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Abstract: This study focused on manufacturing efficient automobile sound-absorbing materials
through alkaline treatment and dimple processing of recycled polyethylene terephthalate (rPET)
nonwoven fabric. The rPET nonwoven fabric was produced with a sound-absorbing material through
compression molding. It was improved through the development of porous sound-absorbing materi-
als through alkaline treatment and resonant sound-absorbing materials through dimple processing.
As a result of morphological analysis, alkaline treatment showed that pore size and air permeability
increased according to temperature and concentration increase conditions. On the other hand, dimple
processing caused a decrease in air permeability and a decrease in pores due to yarn fusion, and as
the dimple diameter increased, the sound-absorbing coefficient increased in the 5000 Hz band. Finally,
it was judged that effective sound absorption performance would be improved through a simple
process through alkaline treatment and dimple processing, and thus there would be applicability in
various industrial fields.

Keywords: recycled polyethylene terephthalate; sound-absorbing material; alkaline treatment;
dimple process; surface modification

1. Introduction

In order to transfer towards sustainable mobility, the automobile industry is currently
enhancing the fuel efficiency and eco-friendliness of vehicles by expanding the supply of
electric vehicles and incorporating eco-friendly materials and lightweight technology [1,2].
Electric vehicles, lacking an internal combustion engine, eliminate engine and exhaust
sounds, creating a serene driving environment [3]. However, friction between the tires
and the road surface, collisions of foreign objects between the car’s wheel guards and
the road surface, and external sounds generate noise in the frequency range of 1 kHz
and below, which distracts drivers from focusing on safe driving [4–7]. Consumers are
increasingly seeking noise reduction for quiet driving, a notable advantage of electric
vehicles. To address these demands, the automobile industry emphasizes the importance
of sound-absorbing materials in vehicles. Sound-absorbing materials are actively engaged
in technology development to strengthen noise regulations for vehicles progressively and
effectively reduce noise levels in vehicles [8,9].

Noise can be reduced by employing sound-absorbing materials to absorb the energy
of generated noise, preventing its transmission [10,11]. Sound-absorbing materials play
a crucial role in minimizing noise entering the vehicle. These materials are classified
into two categories: porous sound-absorbing materials and resonant sound-absorbing
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materials, based on their design. Porous sound-absorbing materials consist of numerous
micropores, converting incident sound wave energy into thermal energy through the
frictional resistance of a skeleton and the air within the pores, effectively dissipating
it [12,13]. This type of material is particularly effective in reducing noise in the medium-
and high-frequency bands with short wavelengths, displaying the ability to absorb and
disperse sounds of various frequencies [14–20]. Resonant sound-absorbing materials, on
the other hand, feature a surface structure with multiple small holes, employing the basic
principle of the Helmholtz resonator. They absorb sound at specific frequencies by damping
due to a pressure difference between external forces and the internal air of the resonant
sound-absorbing material [16,21–23].

Sound-absorbing materials include nonwoven fabrics made of fiberglass, felt, polyurethane
foam, and vinyl foam [13,24]. However, while these materials are lightweight and functional,
they are difficult to recycle or dispose of at the end of their useful life. To address these environ-
mental concerns, polyester nonwovens can be considered as an alternative. PET is, first of all,
cost-effective. Second, it is highly recyclable, which can contribute to environmentally friendly
carbon reduction. Third, PET is lightweight, strong, and has excellent physical properties and
high durability [6,25–29].

Therefore, in this study, we aimed to investigate the effect of physical and chemical
processing on the sound absorption performance of rPET nonwovens in order to develop
eco-friendly, lightweight and sound-absorbing materials that can be used in the automotive
industry to address the transition to sustainable mobility. For this purpose, board-shaped
sound-absorbing materials were fabricated using recycled PET nonwovens, and the pores of
the nonwovens were increased by alkali processing to make them porous sound-absorbing
materials. In addition, a dimple-structured mold was used to change the material into a
resonant sound-absorbing material with a dimple structure on the surface through physical
processing to improve the sound absorption rate by processing. The sound-absorbing
performance was then compared and analyzed [30,31].

2. Materials and Methods
2.1. Materials

In this study, a nonwoven fabric with a sheath–core low-melting-point polyethylene
terephthalate (LM PET) staple fiber (Tm = 70 ◦C) as a sheath was utilized as a binder for
compression molding [32]. The sheath–core LM PET staple fiber and rPET staple fiber, both
4 deniers and 51 mm in length, were provided by Huvis Co., Ltd. (Daejeon, South Korea).
These two staple fibers were mixed at a content ratio of 2:8 to prepare a nonwoven fabric
through needle punching [33]. Concerning the sound-absorbing material, the nonwoven
fabric was cut into 14 × 14 cm2 pieces, and 10 layers were stacked at 210 ◦C and 95 psi
for 5 min using a hot press, followed by an additional 20 min of pressurization. Sodium
hydroxide pellets (97%, Daejeong Chemical, Jeonbuk, South Korea) and acetic acid (97%,
Samchun Chemical, Gyeonggi-do, South Korea) were used as reagents.

2.2. Alkaline Treatment

Alkaline treatment is influenced by the concentration and temperature of the alkaline
solution. Therefore, concentration and temperature were considered as variables to assess
the effect. The concentrations of the alkaline solution were 10, 15, and 20 v/v%, and
an aqueous sodium hydroxide solution was prepared using D.I water as a solvent [34].
Subsequently, each solution was used to immerse the sound-absorbing material at 70 and
80 ◦C for 60 min. The samples were then taken out and washed with D.I water. After
washing, the samples were neutralized with a 5% acetic acid solution and dried at 100 ◦C
for 3 h in a vacuum dryer. Figure 1 illustrates the surface modification mechanism of
recycled PET using alkaline.
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Figure 1. Mechanism of surface modification of rPET using alkaline.

2.3. Dimple-Forming Process

To create a dimpled structure on the surface, protrusions with diameters of 3, 4, and
5 mm were manufactured on a 15 × 15 cm2 surface with intervals of 6, 8, and 10 mm,
respectively, using a mold with a depth of 2 mm. The lower plate was designed to be flat,
allowing the emergence of 1405, 761, and 481 protrusions, respectively.

rPET nonwoven fabric (10 ply) was loaded, heated, and pressed using a hot press at
95 psi and 210 ◦C for 5 min. The material was then cooled for 20 min at room temperature
and demolded to produce a resonant sound absorber.

2.4. Measurement of Properties for Sound-Absorbing Material

The thickness of the nonwoven was measured using Vernier calipers (CD-15CP, Mi-
tutoyo, Japan). Measurements were taken three times at different locations and aver-
aged. Weight was determined using a precision balance (Pioneer, Ohaus, Parsippany, NJ,
USA) and averaged in triplicate. The weight loss rate was calculated for analysis using
Equation (1):

Weight loss(%) =
Wu − Wt

Wt
× 100 (1)

where Wu is the weight of the untreated sample and Wt is the weight of the treated
sample [35].

An electric field-emission scanning electron microscope (FE-SEM, JSM-7610F, JEOL,
Tokyo, Japan) was used to investigate the change in the surface shape resulting from
alkaline treatment and dimple processing of the sound-absorbing material. Operating
conditions were set to an acceleration voltage of 15 kV and a working distance of 8.4 mm.
The alkaline-treated sample was photographed to confirm the change in the macroscopic
surface structure and to observe alterations in the fiber surface during alkaline treatment.

The sound-absorbing characteristics of a material are influenced by internal pores [36].
To verify changes in porosity, the unit area and the amount of air passing through per unit
time were measured using an automatic air permeability tester (Dl-3013, Daelim Starlet,
Gyeonggi-do, Siheung, Republic of Korea) according to the ASTM D 737 Fraser method.
Samples were manufactured with a size of 17 × 17 cm2, and the test was conducted under
a pressure condition of 200 Pa.

Furthermore, the pores present on the surface and inside of the sample were analyzed
using Brunauer–Emmett–Teller (BET) analysis equipment (ASAPTM 2420, Micromeritics,
Norcross, GA, USA). N2 gas was adsorbed on the sample to assess the changes in pore size
and pore volume.

A two-microphone transfer function method with an impression tube kit (type 4206,
B&K Company, Nærum, Denmark) was employed to measure the sound absorption coeffi-
cient. Pulse analysis software (Pulse version 21) and a spectrum analyzer (type 3560, B&K
Company, Nærum, Denmark) were used for sound absorption analysis [37,38]. Figure 2
illustrates the schematic diagram of the impedance tube. After placing each sample on
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one side of the impedance tube, the sound absorption coefficient at frequencies ranging
from 500 to 6400 Hz was measured by detecting sound reflected from the sample with a
microphone, generating noise incident in the vertical direction from the other side.
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Figure 2. Schematic of the sound absorption coefficient measurement by impedance tube.

3. Results and Discussion
3.1. Rate of Change in Weight and Thickness by Alkaline Treatment

In order to determine the effect of alkaline treatment on the sound-absorbing material
sample, the rate of change in weight and thickness was measured based on the concen-
tration and temperature of the alkaline solution, as depicted in Figure 3 and Table 1. It
was observed that the weight loss rate of the sound-absorbing material tended to increase
with higher concentrations of the alkaline solution, and the rate further increased with
elevated temperatures Figure 3a [39]. The change in thickness demonstrated a tendency to
decrease with higher concentrations and temperatures of the alkaline solution, similar to
the weight loss rate (Figure 3b). The weight loss and thickness reduction of rPET in the
alkaline treatment condition of 80 ◦C temperature and 20% concentration showed a large
change compared to other temperature and concentration conditions. Therefore, it can be
seen that the alkaline treatment condition of 80 ◦C temperature and 20% concentration is a
harsh environment for rPET.
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Figure 3. Graphs showing the weight and thickness change rate of recycled sound-absorbing material
according to reaction temperature and alkaline concentration during alkaline treatment: (a) weight
loss and (b) thickness reduction.

Table 1. Rate of change in weight and thickness under various alkaline treatment conditions.

Treatment Condition Rate of Change

Temperature (◦C) NaOH
Concentration (v/v%)

Weight
Loss (%)

Thickness
Reduction (%)

70
10 12.66 8.29
15 13.40 19.15
20 26.69 14.70
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Table 1. Cont.

Treatment Condition Rate of Change

Temperature (◦C) NaOH
Concentration (v/v%)

Weight
Loss (%)

Thickness
Reduction (%)

80
10 17.89 18.15
15 23.57 21.25
20 47.33 47.63

The weight loss rate and thickness reduction rate increase as the processing temper-
ature increases. This is because the degree of freedom of rPET increases with increasing
temperature, which causes the rPET chains that were not exposed to the surface to be
exposed to the fiber surface more often, and the PET chains are attacked by OH ions.

3.2. Analysis of Morphological Changes in Sound-Absorbing Materials during Alkaline Treatment
and Dimple Processing

When surface processing is performed, various changes occur on the properties of a
sample’s surface. Therefore, morphology analysis was conducted to observe alterations
in the surface of the sound-absorbing material during alkaline treatment and dimple
processing. Figure 4 displays the SEM images of the alkaline-treated sound-absorbing
material. When comparing the untreated samples, the fiber diameter of the sample treated
at 70 ◦C with a NaOH concentration of 10% became slightly thinner. It was confirmed that
the fiber diameter decreased with NaOH concentrations of 15% and 20%. It can be seen
that as the fiber diameter decreases, the pores of the nonwoven fabric widen. In the case of
the sample treated at 80 ◦C with a NaOH concentration of 10%, it was observed that the
fibers melted to form a film-like shape. At NaOH concentrations of 15% and 20%, the fibers
were observed to have a cut shape, and it can be confirmed that they melted to form a mass.
Enormous voids were formed at the NaOH concentration of 20%.
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Figure 4. SEM images of the sound-absorbing material, based on the concentration and temperature
of the alkaline treatment solution revealed the following conditions: (a) untreated, (b) 70 ◦C, 10%,
(c) 70 ◦C, 15%, (d) 70 ◦C, 20%, (e) 80 ◦C, 10%, (f) 80 ◦C, 15%, and (g) 80 ◦C, 20%.
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SEM images of the dimple-processed sound-absorbing material are shown in Figure 5.
In the sound-absorbing material subjected to the dimple process (Figure 5a–c) at 50×
magnification, a fusion of fibers is observed due to the strong pressure applied to the area
where the dimple shape is formed compared to other areas during the manufacturing
process. In the case of a 3 mm dimple diameter, the smallest dimple shape was observed,
whereas for the largest 5 mm diameter, the largest dimple shape was evident. At 250× and
500× magnifications, it was confirmed that the area melted by the fibers increased with
the dimple diameter. However, as the dimple diameter increases, the surface area expands,
leading to weaker pressure applied to the sound-absorbing material. Therefore, the melting
of fibers on the surface was more clearly observed with smaller dimple diameters.
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Figure 5. As a result of the surface shape analysis of recycled sound-absorbing materials based
on dimple-processing diameter, images at 50×, 250×, and 500× magnifications were obtained for
untreated samples, as well as samples with dimple diameters of 3 mm, 4 mm, and 5 mm: (a) 50× of
3 mm, (b) 50× of 4 mm, (c) 50× of 5 mm, (d) 250× of untreated sample, (e) 250× of 3 mm, (f) 250× of
4 mm, (g) 250× of 5 mm, (h) 500× of untreated sample, (i) 500× of 3 mm, (j) 500× of 4 mm, (k) 500×
of 5 mm.

3.3. Air Permeability of Alkaline-Treated and Dimple-Processed Sound-Absorbing Materials

The results of the air permeability of the alkaline and dimple-processed samples
are shown in Figure 6. The air permeability of the untreated sound-absorbing material
was 4.14 cm3/cm2/s. After alkaline treatment, the overall air permeability increased
(Figure 6a). At the lowest solution concentration of 10% and a temperature of 70 ◦C, it
showed an air permeability of 7.94 cm3/cm2/s, approximately twice that of the untreated
sample. Additionally, as the alkaline treatment concentration and temperature increased,
the air permeability gradually increased. It was observed that the air permeability rapidly
increased under the harshest environment at NaOH concentration of 20% and treatment
temperature at 80 ◦C [40].

The air permeability results for the dimple-processed sound-absorbing material are
given in Figure 6b. The sound-absorbing material processed with a 3 mm dimple diam-
eter exhibited 3.00 cm3/cm2/s, the 4 mm dimple-processed sound-absorbing material
showed 3.35 cm3/cm2/s, and the 5 mm dimple-processed sound-absorbing material ex-
hibited 3.76 cm3/cm2/s. These values indicated reduced air permeability compared to
the untreated sound-absorbing material. The decrease in air permeability for the dimple-
processed sound-absorbing material is attributed to the reduction in surface pores due
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to yarn fusion in the dimple-shaped region, causing airflow disruptions and reducing
air permeability.
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3.4. Adsorption and Desorption Pore Volume Changes of Sound-Absorbing Materials with
Alkaline Treatment

The changes in pore volume of the sound-absorbing material prepared by alkaline
treatment were analyzed by comparing them with the untreated sample. The pore volume
changes during adsorption and desorption of sound-absorbing materials are shown in
Figure 7. Figure 7a shows the changes in pore volume during adsorption with respect
to the change in pore diameter, while Figure 7b shows changes in pore volume during
desorption with the change in pore diameter. The pore volume during both adsorption
and desorption generally increased as the pore diameter increased. Additionally, the pore
volume during both of the processes increased with higher concentrations and temperatures
of alkaline treatment. This suggests that the pore volume increases as the pore size of the
sound-absorbing material increases through alkaline treatment.
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Figure 7. Changes in pore volume of alkaline-treated sound-absorbing materials: (a) adsorption pore
volume sample and (b) desorption pore volume sample.

In addition, in general, materials with a large pore volume exhibit high sound absorp-
tion. This is because if the pore volume is large, there is more space where sound can enter
the material, scatter, and be absorbed [41]. The cumulative adsorption volume of pores of
the untreated and alkaline-treated samples are compared and shown in Table 2. Compared
with the untreated sample, the sample with a treatment temperature of 80 ◦C and NaOH
concentration of 15% and the sample with a treatment temperature of 70 ◦C and NaOH
concentration of 20% showed the largest volume change. It can be seen from Figure 8 that
the sound absorption of this alkaline-treated sample is improved compared to that of the
untreated sample.
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Table 2. Cumulative adsorption volume of samples treated with alkaline and untreated samples.

Treatment Condition Volume of Pores of Change

Temperature (◦C) NaOH
Concentration (v/v%)

Adsorption Cumulative
Volume of Pores (cm3/g)

0 0 0.00058

70
10 0.00174
15 0.00093
20 0.00205

80
10 0.00145
15 0.00366
20 0.00152
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3.5. Changes in the Sound Absorption Coefficients of Alkaline-Treated and Dimple-Processed
Sound-Absorbing Materials

To analyze the sound absorption characteristics of the porous sound-absorbing mate-
rial manufactured through alkaline treatment and the resonant sound-absorbing material
manufactured through dimple processing, the change in the sound absorption rate was
analyzed compared to the untreated sample. Figure 8 shows the results of changes in
the sound absorption coefficients of the alkaline-treated and dimple-processed recycled
sound-absorbing material.

In Figure 8a, the untreated sound-absorbing material exhibits an increase from a
low-frequency region to a medium-frequency region, followed by a gradual rise in the
high-frequency region. The sound-absorbing material treated with NaOH concentration
of 10% and treatment temperature of 70 ◦C showed the most significant increase in the
sound absorption rate across the entire frequency range compared to the untreated sound-
absorbing material. In particular, there was a substantial increase in the high-frequency
range of 3000 Hz or more. However, under NaOH concentration of 20% and treatment
temperature of 80 ◦C treatment conditions, the sound absorption rate tended to decrease,
rather than matching the untreated sample. There was no distinct trend in the sound
absorption rate change due to the reduction caused by alkaline treatment. However, it was
observed that the alkaline-treated sample improved compared to the untreated sample, but
the sample in the harsh alkaline treatment environment decreased the sound absorption
rate compared to the untreated sample. Therefore, the weight and thickness, important
factors affecting the sound absorption rate, also change simultaneously, and it is believed
to have been greatly affected by this.

Figure 8b shows the change in the sound absorption rate according to the dimple
shape. The untreated sample without shape exhibited the highest sound absorption rate at
low frequencies, with a slightly lower sound absorption rate at high frequencies of 4000 Hz
or more. There was a difference in the change in sound absorption rate according to the
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diameter of the dimple shape. It was confirmed that the sound absorption rate of the
samples with a diameter of 3 mm and 4 mm decreased at low frequencies compared to the
untreated sample, and sound absorption performance was improved at a high frequency
of 4000 Hz or more. In the case of the sound absorption rate of a sample with a diameter of
5 mm, compared to the untreated sample, the sound absorption performance was improved
at a high frequency of 5000 Hz or more. In conclusion, it was also confirmed that the dimple
structure formed on the surface exhibited the same characteristics as the resonant sound-
absorbing material, and the resonant sound-absorbing material also showed excellent
sound absorption performance at a specific frequency. In the case of a dimple-processed
sample, the sound absorption performance was greatly improved at 4000–6000 Hz.

In order to confirm the sound absorption improvement effect of the alkaline treatment,
sound absorption characteristics were compared between the sample reduced by alkaline
treatment and a comparative sample with the same weight. Therefore, the sound absorption
rate was compared by preparing a sound absorption material with a weight similar to the
reduced sample by adjusting the ply layers of the sound absorption material. Figure 9
shows the improved sample and the sound absorption rate based on the sample produced
by changing the weight under different conditions of the number of ply.
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Figure 9. Comparing the sound absorption coefficient between the reduced sample through alkaline
treatment and the sample with similar weight by controlling the fly water: (a) NaOH 10% 70 ◦C (loss
in weight 12.7%), (b) NaOH 20% 70 ◦C (loss in weight 26.7%) and (c) NaOH 15% 80 ◦C (loss in weight
23.7%).

Figure 9a shows the comparison of the sound absorption rates of samples treated
under the temperature conditions of 70 ◦C (12.7% loss in weight), 9 ply (10% loss in weight),
and 8 ply (20% loss in weight) in a 10% NaOH aqueous solution. The sample treated under
the condition of 70 ◦C in 10% NaOH solution showed a high sound absorption rate in the
overall frequency domain compared to the untreated sample, 9 ply (10% loss in weight),
and 8 ply (20% loss in weight).

Figure 9b shows the comparison of the sound absorption rates of samples treated
under conditions of 70 ◦C (26.7% loss in weight), 8 ply (20% loss in weight), and 7 ply
(30% loss in weight) in a 20% NaOH aqueous solution. Samples at a temperature of 70 ◦C
in a 20% NaOH aqueous solution did not differ significantly from other samples in the
frequency range of 2000 Hz or less, but they showed a slight improvement in the sound
absorption rate in the frequency range of 2000 Hz or more, and it was confirmed that the
sound absorption rate increased significantly in the range of 3000 Hz or more.

Figure 9c shows the comparison of the sound absorption rates of samples treated
under the conditions of 80 ◦C (23.7% loss in weight), 8 ply (20% loss in weight), and 7 ply
(30% loss in weight) in a 15% NaOH aqueous solution. A sample at a temperature of
80 ◦C showed a similar sound absorption rate below 4000 Hz when comparing the sound
absorption rate with the untreated sample, 9 ply (10% loss in weight), and 8 ply (20% loss
in weight), but it was confirmed that the sound absorption performance was significantly
improved in the area of 4000 Hz or more compared to other samples.

In order to control the effect of the thickness of the sample on the sound absorption
property and to compare only the effect of alkaline treatment on the sound absorption
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property of a sample of the same thickness, the sound absorption rate divided by the
thickness of the sample was calculated and replotted, as shown in Figure 10. The sound
absorption coefficient of the untreated sample was the lowest in the entire frequency range.
In the frequency range below 2000 Hz, the sound absorption rate of samples treated with
alkaline tended to slightly increase. The sound absorption rate of the sample treated at
temperature of 70 ◦C and concentration of 10% was highest, but there was little difference
by treatment condition. In the 2000–4000 Hz frequency band, the sound absorption rate of
the sample tended to increase further with alkaline treatment.
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However, in the 4000–5000 Hz frequency band, the sound absorption coefficient of the
sample treated at a temperature of 80 ◦C and concentration of 15% and the sample treated
at a temperature of 70 ◦C and concentration of 20% increased more than that of the sample
treated at a temperature of 70 ◦C and concentration of 10%. In the frequency band above
5000 Hz, the sound absorption coefficient of the sample treated at temperature of 80 ◦C and
concentration of 15%, the sample treated at temperature of 80 ◦C and concentration of 20%,
and the sample treated at temperature of 70 ◦C and concentration of 20% increased more than
that of the treated sample treated at a temperature of 70 ◦C and a concentration of 10%.

These results are believed to have improved the sound absorption rate in the high-
frequency range above 4000 Hz because the pore diameter and pore volume of the rPET
nonwoven fabrics increased when the alkaline treatment conditions were intensified.

4. Conclusions

This study aimed to develop a lightweight sound-absorbing material that enhances
sound-absorbing performance using eco-friendly materials. This was achieved by man-
ufacturing a sound-absorbing material through thermal compression molding of rPET
nonwoven fabric and applying dimple processing and a chemical method. The goal was
to create a lightweight material with improved sound-absorbing performance, harnessing
the porous characteristics of rPET nonwoven fabric and resonant sound-absorbing charac-
teristics through dimple processing, with variations in alkaline treatment conditions. The
results of the comparison and analysis of sound-absorbing performance and characteristics
of the nonwoven fabric under different alkaline treatment conditions and dimple structures
are presented below.

Through alkaline treatment, reforming, and dehydration, reactions occur on the surface
of rPET, leading to changes in weight and thickness. Regarding the alterations in weight and
thickness, it was observed that both decreased under severe alkaline treatment conditions.
Specifically, the weight and thickness exhibited a notable reduction in environmental
conditions characterized by higher concentrations and temperatures of the NaOH aqueous
solution. The most significant decrease occurred at 80 ◦C under 20% concentration of the
harsh NaOH aqueous solution.

In addition, it was confirmed that the volume of the changed pores through the alkali
treatment was related to the degree of sound absorption. The sample at a temperature of
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80 ◦C and with a concentration of 15% and the sample at a temperature of 70 ◦C and with a
concentration of 20% showed a large volume change. In addition, it was confirmed that the
sample treated under these conditions improved when compared to the sample without
treatment in terms of the degree of sound absorption.

When observing the surface shapes of the alkaline-treated and dimple-processed samples,
it was evident that the thickness of the yarn in the sound-absorbing material, which significantly
decreased in the alkaline-treated sample, reduced and the surface pores of the nonwoven fabric
increased. The dimple-processed sample applied higher pressure to the dimple-processing area,
leading to the fusion of the yarn and resulting in a film-shaped surface.

As a result of measuring the sound absorption coefficient of the specimens under
each alkaline treatment condition in the frequency band of 500–6000 Hz, it was observed
that compared to the untreated sample without alkaline treatment, the sound absorption
coefficient of the specimens under the conditions of 70 ◦C in 10% and 20% NaOH aqueous
solution and 80 ◦C in 15% NaOH aqueous solution increased across the entire frequency
range. The sound absorption coefficient further increased in the range of 5500 Hz or more
under the condition of 80 ◦C in a 20% NaOH aqueous solution. It was confirmed that
the sound absorption performance was influenced by the complex changes in the shape,
weight, and thickness of the pores resulting from alkaline treatment.

In the case of specimens subjected to dimple processing under diameter conditions
of 3 mm, 4 mm, and 5 mm, the sound absorption coefficient decreased in the low- and
medium-frequency bands but increased in the frequency range of 5000 Hz or more. The
sound absorption characteristics of the resonant sound-absorbing material manifested in
the frequency range of 5000 Hz or more, and the smaller the dimple diameter, the better
the expression of resonant sound absorption characteristics.

Through this study, it was confirmed that the sound-absorbing properties of a material
against noise generated in a high-frequency domain were improved by using alkaline
treatment and dimple processing. This economical and straightforward process can be
expected to reduce high-frequency noise generated from friction between the road surface
and wheels when driving an electric vehicle. Additionally, it can provide a comfortable
driving experience for drivers through postprocessing of the wheel guard that is currently
commercially available.

However, further research is needed to explore reuse options and prevent environ-
mental problems caused by alkali during the weight loss process.
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