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Abstract: The use of artificial lighting in a total or supplementary way is a current trend, with
growing interest due to the increase in the global population and climate change, which require
high-yield, quality, and fast-growing crops with less water and a smaller carbon footprint. This
experiment aimed to evaluate the effect of light-emitting diode (LED) lighting on the production of
basil, mustard, and red cabbage seedlings under controlled artificial conditions and in a greenhouse
as a supplementary lighting regime. Under controlled conditions, the experiment was conducted with
basil seedlings, comparing LED light with two wavelengths (purple and white light). In a greenhouse,
mustard and red cabbage seedlings were evaluated under natural light (regular photoperiod) and
with supplementary purple lighting of 3 h added to the photoperiod. The variables assessed were
aerial fresh mass (AFM), aerial dry mass (ADM), root dry mass (RDM), plant length (PL), and
leaf area (LA). Basil seedlings grown under purple light showed greater length and AFM than
those grown under white light, with no effect on the production of secondary metabolites. In the
greenhouse experiment, red cabbage seedlings showed an increase in AFM, ADM, and DRM with
light supplementation, with no effect on LA. AFM showed no statistical difference in mustard
seedlings, but the productive parameters LA, ADM, and DRM were higher with supplementation.
None of the evaluated treatments influenced the production of phenolic compounds and flavonoids
in the three species evaluated. Light supplementation affected red cabbage and mustard seedlings
differently, promoting better development in some production parameters without affecting the
production of phenolic compounds and flavonoids in either plant. Thus, light supplementation
or artificial lighting can be considered a tool to enhance and accelerate the growth of seedlings,
increasing productivity and maintaining the quality of the secondary metabolites evaluated. Thus,
this technology can reduce operational costs, enable cultivation in periods of low natural light
and photoperiod, and cultivate tropical species in temperate environments in completely artificial
(indoor) conditions.
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1. Introduction

Brazil has diverse soil and climate conditions conducive to producing various veg-
etables yearly [1]. Brazilian production in 2021, according to data from the Food and
Agriculture Organization of the United Nations (FAO), was 857 million tons in a total area
of 350 thousand hectares, responsible for a large portion of the country’s agribusiness and
agriculture [2].

Red cabbage (Brassica oleracea var. capitata f. Rubra) has great economic importance,
standing out among brassicas [3]. The cultivated area of this vegetable worldwide is
approximately 2.45 million hectares, with a global production of 71.7 million tons in 2021
and 467.6 thousand tons produced in Brazil during this period [2]. This species is cultivated
year-round in Brazil and available to the consumer market throughout the year [4].
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Mustard (Brassica juncea) is a vegetable used in cooking and traditional medicine
worldwide. It is a source of vitamins, minerals, dietary fiber, and other biologically active
compounds. This species has been used for centuries to treat various diseases, including
obesity, diabetes, depression, and cataracts [5]. According to data from the Brazilian
Institute of Geography and Statistics (IBGE), 158 were produced in the state of Rio Grande
do Sul, valued at an estimated value of BRL 719,000, with the region of Viamão, in the
metropolitan area of the State of Rio Grande do Sul, standing out as the largest mustard
producer in the southern region of Brazil [6]. This species is cultivated in autumn, winter,
and spring, preferring temperatures between 15 ◦C and 25 ◦C [7].

Basil (Ocimum basilicum L.) is an annual or perennial plant, depending on the region,
and can be used for culinary purposes, as raw material for the extraction of essential oils,
and for ornamental use [8]. This vegetable was introduced to Brazil by Italian immigrants
at the end of the 19th century [9]. The main ingredient in basil oil, linalool, has been widely
studied as a miticide, bactericide, and fungicide. This terpene is also used as a raw material
in synthesizing chemical products of industrial and pharmaceutical interest, including
linalyl acetate. There are reports of anticancer, antibacterial, neuroprotective, anxiolytic,
depressive, hepatoprotective, and protective properties of the lungs and kidneys associated
with linalool [10,11].

Traditional agricultural farming methods depend heavily on climate and seasonality.
With increasing changes to the environment and farming practices due to climate change,
protected cultivation is essential for producing high-quality, value-added food in the
current scenario of adverse weather conditions. In addition to protecting against climate
adversity, it allows the producer greater flexibility in planting and choosing the species
to be cultivated, aiming for greater productivity and financial return [12]. As commented
by Kozai [13], growing vegetable crops under controlled conditions, including artificial
light sources, may enhance productivity and allow for shorter crop development times,
with both economic and quality benefits. In this sense, studying artificial light in crop
production is paramount to developing techniques and procedures for achieving effective
crop performance, especially considering that each species has an optimum wavelength
combination and light intensity, showing the need to explore further the response of
different horticultural species to artificial lighting.

One of the leading environmental elements that affect plants is solar radiation, which
directly influences the plants’ basal biological processes, including transpiration, photosyn-
thesis, and the rate of development, depending on the type of cycle and growing season of
plant species [14].

Plants must be exposed to photosynthetically active radiation (PAR) to perform photo-
synthesis. PAR corresponds to photons with a wavelength between 400 and 720 nm, called
visible spectral light. Within this spectrum, chlorophylls show PAR absorption maxima
corresponding to blue (400–520 nm) and red (610–720 nm) light, while other accessory
pigments can show absorption maxima at different wavelengths, such as carotenes, being
considered accessory pigments [15,16].

Artificial lighting in agriculture is currently gaining prominence, especially in miti-
gating the problem of a lack of solar radiation in specific locations or periods of the year.
This technology can be used in different ways, such as light supplementation to increase
the photoperiod or in indoor cultivation by artificially providing all the light necessary for
production [17]. Regardless of the climate, additional artificial lighting can increase crop
yields and ensure consistent output throughout the year, irrespective of climate or crop
cycle constraints [18–20].

Over the years, several light technology sources were tested and used to provide
artificial lighting for plant growth. Such technologies include incandescent, fluorescent,
metal halide, high-pressure sodium, and LED lamps [20,21]. Oliver et al. [21] tested
fluorescent, metal halide, induction, and LED lamps to provide artificial lighting to grow
Beta vulgaris (Swiss chard) and Brassica oleracea (kale). The authors reported that the plants
of both species grown under LED light had a higher weight and production per unit area;
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the same authors also commented on the better performance of LED light over the other
tested light sources, which did not differ among themselves.

Light-emitting diodes (LEDs), among other lighting sources, can be adjusted to emit
the most relevant wavelengths for each crop, contributing to plant development. LEDs are
characterized as low-power, high-efficiency light sources that provide energy savings and
negligible heat emissions, unlike incandescent and fluorescent lamps, which were widely
used before the popularization of LEDs [19].

Studies have shown that different light spectrums can affect the morphology and
physiology of plants differently, depending on the specific reaction of each species to
lighting [20]. According to Poudel et al. [22], red LED lights can effectively maximize
photosynthesis, increasing plant height, internode length, and rooting. Blue light also acts
on photosynthesis, rooting, and development, mainly on stomatal control. Hogewoning
et al. [20] commented that blue light influences photosynthetic parameters, the formation
of chlorophyll, and the development of chloroplasts and can increase the photosynthetic
potential of plants exposed to this type of radiation.

Several vegetable species such as lettuce, tomato, and strawberry have been studied
relative to the use of artificial light, with the main parameters evaluated being the photope-
riod and wavelength, mainly proportions of blue and red, and light intensity, the demand
for which depends on each species and cultivar [23–27].

Zou et al. [28] assessed the effect of photoperiod, light intensity, and quality (wave-
length) on the growth of spinach (Spinacia oleracea). The authors observed that the photope-
riod had the highest effect on plant development, followed by light intensity; light quality
was the least important factor affecting plant growth. However, the light quality used in
this study encompassed only variations in purple light, with different blue-to-red ratios
(450 nm and 660 nm).

Yang et al. [29] assessed the growth of cucumber (Cucumis sativus L.) seedlings exposed
to increasing white light intensities (50–400 µmol·m−2·s−1) provided by LEDs. The authors
reported that a photosynthetic photon flux density (PPFD) of 260 µmol·m−2·s−1 is optimal
for growing this species under controlled/artificial conditions. Such results indicate the
need to determine the optimal growth parameters for each plant species.

As commented by Darko et al. [30], applying light from different wavelengths may
affect plant metabolism, both primary and secondary. Thus, using different wavelengths
as artificial lighting may be a strategy to modulate plant metabolism. However, it is
important to point out that each species responds differently, and each species must be
assessed experimentally.

In addition to the effects on primary metabolism and plant development, supplemen-
tary lighting and modification of the spectral content of light can alter the concentration
of specific bioactive chemical substances, such as phenolic compounds, flavonoids, and
anthocyanins, which have antioxidant action and play a protective role in the plant and are
associated with a lower risk of degenerative diseases when consumed and incorporated
into human metabolism [31,32].

The phenolic compounds present in plants are secondary metabolites whose primary
role is to defend against different types of stress, helping plants to resist situations such
as excess light, low temperatures, infection by pathogens, defense against herbivory and
nutrient deficiency, which can cause increases in the production of free radicals and other
oxidative species, tissue damage, and the impairing of plant homeostasis [33]. In this
sense, evaluating these compounds in light of the changes in the cultivation system is
extremely important.

Given the above, the objective of this work was to evaluate the effect of using artificial
LED light on the production of basil seedlings in a completely artificial environment and of
mustard and red cabbage seedlings in a greenhouse with light supplementation.
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2. Materials and Methods
2.1. Plant Material and Treatments

To carry out this experiment, we used seeds of basil (Ocimum basilicum) variety ‘Italian
Basilic’, smooth mustard (Brassica juncea), and red cabbage (Brassica oleracea var. capitata
f. Rubra) variety M‘ammouth Red Rock’, all supplied by the company Feltrin Sementes
(Farroupilha, Brazil).

The treatments for the experiment under controlled conditions were T1—purple light
(87.5 % red—670 nm + 12.5 % blue—430 nm) and T2—white light (40 % red—670 nm + 10 %
blue—430 nm + 50 % green—530 nm). The experimental setup under controlled conditions
with basil is shown in Figure 1.
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Figure 1. Experimental setup for the experiments with basil seedlings in controlled conditions and
exposed to different wavelengths. (A) Seedlings seven days after sowing; (B) seedlings at collection
time, 27 days after sowing. Caxias do Sul, 2023.

Both treatments were applied with a PPFD of 100 µmol·m−2·s−1, with two 1.0 m long
LED bars being arranged at 20 cm above the plants, with a photoperiod of 14 h of light
and 10 h of dark, corresponding to a daily light integral (DLI) of 5.04 mol·m−2·day−1 for
both treatments.

For the greenhouse experiment, two treatments were also used, T1—natural light and
T2—natural light plus light supplementation with purple light (red—670 nm + blue—430 nm)
for 3 h, activated by a timer from 18:00 to 21:00 daily. The experimental setup for the
greenhouse experiments is shown in Figure 2.

Considering natural lighting only (T1), the average PPFD was 391.4 µmol·m−2·s−1, cor-
responding to a DLI of 16.9 mol·m−2·day−1, according to data from CRESESB [34]. For the
treatment with light supplementation (T2), a PPFD of 100 µmol·m−2·s−1 was maintained
during the period of light supplementation, corresponding to a DLI of 1.08 mol·m−2·day−1

additional to the natural photoperiod. A 1.0 m long LED bar which provided supplemen-
tary light was placed 20 cm above the plants.
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Figure 2. Experimental setup for the greenhouse experiments with mustard and red cabbage seedlings.
(A) Experiment on the sowing day. (B) Aspect of seedlings at the end of the experiment, 27 days after
sowing. Caxias do Sul, 2023.

2.2. Plant Cultivation

Basil, red cabbage, and mustard seeds, all provided by the company Feltrin Sementes
(Farroupilha, Brazil), were sown in plastic trays containing commercial substrate Carolina
Soil® (Santa Cruz do Sul, Brazil) maintained in a floating system. The plants were kept
in the Hoagland nutrient solution, with pH 5.5 ± 0.3 and EC 2.0 ± 0.2 dS·m−1, prepared
as described by Sarruge [35]. Sowing was carried out on 4 October 2023, and nine days
after germination, thinning was conducted, leaving one plant per cell, with seedlings being
evaluated on 31 October 2023.

Two experiments were carried out, one under fully controlled conditions with basil
seedlings and the other in a greenhouse with additional light supplementation with red
cabbage and mustard seedlings. The first experiment was conducted in a growth chamber
(Fitotron, ISB Industries, Porto Alegre, Brazil) with a daytime temperature of 25 ◦C and a
nighttime temperature of 15 ◦C.

For the second experiment, carried out in a greenhouse, the climatic elements were
monitored by a Vantage Pro II station (Davis Instruments, Hayward, CA, USA) installed
inside the greenhouse. During the experiment, the average temperature and relative
humidity were 17.6 ◦C and 85 %, respectively, with a temperature variation between 7.3 ◦C
and 30.7 ◦C.

2.3. Seedling Assessment

After 27 days, the seedlings were collected, and the biometric variables evaluated
were plant length (PL), aerial fresh and dry mass (AFM, ADM), root dry mass (DRM), and
leaf area (LA). Plant length was determined with a 30 cm ruler. Fresh mass was measured
immediately after collection using an AL500C semi-analytical balance (Marte, São Paulo,
Brazil). The aerial and root dry masses were determined after drying the plant material
for 48 h at 55–60 ◦C in a DeLeo forced air circulation oven (Porto Alegre, Brazil). Leaf area
measurements were performed using an AM350 leaf area meter (ADC Bioscientific Ltd.,
London, UK).

Phenolic compounds and flavonoids were extracted with a hydroalcoholic solution
(ethanol 70 % v/v) in a proportion of 5 g of plant material for 30 mL of solution. The
content of total phenolic compounds was determined by spectrophotometry according to
the Folin–Ciocalteu method [36], and the results were expressed in milligrams of gallic acid
equivalents (EAG) per 100 g of plant material on a wet basis.

The total flavonoid content was determined by the aluminum chloride method ac-
cording to the methods proposed by Matic et al. [37], and the results were expressed in
milligrams of quercetin equivalents (EQ) per 100 g of plant material on a wet basis.
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2.4. Experimental Design and Statistical Analysis

The experiments followed a completely casualized design, with two treatments and
four replications per treatment. Each replication consisted of one plot, with eight plants
kept per plot, totaling 32 plants per treatment. Treatment means were evaluated using
Student’s t-test at a 5 % significance level using the Microsoft Excel® 365 program (Microsoft,
Redmond, WA, USA).

3. Results
3.1. Experiment with Basil in a Controlled Environment

The results regarding the biometric parameters of the basil seedlings grown indoors
are compiled in Table 1.

Table 1. Biometric parameters of basil (O. basilicum) seedlings grown with LED artificial lighting with
different wavelengths. Caxias do Sul, 2023.

Treatment PL
(cm)

AFM
(g)

ADM
(mg)

DRM
(mg)

LA
(mm2)

T1—purple light 17.0 ± 1.8 * 3.74 ± 0.72 250 ± 60 140 ± 20 ns 5848 ± 1095 ns

T2—white light 13.5 ± 1.0 5.16 ± 0.45 * 340 ± 20 * 100 ± 40 9808 ± 2870

CV (%) 14.93 21.15 20.10 28.66 33.63
PL: plant length; AFM: aerial fresh mass; ADM: aerial dry mass; DRM: root dry mass; LA: leaf area. *: significant
by Student’s t-test at a 5 % significance level; ns: not significant by Student’s t-test. CV: coefficient of variation.

For basil grown under controlled conditions, a statistical difference was observed
between the two treatments, with PL being higher in treatment T1 and AFM and ADM
being higher in T2. The DRM and LA parameters were not influenced by the type of light
(purple or white).

Figure 3 shows the aerial parts of basil seedlings grown under artificial LED lighting
in purple (T1) and white (T2) lights.
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red—670 nm + 10 % blue—430 nm + 50 % green—530 nm), 27 days after sowing. Caxias do Sul, 2023.

According to a study with lettuce carried out by Zhang et al. [38], exposing plants
to red LED light (600–650 nm) increased fresh mass, suggesting a higher photosynthetic
rate and, consequently, a higher rate of the production of photoassimilates. Furthermore,
works in the literature comment on the role of red light in elongating plant stems, which
could explain the greater plant length observed in T1 (purple light), the proportion of
which in red light is greater than in T2 (white light) [20]. However, Rahman et al. [39]
commented that exposure to blue light (400–450 nm), regardless of the presence of other
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wavelengths, promotes the development of the leaf area, while radiation in the red range
(600–700 nm) and far-red range (>700 nm) stimulates the plant’s reproductive development
to the detriment of vegetative growth. In a meta-analysis, Ma et al. [40] highlighted that
blue light reduces leaf area. However, the same authors emphasized that more studies are
needed to verify whether this behavior is generic or associated with cultivation practices.
Some authors also found that white light affected the growth parameters of basil plants,
such as dry mass and leaf area, and may have a stimulating effect on plant growth [41,42].

The greater aerial fresh mass in T1 may also be a result of the greater proportion of
radiation in the blue color range (430 nm), as this stimulates the opening of the stomata,
increasing the flow of water through the plant tissues, promoting transpiration, even
without associated photosynthetic activity [43,44]. Considering that the plants were in
an environment with a water supply (floating), there was no water stress, allowing the
seedlings to transpire and, consequently, capture water to maintain tissue hydration and
without a major effect on the accumulation of dry matter, such as can be observed for RDM,
which was not influenced by the tested wavelength ratios.

Table 2 presents the results regarding the total phenolic compounds and flavonoid
levels in basil seedlings exposed to purple and white LED light in a controlled environment.

Table 2. Contents of total phenolic compounds and flavonoids in basil seedlings grown in a controlled
environment exposed to artificial purple and white LED lighting. Caxias do Sul, 2023.

Treatment Total Phenolic Compounds
(mg EAG·100 g−1)

Flavonoids
(mg EQ·100 g−1)

T1—purple light 632.6 ± 111.9 ns 881.4 ± 228.5 ns

T2—white light 523.5 ± 100.0 736.8 ± 221.9

CV (%) 19.76 27.49
EAG: gallic acid equivalent; EQ: quercetin equivalent; ns: not significant by Student’s t-test at a 5 % significance
level. CV: coefficient of variation.

It can be observed that the wavelength did not influence the levels of phenolic com-
pounds and flavonoids present in the seedlings. According to Dou et al. [45], the low flux
density of photosynthetic photons and the lack of ultraviolet (UV) radiation can decrease
phenolic compounds in basil plants kept in controlled environments. Rahman et al. [39]
reported on the stimulating effect of RFA in the blue region (400–500 nm) on the synthesis of
phenolic compounds, especially anthocyanins. On the other hand, Ma et al. [40] observed
that, although the presence of blue light tends to increase the anthocyanin content, this
does not have a major effect on the levels of phenolic compounds and flavonoids in general,
which would explain the statistically similar levels in both treatments.

3.2. Luminous Supplementation of Mustard and Red Cabbage in a Greenhouse

The results regarding the biometric parameters of mustard and red cabbage seedlings
grown in an artificial environment are compiled in Table 3.

The production of red cabbage and mustard seedlings in a greenhouse was influenced
by light supplementation, making it possible to observe the effect of the treatments on
the biometric parameters in both species. Light supplementation promoted an increase in
AFM, ADM, and DRM in red cabbage. For mustard, light supplementation increased ADM
and DRM, as occurred with red cabbage seedlings, and stimulated the development of LA
and PL.

Figure 4 shows the root and aerial parts of red cabbage and mustard seedlings grown
under natural light (T1) and with purple LED light supplementation (T2).
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Table 3. Biometric parameters of red cabbage (B. oleracea) and mustard (B. juncea) seedlings grown
under natural light and with purple LED light supplementation (87.5 % red—670 nm + 12.5 %
blue—430 nm). Caxias do Sul, 2023.

Species Treatment PL
(cm)

AFM
(g)

ADM
(mg)

DRM
(mg)

LA
(mm2)

Red cabbage T1 14.2 ± 2.4 ns 1.95 ± 0.37 110 ± 30 50 ± 7 4150 ± 1224 ns

T2 16.0 ± 1.4 2.76 ± 0.19 * 180 ± 10 * 70 ± 2 * 5894 ± 750

CV (%) 10.44 14.17 24.42 30.54 28.65

Mustard
T1 17.4 ± 0.4 4.26 ± 0.28 ns 310 ± 20 80 ± 7 8242 ± 815

T2 20.2 ± 1.9 * 4.82 ± 0.82 460 ± 80 * 130 ± 22 * 13,174 ± 2286
*

CV (%) 13.87 21.59 27.70 12.40 26.36
T1—natural lighting; T2—light supplementation for 3 h with purple light. PL: plant length; AFM: aerial fresh mass;
ADM: aerial dry mass; DRM: root dry mass; LA: leaf area. *: significant by Student’s t-test at a 5 % significance
level; ns: not significant by Student’s t-test. CV: coefficient of variation.
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Rizzon et al. [46], working with purple LED light supplementation (87.5 % red—670 nm
+ 12.5 % blue—430 nm) on curly lettuce and cauliflower seedlings in a greenhouse, observed
that the biometric parameters of ADM, DRM, root length, and LA evaluated were positively
influenced by light supplementation in both species. The same author commented that
the use of lighting promoted the faster development of seedlings, indicating a shorter
nursery time and, consequently, increased productivity compared to systems without
supplementary lighting.

It is important to note that, in greenhouse conditions, seedlings are more subject to
variations in temperature and humidity, which can negatively affect their development,
than when grown in fully controlled conditions [47]. In this sense, light supplementation
can also be used as a stimulating agent for plant development to accelerate seedlings’
development and promote their resistance to different sources of stress, both of biotic and
abiotic origin [48].

The results regarding total phenolic compounds and flavonoid contents in red cabbage
and mustard seedlings are compiled in Table 4.

Table 4. Contents of total phenolic compounds and flavonoids in red cabbage (B. oleracea) and
mustard (B. juncea) seedlings grown under natural light and with purple LED light supplementation
(87.5 % red—670 nm + 12.5 % blue—430 nm). Caxias do Sul, 2023.

Treatment
Purple Cabbage Mustard

TPC
(mg EAG·100 g−1)

Flavonoids
(mg EQ·100 g−1)

TPC
(mg EAG·100 g−1)

Flavonoids
(mg EQ·100 g−1)

T1 1157.5 ± 78.0 ns 661.9 ± 32.6 ns 1151.2 ± 162.8 ns 739.9 ± 184.2 ns

T2 1058.9 ± 75.5 730.0 ± 84.7 1129.9 ± 67.4 754.0 ± 117.1

CV (%) 7.98 10.01 10.16 19.16
T1—natural lighting; T2—light supplementation for 3 h with purple light. TPC: total phenolic compounds;
EAG: gallic acid equivalent; EQ: quercetin equivalent; ns: not significant by Student’s t-test at a 5 % significance
level. CV: coefficient of variation.

Regarding the levels of total phenolic compounds and flavonoids, no significant effect
of light supplementation was observed in either red cabbage or mustard. Rizzon [36]
observed that lettuce plants supplemented with purple light showed higher values of
phenolic compounds and flavonoids. Etae et al. [49] observed that the content of phenolic
compounds in lettuce was influenced by the light type, which was higher in LED than
in fluorescent light. However, cauliflower seedlings showed higher values of phenolic
compounds in the treatment without light supplementation, and the treatments did not
influence flavonoid levels. As discussed by Rahman et al. [39] and Ma et al. [40], this
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fact demonstrates that each species presents a distinct response concerning secondary
metabolism and exposure to artificial/supplementary lighting, with the response also
depending on the wavelength used.

4. Conclusions

According to the results observed, the biometric parameters of the seedlings under
investigation were influenced by exposure to artificial LED light, whether in full or sup-
plementary lighting. Under artificial lighting under controlled conditions, basil seedlings
exposed to purple light had an increase in plant length, while white light favored an increase
in aerial fresh mass. These results demonstrate the effect of different spectral compositions
on promoting the specific characteristics of the species studied. The basil seedlings under
white light generally presented a more suitable size, morphology, and commercial stan-
dard. For the greenhouse experiments, red cabbage seedlings under light supplementation
showed biomass accumulation, suggesting an increase in the photosynthetic rate. Simi-
larly, mustard seedlings under supplementary lighting showed better development of the
aerial part, showing that light supplementation stimulated the growth of seedlings of this
species. Despite the effect of supplementary light and different wavelengths on biometric
parameters, these did not significantly influence the synthesis of the secondary metabolites
studied in any of the species evaluated, maintaining the phytochemical characteristics of
the species.
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