focus on the further utilization of CO2.

The objective of this study was to develop a CCUS process at a laboratory scale that
involved capturing CO2 using deep eutectic solvents at a low pressure and desorbing
CO2 into a bioreactor system for microalgal growth. To address the challenges of high
pressure and corrosiveness, we functionalized ethaline with MEA. This functionalization
involved the introduction of pure MEA as an additional HBD to ethaline (ChCl:EG 1:2)
at a 1:1 molar ratio (ethaline:MEA), forming a ternary DES. The resulting functionalized
solvent, abbreviated as CEM 1:2:1 (ChCl:EG:MEA 1:2:1), underwent physicochemical
characterization and laboratory testing to determine its performance. The CEM 1:2:1 DES
was compared with the binary solvent ChCl:MEA 1:8 (abbreviated as CM 1:8) DES for CO2
capture and microalgae growth.
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2. Materials and Methods
2.1. Materials

The microalgae strain used was Chlorella sp. NIVA-CHL 137, obtained from the Nor-
wegian Culture Collection of Algae (NORCCA), Norwegian Institute for Water Research
(Oslo, Norway). Chlorella sp. NIVA-CHL 137 was isolated from a terrestrial habitat and
was demonstrated to have a significant ability to grow in axenic conditions [43].

High-purity reagents were used in the preparation of the DESs. ChCl with +98%
purity was purchased from Alfa Aesar (Ward Hill, MA, USA), and MEA and EG of 99.9%
purity were procured from Merck (Darmstadt, Germany). The components were mixed,
characterized by their physicochemical properties, and tested.

In this study, Chlorella sp. NIVA-CHL 137 was cultivated using a BG-11 growth
medium [44]. For the preparation of the BG-11 growth medium, the following reagents
were acquired: sodium nitrate (NaNO3), magnesium sulfate (MgSO4 · 7H2O), calcium
chloride (CaCl2 · 2H2O), iron(III) chloride, and cobalt(II) nitrate (Co(NO3)2 · 6H2O), which
were purchased from Merck (Darmstadt, Germany); potassium dihydrogen phosphate
(KHPO4), citric acid, boric acid (H3BO3), zinc sulfate (ZnSO4 · 7H2O), sodium molybdate
(Na2MoO4 · 2H2O), and cobalt(II) nitrate (Co(NO3)2 · 6H2O), which were obtained from
Scharlau (Barcelona, Catalonia, Spain); EDTA disodium salt (Na2EDTA · 2H2O), which was
sourced from Honeywell Fluka (Seelze, Germany); manganese chloride (MnCl2 · 4H2O),
which was procured from Carl Roth GmbH (Karlsruhe, Germany); and copper sulfate
(CuSO4 · 5H2O), which was acquired from Chimopar S.A. (Bucharest, Romania). Merck
(Darmstadt) supplied dimethyl sulfoxide (DMSO) for the chlorophyll extractions.

2.2. DES Preparation

The reflux system used to prepare the DESs comprised a round-bottomed flask and
an ascending condenser composed of a glass tube in the form of bubbles, surrounded by
a glass jacket through which cooling water was circulated and released at the top. It was
only used as a bottom-up condenser in the reflux setups. An electric heating plate and an
oil bath were also used.

The reagents were accurately weighed, mixed in the round-bottomed flask, and
agitated at 600 RPM to ensure even mixing. The temperature was maintained at 60 ◦C for
approximately 2 h until a clear, homogenous liquid was obtained [45–47]. After cooling,
the samples were transferred to airtight plastic or glass containers and stored at room
temperature in a desiccator. A proper sealing system was crucial because choline chloride
has a high level of hygroscopicity [48], even within an eutectic mixture.

2.3. CO2 Capture Using the DES

A system based on a vapor–liquid equilibrium (VLE) [37,49,50] was created for the
absorption tests in the laboratory. It consisted of a cylinder with pure CO2 gas (99.999%
purity, SIAD, Romania), a glass reactor with a ceramic bubbler for fine gas distribution,
a magnetic stirrer to prolong the contact time between the gas and the DES, and an inlet
and an outlet flowmeter for the manometer. The absorption temperature was constantly
maintained during the measurement by placing the reactor in a thermostatic water bath.
Atmospheric pressure and a temperature of 40 ◦C were used for the tests.

The reaction was stopped when the outflow gas flow was equal to the inflow gas flow.
This indicated that the DES was completely saturated with gas. The captured CO2 was
gravimetrically determined. The CO2 absorption equilibrium was considered to be reached
when the increase in the DES mass was less than 10 mg between two weighing points.

2.4. CO2 Desorption from the DES

A carefully controlled procedure was implemented to initiate the CO2 desorption
process [51,52]. The functionalized DESs (CEM 1:2:1 or CM 1:8) were placed within a
stainless-steel container designed to withstand the conditions of the process. This container
was then subjected to a temperature of 80 ◦C, ensuring optimal conditions for CO2 desorp-
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tion. The system was set to rotate at a speed of 200 RPM to facilitate efficient desorption,
thereby creating a uniform environment for CO2 release. Within the stainless-steel chamber,
a full vacuum was applied to reduce the pressure to a minimum, facilitating complete
desorption. The vacuum was controlled by a pump system designed to maintain the
desired pressure levels. This comprehensive approach—integrating controlled temperature,
rotational speed, and a vacuum system—ensured the effective desorption of CO2 from
the functionalized DESs. This critical desorption step sets the stage for the subsequent
biofixation within microalga photobioreactors, as illustrated in Figure 1.

Clean Technol. 2024, 6, FOR PEER REVIEW  4 
 

 

2.4. CO2 Desorption from the DES 
A carefully controlled procedure was implemented to initiate the CO2 desorption 

process [51,52]. The functionalized DESs (CEM 1:2:1 or CM 1:8) were placed within a stain-
less-steel container designed to withstand the conditions of the process. This container 
was then subjected to a temperature of 80 °C, ensuring optimal conditions for CO2 desorp-
tion. The system was set to rotate at a speed of 200 RPM to facilitate efficient desorption, 
thereby creating a uniform environment for CO2 release. Within the stainless-steel cham-
ber, a full vacuum was applied to reduce the pressure to a minimum, facilitating complete 
desorption. The vacuum was controlled by a pump system designed to maintain the de-
sired pressure levels. This comprehensive approach—integrating controlled temperature, 
rotational speed, and a vacuum system—ensured the effective desorption of CO2 from the 
functionalized DESs. This critical desorption step sets the stage for the subsequent biofix-
ation within microalga photobioreactors, as illustrated in Figure 1.  

 
Figure 1. Integrated CO2 capture system using a DES and biofixation using microalgae. 

2.5. Experimental Model for the High-Throughput Screening of CO2 Fixation Using Microalgae 
The laboratory model (Figure 1) consisted of 3 simple photobioreactors that could be 

extended and operated in different manners to meet the needs of the experiments, includ-
ing parallel operation to select microorganisms or serial operation to develop various pro-
cess utilizations. A typical photobioreactor for the laboratory experiments was produced 
using a Duran® GL 45 stirred bottle reactor system (DKW Life Sciences, Wertheim, Ger-
many). The bottles had a volume of 2000 mL and were equipped with a cap that included 
standard magnetic stirrers as well as holes for a dissolved oxygen sensor and a pH sensor. 
The reactors had an inlet peristaltic pump hose and an aeration hose; they were magneti-
cally stirred. The peristaltic pump was used to obtain the samples. The reactor was illu-
minated by a white LED strip (MY2250 Myria, Complet Electro Serv, Voluntari, Romania) 
that produced an additional 20 µmol photons m−2 s−1 of photosynthetically active light 
radiation during a light/dark photoperiod of 13/11 h. 

2.6. Installation Workflow 
CO2 was absorbed in the absorption column that contained the selected DES. The gas 

and liquid flows interacted in a countercurrent manner to increase the contact between 
the two phases, i.e., the gas flowing from below and the existent DES in the column. The 
CO2-rich solvent was extracted from the bottom tray and transported to the desorption 

Figure 1. Integrated CO2 capture system using a DES and biofixation using microalgae.

2.5. Experimental Model for the High-Throughput Screening of CO2 Fixation Using Microalgae

The laboratory model (Figure 1) consisted of 3 simple photobioreactors that could be
extended and operated in different manners to meet the needs of the experiments, including
parallel operation to select microorganisms or serial operation to develop various process
utilizations. A typical photobioreactor for the laboratory experiments was produced using
a Duran® GL 45 stirred bottle reactor system (DKW Life Sciences, Wertheim, Germany).
The bottles had a volume of 2000 mL and were equipped with a cap that included standard
magnetic stirrers as well as holes for a dissolved oxygen sensor and a pH sensor. The reac-
tors had an inlet peristaltic pump hose and an aeration hose; they were magnetically stirred.
The peristaltic pump was used to obtain the samples. The reactor was illuminated by a
white LED strip (MY2250 Myria, Complet Electro Serv, Voluntari, Romania) that produced
an additional 20 µmol photons m−2 s−1 of photosynthetically active light radiation during
a light/dark photoperiod of 13/11 h.

2.6. Installation Workflow

CO2 was absorbed in the absorption column that contained the selected DES. The gas
and liquid flows interacted in a countercurrent manner to increase the contact between
the two phases, i.e., the gas flowing from below and the existent DES in the column. The
CO2-rich solvent was extracted from the bottom tray and transported to the desorption
unit. CO2 was desorbed using the vacuum system and by applying heat. The gas was
then introduced into the microalgal cultivation reactors, which could be operated either in
parallel or in series. The reactors were continuously agitated and illuminated using a white
LED light source. CO2-rich air was intermittently supplied for 90 min a day to prevent
excessive acidification [19,22].
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2.7. Determination of CO2 Sorption and Carbon Sequestration Capacity

CO2 capture using the DESs was gravimetrically monitored [53] with an analytical
balance (MS105DU, Mettler Toledo, Greifensee, Switzerland). The desorption step was
monitored with a BIOGAS 5000 gas analyzer (Geotech, St. Albans, UK).

The microalgal growth was monitored through measurements of optical density and
biomass accumulation after 1, 7, and 14 days of incubation [26,54]. The optical density
was measured using a UV–Vis spectrometer (UV–VIS–NIR DH-2000-BAL, Ocean Optics,
Duiven, The Netherlands). The biomass was gravimetrically measured using an ana-
lytical balance after centrifugation at 2535 RCF and 4 ◦C for 10 min using a Universal
320R centrifuge (Hettich, Tuttlingen, Germany) and drying in an oven (UE200, Memmert,
Büchenbach, Germany) [55].

To assess the pigment levels, we employed the methodology outlined by Chai [56].
Initially, 2 mL of each sample underwent centrifugation at 1830 g for 3 min. A total of
2 mL of DMSO preheated to 60 ◦C was then added to the residual pellet, and the mixture
was vortexed for 10 min. Subsequently, Eppendorf tubes were centrifuged under the same
conditions mentioned above before measuring absorbance using a UV–Vis spectropho-
tometer (ClarioStar, BMG Labtech, Ortenberg, Germany). Measurements were obtained at
three distinct wavelengths (480 nm, 649 nm, and 665 nm); these were crucial to compute
the content of chlorophyll a (ChlA), chlorophyll b (ChlB), total carotenoids, and overall
pigments in the samples. The calculations followed the formulas specified below.

ChlA (mg/L) = 12.47 · (OD665) − 3.62 · (OD649) (1)

ChlB (mg/L) = 25.06 · (OD649) − 6.5 · (OD665) (2)

Total carotenoid
(mg

L

)
=

1000(OD480)− 1.29(ChlA)− 53.78(ChlB)
220

(3)

Total pigments (mg/L) = (1) + (2) + (3) (4)

2.8. Characterization of the DESs before and after CO2 Capture

The characteristics of CEM 1:2:1 and CM 1:8 were investigated using various analytical
techniques. A Fourier-transform infrared (FTIR) analysis was performed using an IRTracer-
100 SHIMADZU spectrometer (Kyoto, Japan) to examine the molecular composition and
functional groups. The pH of the DESs was determined using a Seven Compact pH
meter equipped with an InLab® Viscous Pro-ISM electrode (Mettler Toledo, Greifensee,
Switzerland). A density analysis was conducted using an EasyD40 densimeter (Mettler
Toledo, Greifensee, Switzerland). The refractive index of the solvents was measured
using an Abbe refractometer (Bausch&Lomb, Jena, Germany), enabling the assessment of
their optical characteristics. A molar refraction model was used to estimate the theoretical
refractive indices of the two deep eutectic solvents [57]. The expected refractive indices were
calculated from the molar refractions of the individual components and their respective
concentrations in the mixtures.

2.9. Statistical Analysis

The statistical analysis was performed using the SPSS 21 software package (IBM,
Armonk, NY, USA). The experiments were performed in triplicate and the data were
analyzed in evolution. To separate treatment means within each measured parameter, a
least significant difference (LSD) test was used at a significance level of p < 0.05 and p < 0.01.

3. Results
3.1. CO2 Capture Using the Functionalized DESs

In our preceding investigation [38], ethaline exhibited a significant CO2 capture capac-
ity under heightened pressure conditions (60 bar), sequestering 4.75 g CO2/100 g ethaline
or, equivalently, 0.28 mol CO2/1 mol ethaline. Conversely, when subjected to atmospheric
pressure but with modest heating (40 ◦C), its capacity was observed to be 0.44 g CO2/100 g
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ethaline, corresponding with 0.026 mol CO2/1 mol ethaline. This was 11 times lower than
that observed in the high-pressure test. These observations incontrovertibly underscored
the role of a critical operational parameter—pressure—in governing the phenomenon of
physical absorption.

Laboratory examinations were conducted on the capacity of the ternary DES CEM
1:2:1 to capture CO2 under atmospheric pressure and 40 ◦C conditions. The results revealed
a CO2 uptake of 2.04 g/100 g CEM, equivalent to 0.29 mol/1 mol CEM. This was four times
greater than the performance of ethaline.

In the case of CM 1:8, an absorption of 8.76 g CO2/100 g, equivalent to 0.65 mol
CO2/1 mol CM 1:8, was obtained under the same conditions.

3.2. Characterization of the DESs before and after CO2 Capture
3.2.1. pH

Using a pH electrode for the viscous samples, the pH of CEM 1:2:1 was determined
to be 10.55 ± 0.02 before CO2 absorption (Figure 2A). The presence of MEA increased the
pH of ethaline, as the initial pH of ethaline was 7.90 ± 0.02. After CO2 absorption, the
pH of CEM 1:2:1 decreased to 8.54 ± 0.02, indicating the formation of carbamate from the
amine [58,59]. After desorption, the pH reached 9.58 ± 0.02, indicating the conversion of
carbamate back to amine and the partial release of CO2.

Clean Technol. 2024, 6, FOR PEER REVIEW  6 
 

 

2.9. Statistical Analysis 
The statistical analysis was performed using the SPSS 21 software package (IBM, Ar-

monk, NY, USA). The experiments were performed in triplicate and the data were ana-
lyzed in evolution. To separate treatment means within each measured parameter, a least 
significant difference (LSD) test was used at a significance level of p < 0.05 and p < 0.01. 

3. Results 
3.1. CO2 Capture Using the Functionalized DESs 

In our preceding investigation [38], ethaline exhibited a significant CO2 capture ca-
pacity under heightened pressure conditions (60 bar), sequestering 4.75 g CO2/100 g 
ethaline or, equivalently, 0.28 mol CO2/1 mol ethaline. Conversely, when subjected to at-
mospheric pressure but with modest heating (40 °C), its capacity was observed to be 0.44 
g CO2/100 g ethaline, corresponding with 0.026 mol CO2/1 mol ethaline. This was 11 times 
lower than that observed in the high-pressure test. These observations incontrovertibly 
underscored the role of a critical operational parameter—pressure—in governing the phe-
nomenon of physical absorption. 

Laboratory examinations were conducted on the capacity of the ternary DES CEM 
1:2:1 to capture CO2 under atmospheric pressure and 40 °C conditions. The results re-
vealed a CO2 uptake of 2.04 g/100 g CEM, equivalent to 0.29 mol/1 mol CEM. This was 
four times greater than the performance of ethaline. 

In the case of CM 1:8, an absorption of 8.76 g CO2/100 g, equivalent to 0.65 mol CO2/1 
mol CM 1:8, was obtained under the same conditions. 

3.2. Characterization of the DESs before and after CO2 Capture 
3.2.1. pH 

Using a pH electrode for the viscous samples, the pH of CEM 1:2:1 was determined 
to be 10.55 ± 0.02 before CO2 absorption (Figure 2A). The presence of MEA increased the 
pH of ethaline, as the initial pH of ethaline was 7.90 ± 0.02. After CO2 absorption, the pH 
of CEM 1:2:1 decreased to 8.54 ± 0.02, indicating the formation of carbamate from the 
amine [58,59]. After desorption, the pH reached 9.58 ± 0.02, indicating the conversion of 
carbamate back to amine and the partial release of CO2. 

 
Figure 2. Evolution of the pH (A), density (B), and refractive index (C) of CEM 1:2:1 and CM 1:8 
during CO2 absorption and desorption. 

The initial pH of CM 1:8 was 10.87 ± 0.02 (Figure 2A), indicating that the sample was 
alkaline before any CO2 interaction. The significant drop in pH to 7.04 ± 0.03 following 
CO2 absorption reflected the formation of carbonic acid (H2CO3) due to the dissolution of 
CO2 into the solvent. This decrease indicated the successful capture of CO2, resulting in 
the solution becoming neutral. The pH increased to 8.36 ± 0.02 after CO2 desorption, indi-
cating the release of CO2 and a return to a more alkaline state [58,59]. This suggested that 
the DES effectively released the captured CO2 during desorption. 

Figure 2. Evolution of the pH (A), density (B), and refractive index (C) of CEM 1:2:1 and CM 1:8
during CO2 absorption and desorption.

The initial pH of CM 1:8 was 10.87 ± 0.02 (Figure 2A), indicating that the sample was
alkaline before any CO2 interaction. The significant drop in pH to 7.04 ± 0.03 following
CO2 absorption reflected the formation of carbonic acid (H2CO3) due to the dissolution
of CO2 into the solvent. This decrease indicated the successful capture of CO2, resulting
in the solution becoming neutral. The pH increased to 8.36 ± 0.02 after CO2 desorption,
indicating the release of CO2 and a return to a more alkaline state [58,59]. This suggested
that the DES effectively released the captured CO2 during desorption.

3.2.2. Density

The density of CEM 1:2:1 was 1.1020 ± 0.0002 g/cm3, which was slightly higher (12%)
than the standard 30% MEA aqueous solution. The density increased to 1.1233 ± 0.0001 g/cm3

after the CO2 addition, indicating the occurrence of capture. After desorption, the density
reached 1.1194 ± 0.0002 g/cm3, indicating that the CO2 was not completely released
(Figure 2B).

The initial density of CM 1:8 was 1.0708 ± 0.0002 g/cm³, slightly lower than that of
CEM 1:2:1 (Figure 2B). The increase in density up to 1.1322 ± 0.0002 g/cm³, higher than in
the case of CEM 1:2:1 after the addition of CO2 to the solution, suggested CO2 absorption by
CM 1:8. The density decreased to 1.1106 ± 0.0002 g/cm³ after CO2 desorption, indicating
incomplete CO2 desorption and/or structural changes in CM 1:8 after CO2 was released.
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3.2.3. Refractive Index

The refractive index is a parameter of purity. The theoretical refractive index for
CEM 1:2:1 was 1.4640 ± 0.0001, and the experimental value was 1.4544 ± 0.0001. This
difference was due to trace amounts of water, which was a result of the hygroscopic nature
of choline chloride. The refractive index demonstrated a high degree of purity for the
prepared solvent. The presence of CO2 altered the refractive index to 1.4587. It reached
1.4565 ± 0.0001 after desorption (Figure 2C).

In the case of CM 1:8, the increase in the refractive index after the CO2 addition (from
1.4129 ± 0.0002 to 1.4252 ± 0.0001) suggested CO2 absorption in the DES. The refractive
index reached 1.4209 ± 0.0001 after CO2 desorption, indicating that the composition of the
DES was in an intermediate state between pre- and post-CO2 absorption (Figure 2C).

3.3. CO2 Desorption from DESs: CEM 1:2:1 and CM 1:8

The functionalized DESs were subjected to the desorption of CO2 via immersion in a
thermostatic oil bath set at 70 ◦C. Gravimetric monitoring of the samples was conducted
until no detectable changes were observed. With the initial CO2 input knowledge (2.04 g
CO2 absorbed by CEM 1:2:1), it was observed that approximately 89.4% of the CO2 (1.82 g)
underwent desorption within an approximate total duration of 70 min. The CEM-desorbed
solvent underwent the aforementioned characterization process. Although the desorption
process exhibited incompleteness (as indicated by the obtained data), the rate of desorption
was deemed to be satisfactory.

The gravimetric quantitation of the desorption of CO2 from CM 1:8 resulted not
only in an apparent 100% desorption of the absorbed CO2 (8.76 g of CO2) but also in a
significant portion of MEA (32.8 g) from the composition in the form of ammonia gas. This
phenomenon could be explained by the high volatility of MEA (vapor pressure of 64 Pa
at 20 ◦C) [41] and its significant presence in the solvent composition. The FTIR spectrum
(Figure 3) confirmed the existence of such a phenomenon.
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A stretching vibration of the O–H bond was observed at 3300 cm−1, which was
present in all compounds (ChCl, EG, and MEA). The saturated C–H bonds at 2872–2876
and 2936–2941 cm−1 originated from ChCl, EG, and MEA [15]. Carbamate could be
observed, with signals in the 1600–1100 cm−1 region, as well as asymmetric COO- between
1639 and 1650 cm−1, symmetric COO- between 1447 and 1321 cm−1, and N-COO- at
1202–1204 cm−1 [60]. The signals at 1350 cm−1 and 1063–1082 cm−1 were characteristic
of carbamate [14]. Specific bands of the C-C-O- group appeared at 1069 cm−1, and the
HO···HN group was observed at 953–951 cm−1.

3.4. Microalgal Cultivation
3.4.1. CEM 1:2:1

The desorbed CO2 concentration exceeded atmospheric levels as anticipated, measur-
ing 1.4%. This was determined using the BIOGAS 5000 analyzer. The effect on microalgal
growth was monitored using optical density (OD) and biomass analyses.

The results of the experiment regarding the growth of Chlorella sp. microalga using OD
as a parameter are depicted in Figure 4A. The OD of the control had a consistent increase
from day 1 to day 14. When applying the desorbed CO2 flow, the OD demonstrated
a 12% increase at day 7, although this difference was not statistically significant, and a
24.7% statistically significant increase at day 14 compared to the control. Similar results
were obtained in the case of the gravimetrically monitored biomass, but in this case, the
values from both day 7 and day 14 showed statistically significant differences between the
CO2 sample and the control. The cultures subjected to the CO2 flow demonstrated a 31%
increase at day 7 and a 23% increase at day 14 compared with the control, according to the
biomass quantification (Figure 4B).
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3.4.2. CM 1:8

The measured CO2 concentration from CM 1:8 after desorption was 0.46%, as deter-
mined by the gas analyzer. This surpassed atmospheric levels. After the initial 7 days,
the control samples of the Chlorella sp. culture exhibited an OD of 0.178, whereas the
CO2-desorbed samples reached an OD of 0.38 (Figure 5A). This signified a 113.5% increase
in microalgal abundance compared with the control. After 14 days, the control OD reached
0.42, and the microalgae exposed to CO2 bubbling achieved an OD of 0.53, a 26% increase
compared with the control (Figure 5A). The differences were statistically significant.
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Following the first week (7 days), the control group demonstrated a biomass accu-
mulation of 0.08 g/L, whereas the CO2-rich sample was higher than 0.17 g/L, i.e., 53%
higher than the control (Figure 5B). After 14 days, the biomass of the control group mea-
sured 0.173 g/L, whereas the CO2-desorbed bioreactor series yielded 0.226 g/L of biomass,
i.e., 31% greater than the control. All differences between the CO2-rich samples and the
corresponding controls were statistically significant.

3.4.3. Chlorophyll Content

The chlorophyll content data (Figure 6) revealed the impact of CO2 desorbed from
CM 1:8 and CEM 1:2:1 in the microalgal cultures.
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There was a noticeable increase in chlorophyll a (ChlA) in the CM 1:8 cultures, along-
side a rise in chlorophyll b (ChlB), compared with the control. This suggested a positive
influence on the chlorophyll synthesis pathways. Similarly, the CEM-treated cultures ex-
hibited elevated levels of both ChlA and ChlB, indicating an enhancement in chlorophyll



Clean Technol. 2024, 6 41

production. The total carotenoid content, indicative of microalgae health and stress re-
sponse, revealed a slight increase in both cultures compared with their respective controls.
Both CM 1:8 and CEM 1:2:1 demonstrated an overall rise in total pigments, reflecting a
positive impact on pigment production in the microalgae due to the carbon source [61,62].
A comparative analysis suggested that the CEM 1:2:1 treatment resulted in a slightly higher
increase in the ChlA content and total carotenoids compared with CM 1:8, but the difference
in total pigments was not statistically significant.

3.4.4. Comparison between CM 1:8 and CEM 1:2:1

The comparison between CM 1:8 and CEM 1:2:1 in terms of the desorbed CO2 effects
on the microalgal growth is presented in Figure 7. The desorbed CO2 from both the
CM 1:8 and CEM 1:2:1 experimental condition resulted in a significantly higher optical
density and biomass of microalgae compared with their respective control groups. CM
1:8 was more efficient at stimulating the growth of Chlorella sp. compared with CEM 1:2:1
(113.5% versus 12% after 7 days and 26% versus 24.7% after 14 days, respectively, in optical
density increase).
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4. Discussion

One of the advantages of DESs is their ability to be functionalized or customized [14,63].
Ethaline has demonstrated a good CO2 capture capacity under high pressure (60 bar)
in previous research. As MEA is highly reactive with CO2, forming carbamate, it is a
promising chemical for DES functionalization. In this work, we used a derived ternary
DES, resulting from the combination of ethaline ingredients and MEA, to decrease the
required pressure for CO2 capture in an integrated system of CO2 absorption, desorption,
and biosequestration. The capture of CO2 within the ternary DES—CEM 1:2:1—occurs
through two distinct mechanisms. Firstly, CO2 is physically captured through weak forces,
specifically van der Waals forces, within the eutectic cage formed by the hydrogen bonds
between the HBA (choline chloride) and HBDs (EG [64] and MEA [65]). MEA typically
functions as an HBD because of its ability to donate a hydrogen bond. In the given context,
ChCl is mentioned as the HBA, and EG and MEA are the HBDs. In the context of hydrogen
bonding, the chloride anion can act as an HBA because it has a lone pair of electrons that
can be involved in hydrogen bonding interactions. The positive charge on the choline
cation influences its ability to accept hydrogen bonds. The physical absorption induced
by the EG presence is a result of the molecular arrangement within the eutectic structure.
Secondly, a chemical capture process takes place as CO2 reacts with the MEA present in the
DES, forming carbamates. This chemical interaction provides an alternative mechanism for
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CO2 sequestration, showcasing the dual nature of the capture process within the studied
DES mixture [8]. The formation of carbamate involves a reversible reaction governed
by the zwitterion mechanism [51]. The electrophilic nature of the carbon atom in CO2
makes it susceptible to nucleophilic attack by primary amines, resulting in the creation of
a zwitterionic transition state. This state can undergo an intramolecular proton transfer,
ultimately forming a neutral carbamic acid. The subsequent reaction of this carbamic acid
with a Brønsted base amine can lead to the reversible formation of carbamate, maintaining
a 0.5:1 CO2:amine ratio (Equation (1)).

2RR′NH + CO2 ↔ RR′NH+COO− + RR′NH+
2 (5)

A second DES with a binary composition of ChCl and MEA at a ratio of 1:8 was
employed for a parallel investigation with the ternary solvent.

The selection of the two DESs was based on several considerations: (i) MEA as a classic
CO2 solvent. MEA is a widely recognized and extensively studied solvent for CO2 capture,
particularly in 30% aqueous solutions [66,67]. Its well-established role in CO2 absorption
renders it an essential benchmark for comparison [68,69]. (ii) ChCl as an HBA. ChCl
serves as the primary hydrogen bond acceptor in many deep eutectic solvents [6,9,14,70,71].
Its inclusion in a binary solvent introduces an important component typically used in
DES formulations. (iii) Industrial suitability. The chosen 1:8 molar ratio of ChCl:MEA
aligned with industrial considerations and practices, as demonstrated in our prior research.
This ratio has demonstrated applicability and feasibility in previous works, rendering it a
valuable candidate for this comparative study [38].

4.1. CO2 Absorption in Deep Eutectic Solvents

The observed difference of a higher OD and a lower biomass in CO2 absorption
between CEM 1:2:1 and CM 1:8 could be attributed to several factors, primarily related
to the compositions and interactions within the DES. These were (a) The composition
and molar ratios. CM 1:8 had a higher molar content of MEA compared with CEM 1:2:1.
MEA readily reacts with CO2 to form carbamate, leading to a high CO2 absorption capacity.
(b) The role of ethylene glycol. EG in CEM 1:2:1 influenced the CO2 absorption behavior [72].
It contributed to a mechanism of physical absorption that was distinct from the chemical
absorption observed with MEA. This distinction could lead to variations in the overall
CO2 absorption capacity of the solvent. (c) Hydrogen bonding and interactions. MEA in
CM 1:8 provided more favorable hydrogen bonding interactions with the CO2 molecules,
enhancing their capture within the solvent matrix. The different solvent components
in CEM 1:2:1 may have resulted in various molecular arrangements that affected the
accessibility and reactivity of CO2 [73,74]. (d) Eutectic formation and stability. The specific
eutectic structure formed by CM 1:8 may have provided a conducive environment for CO2
absorption. The presence of EG in CEM 1:2:1 introduced a unique characteristic compared
with the binary solvent CM 1:8. Unlike the binary solvent, CEM 1:2:1 incorporated an
additional hydrogen bond donor (HBD) in the form of EG. This difference impacted
the dynamic interactions within the deep eutectic solvent, altering its response to CO2
capture [75,76]. (e) Physical and chemical properties. Variations in properties such as
viscosity, density, and polarity between the two solvents may have affected their ability to
absorb and retain CO2. MEA-rich CM 1:8 exhibited more favorable physical and chemical
properties for CO2 absorption than CM 1:2:1 [77–79].

The fourfold reduction in the CO2 absorption capacity observed in CEM 1:2:1 com-
pared with CM 1:8 is compensated for by a lower cost and fewer corrosion effects [42].

These characteristic evolutions provide a detailed picture of how the CM 1:8 and CEM
1:2:1 DESs interacted with CO2 during the capture and release processes. The observed
changes in pH, density, and refractive index provided a detailed insight into how CM 1:8
and CEM 1:2:1 dynamically interacted with CO2 during the capture and release processes.
The shift in pH reflected the transformation between the carbamate formation and its
subsequent release, whereas changes in the density and refractive index provided quan-
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titative measures of the degree of CO2 absorption and desorption. These characteristics
collectively contributed to our understanding of the underlying mechanisms governing the
performance of CM 1:8 and CEM 1:2:1 as CO2 capture solvents.

4.2. Biofixation of Desorbed CO2 Using Chlorella sp.

Chlorella sp. is a green microalgae species. It is widely studied for its potential as
biofuel feedstock due to its high lipid content and ability to capture CO2 [25–27,80–83].
The cells are 2–10 µm in diameter, are mostly spherical, and contain a single, cup-shaped
chloroplast surrounded by a layer of cytoplasm. Chlorella sp. is often used as a source of
protein for animal feed because of its high protein content [80,84,85]. Another advantage
of Chlorella sp. is that it can be grown in large quantities using low-cost, non-arable land.
Chlorella sp. has been effectively used in wastewater treatment [23]. It has the capacity
to remove nitrogen, phosphorus, and organic pollutants (phenols and dyes) and absorbs
these pollutants for growth, forming a biomass that can then be harvested and used for
various purposes (biofuel, animal feed, and fertilizer). Chlorella sp. is a promising species
of green microalgae with a high potential and versatility in various fields of application,
from agriculture to energy and environmental remediation.

Bioreactors in use today can be categorized into either open or closed systems [86–88]. A
closed system is considered to be advantageous for optimal CO2 fixation and obtaining un-
contaminated biomasses for biomolecule extraction. The cultivation of selected microalgae
for CO2 capture and utilization can occur in various systems, including open ponds [80] or
closed photobioreactors [89,90]. This allows the flexible implementation of the proposed
technology, considering the specific environmental and economic conditions of the location.
A promising system for use in CO2 capture, utilization, and storage (CCUS) is microalgae
bioreactors. CO2 emissions are passed through the reactor, converting them into useful
products such as biofuels, chemicals, fertilizers, and materials.

In the present study, we demonstrated that it was feasible to efficiently integrate the
capture and release of CO2 from DESs with the use of desorbed CO2 to optimize the growth
of Chlorella sp. Both the OD measurements and the gravimetric analysis of the biomass
revealed that the released CO2 from the DESs improved the microalgal growth and biomass
accumulation. The CO2 released from CM 1:8 was more efficient at stimulating microalgal
growth than the CO2 released from CEM 1:2:1.

In summary, our data underscored the significant impact of CO2 supplementation
from DESs on Chlorella sp. growth and biomass production. Variations were observed
between the CM 1:8 and CEM 1:2:1 condition, with respect to the effectiveness of these meth-
ods in optimizing microalgal cultivation for potential applications in biofuel production
and carbon capture. Although the desorption from CM 1:8 showed a much higher stimula-
tory activity than CEM 1:2:1 on algal growth after 7 days, the two DESs showed almost
similar effects after 14 days of algal growth. This indicates that CEM 1:2:1 is promising as
starting point for optimization of alternatives to MEA-rich, corrosive solvents. The reduced
difference after 14 days could be explained by accelerated transition to the stationary phase
of the culture stimulated by CO2 desorbed from CM 1:8., due to more stressful conditions.
The higher increase in chlorophyll b content, comparing to the increase in chlorophyll a
content in the microalgae culture stimulated by CO2 desorbed from CM 1:8, suggests a
rearrangement of the photosynthetic machinery and a higher oxidative stress in this culture.
Similar changes in chlorophyll a/chlorophyll b ratio were reported for C. sorokiniana UTEX
1230 and C. vulgaris 211/11P strains cultivated in media supplemented with CO2 [91].
Our results demonstrated the potential of microalgal cultivation in combination with CO2
capture using DESs as a viable method for CO2 mitigation.

5. Conclusions

The distinct composition and molecular arrangements of the investigated deep eutectic
solvents, i.e., CM 1:8 and CEM 1:2:1, resulted in a significant difference in the CO2 absorp-
tion capacity. The higher MEA concentration in CM 1:8 led to superior CO2 absorption
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compared with CEM 1:2:1. Although CEM 1:2:1 captured four times less CO2 than CM 1:8,
it has the advantage of being less corrosive. This characteristic may improve the durability
and longevity of equipment and materials used in CO2 capture processes.

Using the selected microalgal strain of Chlorella sp., both CM 1:8 binary solvent and
the ternary solvent CEM 1:2:1 resulted in higher optical density and biomass compared
with controls. After 7 days of growth, the biostimulatory effect was much higher for CM
1:8 than for CME 1:2:1, but the difference became much lower between the two solvents
after 14 days of algal growth. Future optimization of CME 1:2:1 might further reduce this
difference, CME 1:2:1 being a promising starting point.

This study highlighted the positive influence of desorbed CO2 from DES on Chlorella sp.
microalgal growth. The bioconversion of CO2 by microalgae serves as a natural mechanism
for carbon sequestration, contributing to a reduction in greenhouse gas emissions as well
as ecosystem preservation. Microalgae have additional potential in renewable energy
production and valuable co-product generation.
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