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Abstract: This article aims to assess the performance of Nord2000, RTN-96, and CNOSSOS-EU,
the Nordic and European noise prediction standards, in predicting daily LAeq24h and Lden levels
(dBA), by comparing them with measurements gathered over 76 days from the E45 motorway
in Helsted, Central Jutland, Denmark. In addition, the article investigates the potential viability
of utilizing Confidence-Weighting Average (CWA) for data fusion to enhance noise estimation
accuracy. The results showed highly positive Spearman’s correlations (RS), reflecting strong agree-
ments between observed and predicted data, Nord2000 = 0.85–0.98, CNOSSOS-EU = 0.79–0.92 and
RTN-96 = 0.86–0.91. Model differences, RMSE = 0.4–3.3 dBA (Nord2000), 1.4 = 2.8 dBA (CNOSSOS)
and 1.3–4.2 dBA (RTN-96), were mainly due to underlying model parametrization and uncertainties
in model inputs. Overall, Nord2000 outperformed CNOSSOS and RTN-96 in reproducing observed
noise levels. Moreover, CNOSSOS agreed well with the measured data and exhibited a high po-
tential for noise mapping and health assessments. Likewise, the CWA is found to be a promising,
forward-looking data fusion approach to improve noise estimates’ accuracy. More research is required
to further evaluate the models in greater detail over a larger geographical area and across varied
temporal scales (e.g., hourly, yearly).

Keywords: Nord2000; CNOSSOS-EU; RTN-96; model validation; measurements; machine learning;
data fusion; implications; health studies

1. Introduction

Noise is an unwanted, unpleasant sound, primarily causing annoyance and hearing
disruptions [1,2]. In particular, the literature shows that the constant noise with no pauses
from highways is more annoying than the other roads [3–5]. Moreover, noise annoyance
and persistent exposure are harmful and may lead to critical illnesses like cardiovascular
disease [6]. Consequently, about 12,000 premature deaths yearly in Europe are attributed
to noise exposure [7], where road traffic is the dominant source of noise pollution [8].

The case of Denmark is no different. According to the Danish Environmental Protection
Agency [9], almost one in three homes, and approximately 785,000 homes, suffer from
road traffic noise above the recommended limit, which is a day–evening–night noise level
(Lden) of 58 dBA. Therefore, assessing such noise levels is indispensable to protecting
public health.

When assessing noise, it is customary to use computer-based simulation models [10]. It
is due to their, e.g., cost effectiveness and higher spatial coverage compared to high-quality
measurements [11]. However, when possible, good-quality measurements are necessary for
a reasonable amount of time, e.g., more than a few weeks or months, to evaluate the model
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simulations [12]. Furthermore, when comparing noise measurements to model simulations,
it is important to acknowledge the likelihood of uncertainties in measurements caused by
various factors such as equipment errors, background noise, meteorological conditions
(wind-induced noise), and disruptive events like nearby construction or the presence of
emergency vehicles with sirens among others [13–15].

Two simulation models are used in Denmark to estimate noise levels. One is the
Road Traffic Noise 1996 Prediction Method (hereafter, RTN-96) [16], and the other is the
Nord2000 [17–19]. Both these models are the joint Nordic noise prediction standards.
However, the RTN-96 model is relatively coarser, requiring fewer inputs, e.g., light, and
heavy vehicles only, and no meteorology. In contrast, Nord2000 is a state-of-the-art model
using comprehensive information on traffic parameters, e.g., composition, speeds, meteo-
rology, e.g., wind, temperature, and topography, e.g., road surface and gradient [20]. See
Section 2.4.1 for more model details.

In summary, RTN-96 and Nord2000 are routinely used for noise mapping and health
assessments in Denmark, e.g., [21–23]. However, it should be noted that the Danish EPA,
since 2007, officially recommends the Nord2000 method for noise prediction and city
planning since RTN-96 cannot predict Lden noise levels [24].

On top of this, recent European legislations obligate Denmark to use the Common
Noise Assessment Methods for the EU Member States (hereafter, CNOSSOS) for strategic
noise mapping [25,26]. CNOSSOS is a European standard and unified noise prediction
framework to help obtain comparable noise estimates across the EU. Nevertheless, there
have been uncertainties in the CNOSSOS sound propagation algorithms, e.g., ground
absorption parameters. Interested readers can find more details in [27–29]. These uncertain-
ties recently led to the revised model algorithms; see [30]. In conjunction, CNOSSOS is now
fully implemented in the leading software suite, SoundPLAN Nordic (http://soundplan.dk
(accessed on 14 October 2023)) and included in the 2022 Danish noise mapping cycle [31].

Since noise mapping is crucial for urban planning and health assessments, evaluating
the model’s performance is necessary. A few researchers have evaluated the performance
of Nord2000, RTN-96, and CNOSSOS. For example, Jónsson and Jacobsen [32] compared
Nord2000 simulated noise with measurements for many test cases, reporting deviations
up to 3 dBA in the simulated noise levels. In addition, the Danish Road Directorate
(https://vd.dk (accessed on 14 October 2023)) has evaluated Nord2000 for several use
cases (propagation distance up to 1000 m) using the so-called Close Proximity (CPX) noise
measurements method [33,34]. They reported model overestimations in the range of 1–2 dB.

Concerning RTN-96, no such evaluations are seen except for [35], where Bendtsen
compared RTN-96 noise estimates with the measurements via 178 test scenarios [36] and
found a good agreement (0.2 dB difference) between measured and modeled noise levels.
Moreover, Faulkner and Murphy [37] analyzed CNOSSOS’ performance in Dublin, Ireland,
by comparing simulated noise levels with the measured ones at an experimental site.
They reported systematic underestimations in CNOSSOS predictions, ranging from 0.2
to 2.0 dBA. Furthermore, Larsson [38] evaluated CNOSSOS’ performance in Sweden and
reported model underestimations up to 2 dB at short distances (10 m).

As noted above, Nord2000 and RTN-96 are usually used for noise mapping and health
assessments in Denmark. Nevertheless, their validation studies are mainly based on test
cases, and real-world evaluations have been minimal, highlighting significant research
and knowledge gaps. In addition, it is indispensable to analyze the recently revised
CNOSSOS [26] performance to understand its suitability for noise modeling and health
assessments in Denmark. All this calls for further research.

In addition, in recent years, integrating model simulations with the measured data has
emerged as a promising approach to improve data accuracy, as reported by, e.g., [39–41].
This approach, known as data fusion, combines multiple data sources (here, model simula-
tions and measurements) to produce more consistent and accurate information than that
provided by a respective data source, simulations, or measurements [42]. One such tech-
nique is Confidence-Weighted Averaging (CWA) [43]. It combines simulated and measured

http://soundplan.dk
https://vd.dk
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values concerning their variance into a more accurate estimation of the measurand (see
Section 2.7 for details). However, CWA is poorly utilized for the data fusion of simulated
and measured traffic noise levels, and its potential to do so efficiently is yet to be explored.

Therefore, this article’s main objective and novelty is to address the research and
knowledge gaps mentioned above. In conjunction, the performance of Nord2000, RTN-96
and CNOSSOS has been evaluated by comparing their predicted noise levels with relatively
long-term noise measurements along a busy motorway (a highway with multiple lanes),
E45, in Central Jutland, Denmark, reflecting a real-world situation. These evaluations
aim to facilitate Danish health scientists and city planners to better understand Nord2000,
RTN-96 and CNOSSOS potentials for future health assessments and noise mapping.

In addition, we explored the potential of the CWA for the first time to combine
noise model predictions and measurements. The next section summarizes the study site,
measurements and modeling methodologies, inputs, and the associated data analyses.

2. Materials and Methods
2.1. Study Site

The study site is Helsted. It is an area in the northwestern part of the Municipality of
Randers in the Central Jutland Region of Denmark (see Figures 1 and A1). In addition to
commercial and recreational areas, residential houses and low-rise buildings dominate the
landscape. Relatively small, less busy roads, open areas, and sparse and dense vegetation
can also be seen (Figure 1). The estimated terrain elevation above sea level in Helsted is
about 18 m [44].
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Figure 1. (a) Study site in Helsted, Denmark, reflecting the E45 motorway with two lanes in each
direction (pink colored thick lines), dense and sparse vegetation and open areas. (b) Another view of
the study site showing the two measuring locations (the red asterisks) near the E45 motorway.

There is a motorway, the E45, with two lanes in each direction. A motorway is a
wide road with multiple lanes for fast-moving traffic and a limited number of places to
join or leave [45]. E45 is the longest north–south European route [46], having a length
of about 357 km in Denmark, and it connects northern and southern parts of the Danish
Jutland Region to its central part. According to the Danish Road Directorate [47], there is a
significant amount of traffic (>30,000 daily vehicles) on the E45 all year round.

2.2. Noise Measurements and Data Processing

The Danish Road Directorate (https://www.vejdirektoratet.dk/ (accessed on 14 Oc-
tober 2023)), in consultation with the Danish Environmental Protection Agency’s Refer-
ence Laboratory (https://referencelaboratoriet.dk/ (accessed on 14 October 2023)) for
Noise Measurements, selected four representative sites, including our study site, Helsted
(Figure 1), on the E45 motorway where it is planned to be widened. Noise measurements
were carried out at these sites, partly in the summer and the autumn of 2019. In addition,
noise levels were also assessed using Nord2000 calculations. The aim was to compare the
observed and estimated noise. Interested readers can find more details in [48]. Since this
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article focuses on Helsted, a relevant summary of measurements (autumn 2019 only) and
subsequent data processing is as follows.

Noise measurements, in compliance with the international standards, ISO 1996-
2:2017 [49], were conducted at the two measuring locations in Helsted, along the E45
motorway, from September to November 2019. Location 1 was 36.4 m away from the mo-
torway, whilst location 2 was 123.3 m; see Figure A1. The measurement height at location 2
was 1.7 m above the ground. No information was available for location 1 in [48]. Measure-
ments were carried out by the SWECO Denmark (https://www.sweco.dk/ (accessed on 14
October 2023)) using Sigicom’s INFRA S50 Sound Level Meter (SLM) and INFRA D10 Data
Logger [50,51].

According to the manufacturer’s website, the Infra S50 is a digital IEC-Class 1 SLM
containing a high-quality microphone and a comprehensive array of electronics with digital
signal processing. The SLM performs all the filtering and signal processing digitally and
logs the recorded noise levels to the associated data logger, D10, or a remote server option-
ally. The S50 SLM, among other noise metrics, measures the equivalent sound pressure
level (LAeq) at a varying temporal resolution of 1 s to 60 min. In Helsted, the measurements
at each location were conducted at the temporal resolution of 15 min (LAeq,15min). After
the initial data processing by the SWECO Denmark, the Acoustic Department of FORCE
Technology, Denmark (https://forcetechnology.com/en (accessed on 15 October 2023)),
obtained the aggregated, hourly A-weighted equivalent noise levels (LAeq1h) for further
processing.

Since noise monitors were mounted on the building facades, FORCE Technology cor-
rected the measurements for the effect of sound reflections from the façade and normalized
the measured noise data based on traffic data registered by the Danish Road Directorate.
Relevant details are provided in [48]. In short, the noise levels (LAeq1h) were normalized
for each hour to correspond to the 2018 annual average daily traffic, considering the vehicle
category (LDV, HDV, etc.), their average speed and the choice of E45 lane. The reason was
to compare the measurement results to a reference scenario in 2018, where traffic and noise
were measured as part of the Danish Road Directorate’s Road Extension Economic Impact
Assessments in Helsted.

Subsequently, normalized noise levels were sorted in the daytime, evening, and
nighttime to compute the measured Lden (dBA) levels, and the uncertainty analysis was
performed. In addition, FORCE Technology assessed the noise levels using Nord2000
calculations. For each hour, meteorological data (wind speed, direction, etc.) from the
nearby Denmark Meteorological Institute (DMI) (https://www.dmi.dk/ (accessed on 14
October 2023)) station were linked to weather classes in the Nord2000 model. Then, mean
values for day, evening and night periods were calculated. Road corrections were also
applied, and fully sound absorbent building facades were assumed. Finally, the annual
average Lden (dBA) was estimated. See [48] for more Nord2000 simulation details. FORCE
Technology compared measured and simulated annual average Lden levels. Focusing on
this annual average comparison was beyond the scope of this article. However, these
analyses are summarized at the end of Section 4.

After all the above processing, 76 days (1 September–15 November 2019) (N = 1824)
of measured hourly A-weighted, energy equivalent, sound pressure levels data (LAeq1h)
were provided by the FORCE Technology for this article. The 2018 reference measurements
data were also provided. We compared both measured datasets to analyze the agreement
between them. In addition, measured traffic attributes, the number of Light-, Medium- and
Heavy-Duty Vehicles and respective speeds on both north- and southbound lanes of the
E45 motorway were available.

2.3. Data Imputation

There were several missing values in the measured dataset, particularly the number
of Medium- and Heavy-Duty Vehicles and their speeds, on both lanes of the E45 motorway
(the reason was a fault in the traffic-counting equipment; see Figure A2). Further analysis

https://www.sweco.dk/
https://forcetechnology.com/en
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of the measured data revealed relatively more missing values in the evening and night
than in the daytime. Given the significance of long-term noise measurements in evaluating
model performance, we employed machine learning-based data imputation within the R
software version 4.3.2 [52] to address missing values in the measured dataset, which is
summarized below.

To impute missing values, we used the Random Forests (RF) approach via the R
package, “missRanger” [53]. Details of RF are provided in [54] and will not be repeated
here. However, interested readers can find more details about the imputation procedure at
the package website, https://cran.r-project.org/web/packages/missRanger/index.html
(accessed on 15 October 2023). In short, the missRanger package, under the hood, uses the
“ranger” R package [55] to impute the missing values via chained RF algorithms and the
recursive nearest-neighbor search. Subsequently, a goodness-of-fit analysis used a training
dataset to forecast available (measured) data, demonstrating a strong agreement between
the two datasets.

After imputing all the missing values, these data were used in model simulations and
further article analyses, as summarized in the following sections.

2.4. Model Simulations

Noise levels were simulated using Nord2000, RTN-96, and CNOSSOS in the Sound-
PLAN software, version 8.2 (SoundPLAN Nord: http://www.soundplan.dk/ (accessed on
15 October 2023)). It should be noted that in the SoundPLAN, importing user-defined traffic
and topographic (e.g., ground elevation) data is customary, whereas the comprehensive
weather-related libraries are included by default and as per the Danish EPA recommenda-
tions [56]. Therefore, we used measured and subsequently imputed traffic data in noise
simulations. Furthermore, the underlying model algorithms and equations have been
discussed in one of our previous studies [20] and will not be repeated here. The following
subsections describe the modeling procedure.

2.4.1. Nord2000

We used the Nord2000 algorithms (road noise module) implemented in the Sound-
PLAN software to estimate noise levels. The estimated noise, hourly equivalent A-weighted
sound pressure level (LAeq1h) given in dBA, reflected the measurement period, 1 September–
15 November 2019. The noise estimation procedure is summarized below.

First, a Digital Ground Model (DGM) for the study site, containing a road network,
three-dimensional (3D) building polygons, and terrain, was prepared. Then, road attributes
were added, including traffic intensity, speed, type, road surface, and emissions. The
traffic intensity was based on Average Daily Traffic (ADT), hourly values for Light- (LDV),
Medium-(MDV), and Heavy-Duty Vehicles (HDVs), reflecting the daytime, evening, and
nighttime, 07:00–19:00, 19:00–22:00 and 22:00–07:00, respectively. Lastly, noise levels were
estimated at the two measurement locations. The calculation height was 1.5 m above the
ground. Further details on the several input variables and noise estimation are described
below.

As stated, we used imputed measured data, traffic speed, ADT, etc., in noise simula-
tions for the E45 motorway. Whereas, for the other roads in the study site, road attributes
were obtained from the Danish National Road and Traffic Database [57], containing in-
formation about ADT, speed, and different road types for all major and minor roads in
Denmark. Based on the classification of roads, the road type reflects daily traffic patterns
and the hourly traffic distribution for different days and vehicle types, e.g., passenger cars,
buses, and trucks. See [57] for further details. The above information was used to prepare
hourly traffic values for each road except the E45 motorway in the study area.

The traffic speed values (km/h) for other roads were also acquired from the same
national traffic database [57]. The same average speed was assumed for day, evening and
nighttime and all vehicle categories (LDV, MDV, HDV).

https://cran.r-project.org/web/packages/missRanger/index.html
http://www.soundplan.dk/
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SoundPLAN contains several predefined road surface libraries, per Danish and inter-
national standards. In conjunction, the road surface was assumed as Stone Mastic Asphalt
with 11 mm texture depth (SMA 11), reflecting the recommendations of one of the reports
published by the Danish Road Directorate [58]. Moreover, the emission factors in Sound-
PLAN were based on the Nordic emissions database [59], representing the corresponding
road surface and type.

Building polygons were obtained from the GeoDenmark web portal (https://www.
geodanmark.dk/ (accessed on 15 October 2023)). The dataset for each building included
estimated building height in meters. The building heights were estimated using the
National Elevation Model, which has a 1 m × 1 m resolution, and these were calculated as
the difference between the Danish Terrain Model (DTM) and the Danish Surface Model
(DSM). In addition, first- and second-order noise reflections from building façades were
included in noise simulations.

Information on the terrain was acquired from the Danish Agency for Data Supply and
Efficiency (SFDE) (https://dataforsyningen.dk/ (accessed on 15 October 2023)). Subse-
quently, a Digital Ground Model (DGM) was calculated in the SoundPLAN software and
included in the model calculations. See Figure 2 for 3D and 2D views of the DGM from
the SoundPLAN software. The DGM accounts for screening effects from the terrain. Road
surfaces and water bodies were assumed to be acoustically “hard” (reflecting). All other
areas/land use were assumed acoustically “soft” (absorbing). Water bodies, roads, and
all other surfaces were assigned ground classes H, G and D. Details regarding Nord2000’s
ground classes can be seen in [60]. Moreover, any potential screening and/or reflecting
effect from buildings was also considered in noise simulations.
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Figure 2. (a) Three-dimensional (3D) view of the Digital Ground Model (DGM) from the SoundPLAN
software (version 8.2). The DGM was prepared for noise estimation using Nord2000 algorithms.
The green basemap is the study site’s Digital Elevation Model (DEM), reflecting ground surface
elevation. (b) Another view of the 3D DGM showing 3D building polygons; (c) 2D site map showing
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It should be noted that Nord2000 has a comprehensive set of weather classes for dif-
ferent scenarios, open areas, or dense city centers. The weather classes include temperature
and relative humidity data and parameters for determining the sound speed profile in 10◦

sectors for the day, evening, and night. Moreover, the Danish EPA’s report [60] states that
these classes are adequate to reflect on meteorology for strategic noise mapping and gen-
eral surveys. Therefore, the default weather libraries were used in Nord2000 simulations
to reflect a mix of residential, open, dense, and sparse vegetation in our study area (see
Figure 1).

https://www.geodanmark.dk/
https://www.geodanmark.dk/
https://dataforsyningen.dk/
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Finally, the hourly LAeq1h levels (dBA) at the two measuring locations were calculated
with a source search radius of 1000–1500 m. The aim was to ensure that the nearest busy
roads were included in the noise estimation. Again, this is especially relevant for our study
site, containing open areas, as noise from highways and busy roads in such a setting can be
perceived at distances up to about 1 km and more depending on the meteorology [61].

2.4.2. RTN-96

In principle, the same input data, road network, building polygons, and terrain were
used to prepare a separate DGM for RTN-96 noise simulations in the SoundPLAN software.
The same hourly LAeq1h levels (dBA) were estimated at the two measuring locations for the
same measurement time, 1 September–15 November 2019. The DGM containing ground
surface elevation and road attributes, including ADT, speed, and building heights data,
was prepared as described in Section 2.4.1. The following paragraph reflects the main
differences in RTN-96 simulations compared to the Nord2000 concerning traffic inputs,
weather conditions, and corrections, e.g., road surface correction.

Per RTN-96’s requirements, ADT values of the day, evening, and night were used
for only two vehicle categories, LDV and HDV. However, the MDV values were not
discarded and included in the LDV. In addition, average traffic speed values for LDV and
HDV were used for day, evening, and night. Since roads were assumed as SMA 11 in
the Nord2000 simulations, the road correction factor of 1.4 dBA was used to reflect the
same road surface conditions in the RTN-96. The correction factor was obtained from the
Nord2000 Handbook [62].

Because the RTN-96 model does not consider weather conditions (e.g., wind speed,
temperature) in noise simulations, no such data were used. Moreover, like Nord2000
simulations, hourly noise levels (LAeq1h, dBA) at the measuring locations were estimated
at a height of 1.5 m with a source search radius of 1000–1500 m. Again, the aim was to
ensure that the nearest busy roads were included in the noise estimation. Furthermore,
building reflections were considered, and 1st and 2nd-order reflections were included in
noise simulations.

2.4.3. CNOSSOS

Let us recall that CNOSSOS has been fully implemented in the SoundPLAN software.
All main changes are described in the Danish legislation [63] and FORCE Technology’s
reports [64,65] and will not be repeated here. The SoundPLAN CNOSSOS simulation
procedure is summarized below as a guideline for future relevant studies.

In addition to the LDV, MDV and HDV, CNOSSOS requires mopeds, motor-, tri- and
quadricycles values. However, the values of categories mopeds and motorcycles were set to
zero. The reason is twofold. First, there are no measurements of mopeds and motorcycles,
etc., for the E45 motorway. Also, mopeds are not allowed on motorways. Second, the effect
of such vehicles on total sound power emissions would only become relevant if they were
in the majority, which is not the case for the Danish scenario [64]. Therefore, we used the
same LDV, MDV and HDV and respective speed values for CNOSSOS simulations as the
Nord2000 ones (see Section 2.4.1). Again, the CNOSSOS’ traffic speed values for mopeds
and motorcycles were set to zero. The next paragraph summarizes the terrain and road
surface conditions.

A separate DGM, containing the same ground surface elevations, building polygons,
and road network as the Nord2000, was prepared for CNOSSOS in the SoundPLAN.
Moreover, the SMA 11 road surface was assumed for CNOSSOS roads in the SoundPLAN.
The aim was to be consistent with Nord2000 and RTN-96 simulations. In conjunction, road
surfaces and water bodies were assumed to be acoustically hard (reflecting), whilst all other
areas were assumed acoustically soft (absorbing).

CNOSSOS assumes weather as a proportion of time, mainly reflecting two atmospheric
conditions [21]. The first one is a homogeneous atmosphere with no wind. The second
one is a favorable (or “suitable”) downwind atmosphere with a positive temperature
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gradient vertically. However, these conditions contrast with Nord2000’s comprehensive
set of weather classes usually used for noise estimation in Denmark. Therefore, FORCE
Technology has converted complete Nord2000 weather statistics to the CNOSSOS ones to
reflect the same Danish weather conditions in its model algorithms. Readers can find more
relevant details and sensitivity analyses in [64].

In short, the conversion process produces the proportions of CNOSSOS’ favorable
sound propagation for the day, evening, and night in several propagation directions at
20-degree intervals. See Table 1 and Figure A3 for an overview of the CNOSSOS weather
classes. In the SoundPLAN software, the converted weather statistics for CNOSSOS are
included in the so-called ‘DK Weather’ library. We used this library in noise simulations.

Table 1. Overview of CNOSSOS weather statistics in the SoundPLAN Nordic software, showing the
share of favorable sound propagation for the daytime, evening, and nighttime in 20 degrees wind
direction intervals, converted from the Nord2000 weather classes. Readers can find more relevant
details in [64]. Note: Wind direction intervals are in degrees (0–360). Daytime (07:00–19:00), evening
(19:00–22:00) and nighttime (22:00–07:00) values are in %.

Interval Degrees Day Evening Night

1 20 22.0 28.1 32.9
2 40 24.1 30.1 35.1
3 60 27.0 32.3 37.2
4 80 28.7 34.0 39.1
5 100 30.7 36.2 42.1
6 120 34.0 39.4 46.7
7 140 37.7 43.3 51.9
8 160 42.4 48.2 56.9
9 180 46.0 51.5 60.6
10 200 49.2 54.8 63.2
11 220 51.5 57.3 64.2
12 240 52.0 57.8 63.5
13 260 50.2 56.5 60.9
14 280 46.7 53.3 56.1
15 300 42.2 48.8 50.3
16 320 35.9 42.3 44.0
17 340 29.1 35.1 38.0
18 360 23.9 29.6 33.7

Moreover, in the CNOSSOS simulations, the hourly noise levels, LAeq1h (dBA), at the
two measuring locations were estimated 1.5 m above the ground, with a source search
radius of 1000–1500 m. Finally, 1st and 2nd-order building reflections were also included in
noise simulations.

2.5. Noise Assessment and Model Evaluations

We calculated daily averages using the hourly model simulations (LAeq1h; Nord2000,
RTN-96, CNOSSOS) and measured data to assess the noise levels. The authors are aware
that the daily averages might introduce the so-called “data smoothing”, but they are gener-
ally considered a more robust measure for assessing noise levels compared to hourly ones
due to (i) the comprehensive representation of overall noise, including peak periods, (ii) the
stability and reliability, (iii) the cumulative exposure, and (iv) health regulations [66,67].
Thus, we calculated the 24 h A-weighted equivalent sound pressure levels (LAeq24h) (dBA)
using Equation (1) [68].

LAeq24h = 10 × log

(
1

24
×

23

∑
H=0

100.1×LAeq1h

)
(1)
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where H is the index for the hour of the day, for example, H = 0 is the hour from 00:00 to
00:59; and LAeq1h is the measured and simulated hourly A-weighted sound pressure level
in dBA.

In addition, we calculated the day–evening–night noise levels (Lden) (dBA) using
Equation (2). Per the EEA’s glossary [69], it is the energy equivalent noise level over a
whole day with a penalty of 10 dBA for nighttime noise (22.00–07.00 in Denmark) and
an additional penalty of 5 dBA for evening time noise (19.00–22.00). It should also be
noted that the Lden (dBA) is the WHO’s recommended noise metric for health-relevant
studies [70].

Lden = 10 log

(
1

24

(
12 ×

19

∑
H=7

100.1×LAeq,1h + 3 ×
22

∑
H=19

100.1(LAeq1h+Ke) + 9 ×
7

∑
H=22

100.1(LAeq1h+Kn)

))
(2)

where H is the index for the hour of the day; LAeq1h is the hourly noise level in dBA; Ke is
the evening time penalty of 5 dB; and Kn is the nighttime penalty of 10 dB. For Denmark,
day = 07.00–19.00 (12 h), evening = 19.00–22.00 (3 h), and night = 22.00–07.00 (9 h).

The daily noise estimates, LAeq24h and Lden, in dBA, were then analyzed using vari-
ous summary statistics measures: namely, the Minimum (Min), Mean, Maximum (Max),
percentiles (25th, 50th, 75th), and Interquartile Range (IQR). We also analyzed the daily
averaged traffic data, AADT and traffic speed, to explore its influence on noise levels.
Moreover, we compared the measured and simulated LAeq24h and Lden levels using scatter
plots. Furthermore, a series of model evaluation statistics were used to evaluate model
performances, including the Spearman’s rank correlation (RS), the Coefficient of Determi-
nation (R2), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Variance (Var),
Standard Deviation (SD), and 95% Confidence Interval (CI) for the regression fits between
the measured and the simulated noise levels.

We focused on Spearman’s correlation, which reflected the skewed nature of measured
and simulated noise. Furthermore, we were interested in the relative ranking of noise
exposure and model error. However, Pearson’s Correlation (RP) was also computed. All
statistical analyses were performed in the R software version 4.3.2 [52].

2.6. High-Resolution Noise Mapping

We developed high-resolution, 5 m × 5 m noise maps (LAeq24h, dBA) of Nord2000,
RTN-96 and CNOSSOS using the SoundPLAN software. The color scheme of the maps
was chosen according to the guidelines of the Danish EPA [31]. Noise mapping aimed to
(i) explore the spatiotemporal variation of daily noise levels in the study area and (ii) study
the feasibility of Nord2000, CNOSSOS and RTN-96 for high-resolution noise mapping.
Since the weekly traffic patterns generally remain the same [71], noise maps of only the first
seven days (1–8 September 2019) are presented in this article, and these are subsequently
discussed in Sections 3 and 4.

2.7. Data Fusion

Finally, we combined measured and simulated noise levels, LAeq24h and Lden (dBA), to
produce a fused dataset and compared it with the measurements. The data fusion process
used the Confidence-Weighted Averaging (CWA) technique proposed by Elmenreich [43].
As stated in the Section 1, the aim was to explore the unexplored CWA’s potential to
combine measured and predicted noise levels. Interested readers are referred to [43] for
detailed fusion algorithms and their mathematical proofs.

In short, the Confidence-Weighted averaging (CWA) is a method for fusing samples
from multiple data sources (e.g., measurements) into a dependable robust estimation of
a variable in the control environment. Each sensor measurement is represented by a
measurement value and a confidence marker that corresponds to the respective variance
of the measurement error. The CWA algorithm considers the estimated variance of the
measurement error and produces a result with minimum mean squared error, making it
optimal for calibrated sensors (or similar data sources) with uncorrelated error functions.
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In CWA, the fused value is calculated as the weighted average of all the measurands,
which are here simulated and measured noise levels (see Equation (3)). The weights are de-
rived from the reciprocal of the variance of each measurand (simulated or measured noise).
In addition, the CWA assumes that the values of the two measurands are independent and
errors are not correlated.

xfused =
∑ xi

σ2
i

∑ 1
σ2

i

(3)

where xi represents the measurands, measured and simulated noise; and σi represents the
variances of the measurands.

3. Results
3.1. Measurements Results

Table 2 shows the summary statistics of measurement results. The results are for daily
averaged LAeq24h and Lden (dBA) (N = 76 days) at the two measuring locations. At location
1, R1, the LAeq24h levels varied from 69.5 to 75.5 dBA, whilst the Lden levels varied from
72.1 to 79.4 dBA. Likewise, at location 2, R2, the respective ranges were 64.9–70.2 dBA and
67.5–74.1 dBA. The measured noise levels were higher at location 1 compared to location
2, as the former was closer to the E45 motorway. Also, a relatively higher variation in
observed noise levels at location 1 can be seen in Table 2.

Table 2. Summary statistics of the measurement results, daily averages, LAeq24h and Lden (dBA), at the
two measuring locations, along the E45 highway in Helsted, Denmark. Total number of days, N = 76.
Note: R1 = Measuring location 1; R2 = Measuring location 2; Min = Minimum, Max = Maximum,
Var = Variance, SD = Standard Deviation, p25 = the 25th percentile, p50 = the 50th percentile (Median),
p75 = the 75th percentile, IQR = Interquartile Range. All units are in dBA.

Min Mean Max Var SD p25 p50 p75 IQR

Measuring location 1 (R1)
LAeq24h 69.5 73.6 75.5 3.7 1.9 73.1 74.7 75.1 2.0
Lden 72.1 77.4 79.4 4.5 2.2 72.1 78.5 79.1 2.4
Measuring location 2 (R2)
LAeq24h 64.9 68.6 70.2 2.8 1.7 67.8 69.5 69.8 2.1
Lden 67.5 72.2 74.1 3.7 2.0 67.6 73.2 73.9 3.0

There were a few notable uncertainties in measurements, which are described below.
The extent to which the road surface properties of the E45 motorway represented their
commonly used annual average noise emissions value, during the measurements, was
unknown. Moreover, the Danish Road Directorate’s traffic-counting equipment at the E45
motorway did not work during the measurement period. Thus, the normalization of the
measured noise data was based on traffic counts from nearby counting stations, possibly
introducing discrepancies in the observed data.

In addition, similar uncertainties were found in the measuring process due to contri-
butions from extraneous and background noise sources. In summary, the measured data
were uncertain in the range of 1.3–2.1 dB, reflecting a 90% confidence interval [64]. This
ambiguity in the observed noise levels was found to be more prominent at nighttime than
in the daytime.

The measurements used in this article correlated fairly with the 2018 reference measure-
ment data. See Figure A4 showing the comparison, including Spearman’s and Pearson’s
correlation matrices. In short, Spearman’s correlation coefficients at R1 and R2 and the
reference measurements were RS = 0.76 and 0.78, respectively. The Coefficient of Deter-
mination, R2, was 0.56 and 0.59. All correlations were statistically significant. Moreover,
Figure A5 shows the line plots of daily LAeq24h and Lden (dBA) with ADT (vehicles/day).
At both measuring locations, R1 and R2, a clear notable pattern exists between the noise
levels and ADT. That is, the observed noise levels move toward the lower values with a
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drop in ADT from late October to early November 2019, highlighting ADT as a significant
noise source.

3.2. Measured vs. Simulated Noise

Figure 3 shows scatter plots comparing measured and simulated LAeq24h and Lden
levels (dBA, daily average) of Nord2000, CNOSSOS and RTN-96. In addition, Table 3 shows
the summary and model evaluation statistics of the same comparisons. At location 1, R1,
Nord2000 estimates correlated relatively better, RS = 0.85–0.92, than CNOSSOS and RTN-96,
RS = 0.79–0.90 and 0.82–0.86. All models over- and underestimated the recorded noise levels
at R1 (Figure 3). Model deviations can also be seen in Table 3. For LAeq24h at R1, Nord2000
predictions fitted better with the measurements (RSME = 1.6 dBA), whilst for Lden, CNOS-
SOS and RTN-96 reproduced observations relatively well (RMSE = 1.3–1.7 dBA).
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Figure 3. Comparison of the measured and modeled noise of Nord2000, CNOSSOS and RTN-96
at the two measuring locations in the study site, Helsted, Denmark. The noise levels, LAeq24h and
Lden (N = 76 days) (daily averages), are in dBA. Note: R = Spearman’s correlation coefficient (RS),
p = p-value showing the statistical significance of the correlation coefficients. Regression lines with
95% confidence intervals are also shown in the scatter plots.
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Table 3. Descriptive and model evaluation statistics of Nord2000, CNOSSOS and RTN-96 at the
two measuring locations. Model evaluations are for estimated LAeq24h and Lden in dBA. Note:
Min = Minimum; Med = Median; Max = Maximum; Rs = Spearman’s rank correlation coefficient;
R2 = the Coefficient of Determination; RMSE = Root Mean Squared Error; MAE = Mean Absolute
Error; Var = Variance; SD = Standard Deviation; 95% CI = 95% Confidence Interval of the Pearson’s
correlation coefficients. All values except Rs, R2 and 95% CI are in dBA. All correlations are statistically
significant, and values > 0.75 are colored bright green. Similarly, RMSE and MAE values are also
colored, light green (≤2 dBA), light orange (>2 and <3.5 dBA), and red (≥3.5 dBA).

Min Mean Med Max RS R2 RMSE MAE Var SD 95% CI

Measuring location 1 (R1)

LAeq24h (dBA)

Nord2000 73.1 74.7 74.9 75.9 0.92 0.85 1.6 1.1 0.50 0.71 [0.92, 0.97]

CNOSSOS 69.5 70.1 71.0 72.0 0.90 0.82 2.8 2.5 0.40 0.63 [0.84, 0.94]

RTN-96 70.6 72.2 72.3 73.1 0.86 0.75 2.3 2.1 0.41 0.64 [0.79, 0.91]

Lden (dBA)

Nord2000 78.5 80.3 80.7 81.8 0.85 0.73 3.2 2.9 0.86 0.97 [0.78, 0.91]

CNOSSOS 74.5 76.6 76.9 77.9 0.79 0.62 1.7 1.6 0.91 0.96 [0.70, 0.87]

RTN-96 75.1 77.2 77.5 78.5 0.82 0.67 1.5 1.3 0.77 0.88 [0.73, 0.88]

Measuring location 2 (R2)

LAeq24h (dBA)

Nord2000 64.0 65.2 65.5 66.1 0.92 0.85 3.3 3.1 0.32 0.58 [0.91, 0.97]

CNOSSOS 64.7 66.0 66.2 67.2 0.92 0.85 2.7 2.4 0.41 0.63 [0.92, 0.97]

RTN-96 62.8 64.1 64.3 65.0 0.91 0.82 4.2 4.0 0.35 0.58 [0.92, 0.96]

Lden (dBA)

Nord2000 68.3 72.0 72.8 73.6 0.98 0.96 0.4 0.4 2.54 1.60 [0.98, 0.99]

CNOSSOS 69.8 71.4 71.7 72.7 0.82 0.68 1.5 1.4 0.78 0.89 [0.80, 0.92]

RTN-96 67.3 68.8 69.0 70.0 0.88 0.77 3.7 3.5 0.55 0.74 [0.88, 0.95]

At location 2, R2, similar good agreements between measured and simulated noise
levels, RS = 0.82–0.98, can clearly be observed. Again, like R1, model over- and underesti-
mations of LAeq24h and Lden levels at R2 are notable (see Table 3 and Figure 3). There was
an excellent agreement between Nord2000’s predicted Lden levels and the measured data
at R2, which was reflected by RS = 0.98 and RMSE = 0.4 dBA. Also, noticeably, the most
significant discrepancies were produced by the RTN-96 model, RMSE = 3.5–4.2 dBA, at
both measuring locations.

Overall, the road proximity of the two measuring locations is well-reproduced by
all the models. That is, there were higher LAeq24h and Lden levels at R1 compared to R2
(Table 3). Nord2000 model prediction levels were generally higher than CNOSSOS and
RTN-96 (Figure 3). In addition, concerning the strength of the relationship between the
measured and simulated noise levels, Nord2000 performed better than the other two
models, RS = 0.85–0.98 vs. 0.79–0.92 (CNOSSOS) and 0.82–0.91 (RTN-96).

FORCE Technology also reported model deviations in their report [64] while com-
paring measured 63.8 dBA vs. the Nord2000 estimated 65.6 dBA (annual average Lden) at
measuring location 2 in Helsted. The overall uncertainty with a degree of 90% confidence
interval in the simulated annual average Lden was estimated to be 2.3 dBA. No measured
or simulated results were reported for measuring location 1 in [64].
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3.3. Results of Noise Mapping

Figure 4 shows high-resolution LAeq24h (dBA, 5 m × 5 m) maps for 1–4 September 2019
(Sunday–Wednesday), produced by Nord2000, CNOSSOS and RTN-96, in the SoundPLAN
software version 8.2. In addition, Figure A6 shows the same maps for the rest of the week,
5–7 September 2019 (Thursday–Saturday). The spatial spread and gradients of LAeq24h
levels can be seen in all the maps. Also, the simulated LAeq24h patterns seem to be the
same, higher levels (blue and purple color) closer to the E45 motorway and roads, and
lesser levels near minor/less busy roads. Overall, the LAeq24h levels of Nord2000 are higher
(fewer yellow and green zones) than CNOSSOS and RTN-96, where more green and yellow
zones representing lower noise can be seen.
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Figure 4. High-resolution mapping (5 m × 5 m; 1–4 September 2019) of LAeq24h (dBA) levels produced
by Nord2000, CNOSSOS and RTN-96 in the SoundPLAN software version 8.2. Maps of 1–4 September
2019 are shown here. See Figure A6 for the maps of 5–7 September 2019.

3.4. Results of Data Fusion

Figure 5 shows Spearman’s correlation matrices, comparing measured data and fused
noise estimates of Nord2000, CNOSSOS and RTN-96. Also, Table A1 shows summary
and model evaluation statistics of the same comparison. All fused estimates of the three
models correlated very well with the measurements at location 1, RS = 0.87–0.94. The
same holds for the fused estimates vs. measurements at location 2, where Spearman’s
correlations range was 0.88–0.99. If one compares the model vs. measurements analysis
given in Figure 3 and Table 3 with the fused estimates analysis (Figure 5 and Table A1),
correlations have generally improved with the highest RS value = 0.99. The same applies to
RMSE with maximum values limited to 4.0 dBA (Table A1).
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Figure 5. Correlation matrices reflecting Spearman’s correlation coefficients for comparing measured
data and fused noise estimates, LAeq24h (left side) and Lden (right side), for Nord2000, CNOSSOS and
RTN-96. Measuring locations 1 and 2 (R1 and R2) are marked. Note: RS = Spearman’s correlation
coefficient. The variables Nord2000, CNOSSOS and RTN-96 in the correlation matrices represent the
fused noise estimates, whilst LAeq24h and Lden represent the measured noise dataset.

4. Discussions

Despite the use of high-quality Class-1 equipment, the reliability of the measurements
used in this article should be approached with caution when interpreting the measurement
results in Table 2. This is due to factors such as background noise and equipment faults,
etc., introducing uncertainties in the measured data. See Section 3.1 for details. These
uncertainties highlight the challenges of conducting real-world measurements. Therefore,
it is essential to acknowledge possible limitations of measurements in a real-world setting.

Following the above, we noticed several discrepancies in the estimated LAeq24h and
Lden levels of Nord2000, CNOSSOS and RTN-96 (see Figure 3 and Table 3). These model
differences are mainly related to the respective model parametrization, structure and
how they predict noise levels. For example, Nord2000 uses advanced numerical methods
to estimate noise, whilst CNOSSOS uses more approximation, e.g., in its propagation
algorithms. We have previously described these model structure differences in one of our
studies [20], which will not be repeated here again. On top of this, as stated above, there
were uncertainties in the measurements data, possibly leading to disagreements between
the observations and model simulations. All this explains why Nord2000, CNOSSOS, and
RTN-96 could not reproduce the observed noise levels.
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However, despite model deviations, the overall Spearman’s correlations range seems
very promising, RS = 0.79–0.98. Nord2000, being a state-of-the-art model, performed the
best. CNOSSOS showed great potential for noise prediction (LAeq24h and Lden) and high-
resolution mapping (see Table 3 and Figure 4). RTN-96 performed the worst with significant
discrepancies. This is because RTN-96 does not consider meteorology, air temperature, wind
speed and direction, etc., in its noise prediction process. Furthermore, the RTN-96 model
does not simulate certain terrain types and upwind conditions. See [16] for more RTN-96
technical details. The significant influence of meteorology on outdoor sound propagation
over long distances is well documented [72–74]. Thus, notable RTN-96 prediction errors
in this work can be linked to the underlying model limitations, making it unsuitable for
health assessments and city planning.

The fused noise estimates, via the Confidence-Weighting Average (CWA) (see Section 3.4),
and their comparison with measurements showed relative improvements in model agree-
ments and errors. See Figure 5 and Table A1. Thus, it is reasonable to establish that the
CWA has a promising potential to help obtain more accurate noise levels in a region of
interest. However, one should be aware that combining simulated and measured data
may lead to overfitting, underscoring the need to ensure the good quality (e.g., a couple of
months) of both datasets.

Results like our model evaluation findings have previously been reported. Larsson [38]
compared Nord2000 predicted sound exposure levels (LAE in dB) with the measurements
in Sweden. The LAE levels were computed at a 10 m distance from light vehicles and
varying speeds. Larsson reported Nord2000 model overestimations up to 3 dB. Likewise,
Van Renterghem and colleagues [5] evaluated CNOSSOS model predictions against street
noise measurements in Barcelona and reported deviations in the range of 2–3 dBA. Gozalo
and Escobar [75] compared CNOSSOS model predictions with measurements in two Ibero-
American cities, Talca and Moraleja, and found model differences up to 3.2 dBA.

Bąkowski and Radziszewski [76] also compared CNOSSOS model predictions with
noise recording in Kielce, Poland, and found a good agreement between measured and
modeled median values. Similarly, Vergoed and van Leeuwen [77] evaluated CNOSSOS’
performance in the Netherlands and found a good agreement (deviations up to 2 dBA)
between model estimates and measurements. In another study, Chang and colleagues [78]
implemented the modified RTN-96 method in Taichung City, Taiwan, and compared model
estimates with the measurements. They reported model differences up to 3.5 dBA.

Thus, in summary, our model vs. measurements findings were in line with the
previously published studies in the literature. Moreover, to our knowledge, none of the
studies in the literature used CWA for the data fusion of simulated and measured noise
levels. Hence, we could not compare our fused noise estimates and relevant findings with
the published literature.

5. Strengths and Limitations

The major strengths of this study are as follows. First, let us recall CNOSSOS was
recently revised in 2021 and implemented in the SoundPLAN software, and its validation
and evaluation studies are scarce. In addition, model validation studies of Nord2000
and RTN-96, the two Nordic noise prediction standards, have been minimal, particularly
in challenging real-world settings. This first-of-its-kind research work addresses these
knowledge and research gaps as one of its major strengths. This is particularly important
because such model evaluations facilitate city planners and health scientists to better
understand the different model performances as implications for health impact studies and
urban planning. Second, this article highlights the great potential of understudied data
fusion using the CWA technique to produce more accurate noise data, which is relevant for
mapping and assessments.

Our study, however, has several limitations. First, there is the uncertainty in the
measured noise dataset due to background and extraneous sources as well as in the
measured traffic data (AADT), as described earlier. This may have led to the possible model
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artefacts and uncertainty in the modeling vs measurements analyses. Second, the noise
model (Nord2000, CNOSSOS, RTN-96) validations in this study are based on one study site
and for many days. Thus, model validations mainly reflect the temporal assessment, not
the spatial one, which is crucial to understand the spatial reproducibility of the predicted
noise levels. Third, the model validation is based on measurements along a motorway (two
measuring locations), which may not represent typical urban environments.

6. Conclusions

This article compares the predicted daily LAeq24h and Lden levels (dBA) of Nord2000,
CNOSSOS and RTN-96 with measurements (N = 76 days) along the E45 motorway in
Helsted, Denmark. In addition, the article explores the feasibility of data fusion via
Confidence-Weighting Average (CWA) for its applicability in improved noise estimation.
Overall, Spearman’s correlations (RS) between measurements and model estimates were
strong and highly positive (0.79–0.98). RTN-96 showed significant model differences
compared to Nord2000 and CNOSSOS. Model deviations are mainly attributed to model
parametrization as well as uncertainties in model inputs and the measured data. The large
discrepancy in RTN-96 predictions (>3 dBA) is due to the lack of meteorology in its noise
simulations process.

Nord2000 performed the best against the measurements and is recommended for
noise prediction, mapping and health assessments in Denmark. In addition, CNOSSOS
reproduced the observed noise levels significantly well and showed great potential for
similar noise assessments and should be explored by town planners and health scientists.

7. Outlook

Further evaluation of Nord2000, CNOSSOS, and RTN-96 is needed and will be ex-
plored in future research. Additionally, future studies should encompass urban measure-
ment sites and conduct detailed temporal (hourly, monthly, and yearly) and spatial model
validations.
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Abbreviations

AADT: Annual Average Daily Traffic; CNOSSOS-EU: Common Noise Assessment
Methods for the EU Member States; CWA: Confidence-Weighting Average; DGM: Digital
Ground Model; DMI: Denmark’s Meteorological Institute; DSM: Digital Surface Model;
DTM: Digital Terrain Model; EEA: European Environment Agency; EU: European Union;
EPA: Environmental Protection Agency; HDV: Heavy-Duty Vehicle; IEC: International
Electrotechnical Commission; ISO: International Organization for Standardization; LDV:
Light-Duty Vehicle; LAeq,15min: 15 min A-weighted Equivalent Sound Pressure Level;
LAeq24h: 24-hourly A-weighted Equivalent Sound Pressure Level; LAeq1h: 1 h A-weighted
Equivalent Sound Pressure Level; Lden: Day–Evening–Night noise levels with 5 dB and
10 dB as evening and night penalties; MDV: Medium-Duty Vehicle; Nord2000: Nord2000
Road Noise Model; RF: Random Forests; RMSE: Root Mean Squared Error; RTN: Road
Traffic Noise 1996 Noise Model; R1: Measuring location 1; R2: Measuring location 2; R2:
Coefficient of Determination; R = RS = Spearman’s rank correlation coefficient; RP: Pearson’s
Correlation Coefficient; SLM: Sound Level Meter; WHO: World Health Organization.

Appendix A

Appendix A presents supplementary figures for the Material and Methods section
(Section 2). All figure captions are described in detail. Therefore, no further details are
provided here.
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Figure A1. (a) Satellite imagery view of the study site and the two measuring locations. (b) Another
view of the study site. Note: Respective distances of the measuring locations (blue lines) (location 1:
36.4 m, location 2: 123.3 m) from the E45 motorway can also be seen. Source satellite imagery: Danish
Geodata Agency (https://eng.gst.dk/ (accessed on 15 October 2023)).

https://eng.gst.dk/
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Figure A2. Missing values in the measured dataset with the intersection of traffic and noise variables,
ADT_HDV = 62.7%, Spd_HDV = 62.7%, ADT_MDV = 47.5%, Spd_MDV = 47.5%, ADT_LDV = 28.3%,
Spd_LDV = 28.3%, LAeq1h_R1 = 27.6%, and LAeq1h_R2 = 27.6%. Note: ADT = Average Daily
Traffic (vehicles/day), LDVs = Light-Duty Vehicles (vehicles/day), MDVs = Medium-Duty Vehi-
cles (vehicles/day), HDVs = Heavy-Duty Vehicles (vehicles/day), Spd = Traffic speed (km/h),
LAeq1h = Measured hourly A-weighted equivalent sound pressure levels data (dBA), R1 and
R2 = Measuring locations 1 and 2.
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Figure A3. Schematic representation of the share of CNOSSOS’ favorable sound propagation for the
day (07:00–19:00; red color), evening (19:00–22.00; blue color) and nighttime (22.00–19.00; green color)
in Denmark. The schematic shows wind direction from 0 to 360 degrees. The above schematic is
taken from the CNOSSOS “DK Weather” library in the SoundPLAN software version 8.2.
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Appendix B

Appendix B presents supplementary figures for the Results section (Section 3). All
figure captions are described in detail. Therefore, no further details are provided here.
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Figure A4. Correlation matrices reflecting (a) Spearman and (b) Pearson correlation coefficients
for comparing measured noise data (1 September–15 November, Autumn 2019, this article) and
2018 reference measurements data. Note: R1 = Measuring location 1, R2 = Measuring location 2,
RS = Spearman’s correlation coefficient, Rp = Pearson’s correlation coefficient, LAeq1h (R1) = Measured
A-weighted equivalent sound pressure levels at location 1, LAeq1h (R2) = The same at location 2,
LAeq1hRef (R1) = 2018 reference measured noise levels at location 1, LAeq1hRef (R2) = 2018 reference
measured noise levels at location 2. All correlations are statistically significant. The red ellipses show
the most relevant correlation values between the measured noise at R1 and R2.
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Figure A5. Measured noise, showing daily averages of LAeq24h and Lden (dBA) with the observed
number of vehicles per day on the E45 motorway. Note: measurements period = 1 September–15
November 2019 (N = 76 days).
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Figure A6. High-resolution maps (5 m × 5 m) of estimated LAeq24h (dBA) levels of Nord2000,
CNOSSOS and RTN-96 in Helsted, Denmark for 5–7 September 2019.

Table A1. Descriptive and model evaluation statistics of the fused estimates of Nord2000, CNOSSOS
and RTN-96 at the two measuring locations. Model evaluations are for LAeq24h and Lden in dBA. Note:
Min = Minimum; Med = Median; Max = Maximum; Rs = Spearman’s rank correlation coefficient;
R2 = the coefficient of determination; RMSE = Root Mean Squared Error; MAE = Mean Absolute Error;
Var = Variance; SD = Standard Deviation. All values except RS and R2 are in dBA. All correlations are
statistically significant, and values > 0.75 are colored bright green. Similarly, RMSE and MAE values
are also colored light green (≤2 dBA), light orange (>2 and <3.5 dBA), and red (≥3.5 dBA).

Min Mean Med Max Rs R2 RMSE MAE Var SD

Measuring location 1 (R1)
LAeq24h (dBA)
Nord2000 72.7 74.6 74.9 75.7 0.94 0.89 1.4 0.8 0.71 0.84
CNOSSOS 69.5 71.1 71.4 72.3 0.93 0.87 2.6 2.2 0.54 0.73
RTN-96 70.7 72.2 72.5 73.4 0.90 0.81 2.0 1.8 0.57 0.75
Lden (dBA)
Nord2000 77.6 79.9 80.2 81.3 0.90 0.81 2.7 2.4 1.17 1.08
CNOSSOS 74.4 76.7 77.1 78.1 0.88 0.77 1.4 1.2 1.21 1.10
RTN-96 75.1 77.2 77.6 78.6 0.87 0.76 1.3 1.1 1.03 1.02
Measuring location 2 (R2)
LAeq24h (dBA)
Nord2000 64.1 65.5 65.9 66.5 0.95 0.90 3.0 2.7 0.44 0.66
CNOSSOS 64.7 66.3 66.6 67.6 0.94 0.88 2.2 1.9 0.56 0.75
RTN-96 63.1 64.6 64.9 65.6 0.93 0.87 4.0 3.7 0.48 0.69
Lden (dBA)
Nord2000 68.0 72.1 73.0 73.8 0.99 0.98 0.2 0.1 2.96 1.72
CNOSSOS 69.4 71.5 71.9 72.8 0.88 0.79 1.2 1.0 1.07 1.03
RTN-96 67.4 69.3 69.6 70.5 0.90 0.80 3.1 2.9 0.77 0.88
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